» LIGO (
|
|
- Κασσιέπεια Αξιώτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Ø 53 Ø 3 Å Ð Vol.53 No º ACTA ASTRONOMICA SINICA May, 01 OJ87 ± «3.5 ³» ËÅ ÏÎ Í ( ÃÀÒ Ò«Ò Ò ÚÌÞ 3006) Í Ò OJ87 ± µ µ Ï Ð µ «Ð À ¼ Þ É Í ÅÂ Û 3.5 Æ» м ÁÆ OJ87 ÐÀ Ó º µë Þ»»Á Æ» 3.5 ÐË À ² Đ.5 Ð ³ Ë Ø Ü Đ Ñ Æ Ï ÉÆÙ ÞÀ Å Ê ÆÉÆ Ð Ü» 7 Ë ÆÉÄÐ ÅÅ»Á ¾¾ Ð OJ87 Ò ÐÀ ¼ À Û Å ¼ ³³Æ Í Ë Å»³ É Ü Å Í³¹Ç 0 «Å Þ Ð 3.5» ¼ ÏÌ Ð ÂÇ Æ Ð Â Ð Ï ³Ð 3.5 Ç «Í Á Ê Â µð ÓØ Ð Û Å ̾¾ Ö Û OJ87 Ð Â «½Á OJ87, Á É Â ¾Â ƾ ² º ƾ Ì ½ P135; A 1 ÇÄ Â» LIGO ( VIRGO [1] ß Ñ Ä LCGT [] LISA ( shane/sensitivity/makecurve.html) Parkes Array [3] Ò Ð Á Î Á Î Æ Á Æ Á Î Ñ Ï Î º Ñ Ò Î ÐÌ Ù»ÐÙ º Á ÁÀ Ñ º Å Æ ²È Õ ÁÀ Ð Î ÆÆ Ý Ñ À [ 6] ² Ã Ö ÀÒÚµÈ ( )» ÚÚµÈ ( ) Ò yzh@ustc.edu.cn
2 186 «Ò 53 ½ÊÕ Ï ÁÀ ½ ÕºÀ ÏÑ»ß ÅºÀ ß Ïº Ñ Á ß ÒÁ ÚÎ Á Ú ºÖ (PN) º Ú 3.5PN [7 15]. Ö z = BL Å OJ87, ÎÛ Å Î Î Á Ì Ð Ì ± m 1 = M, m = M, 1 yr, Á ÆÆ ÈÃ Ò Ë ¹ ¾ Ò [16 3]. Á»ß É Ú Ö [16 17] Þ PN Ú ± Ö.5PN Á ß Å Ú Õ ËÕ Á Ä Ö.5PN Ë Æ É.5PN Ú [18 0] ºÀ Î [0] Ú 3PN. ŻР¹ Ú 3.5PN, Ð É 3PN Æ 3.5PN Ë Æ OJ87 ± ÌĐ Ë «ÄÊ Ð Ð»ß Ð Û Á ÇÂ Ê Ð Æ Û È Õ Æ Ê Ð Ð ² Ê Ð Û È Ã Æ Å Ý È Ø Ç Ê Ð À Û ½Ì Ð Ð È ¼ ÁÀ˲ []. ÌÊ Ð Û ÁÀË Æ È È Ø Ý Ø ¼ ½ ÕÝÀ Ò¾ Ø ½ ÁÆ Ãß Û Ò [3, 7] Þ Ö»Ð ½ É È Ø Ý Ë Èà ÝÀ ¾ ºÀ 3.5PN»ß ½ Î 3 È Ø Î È Ý ¾ ß OJ87 Ä ÈÙ Ä ºÖ»ß ß Á ± ß 3.5PN Ê»ÐÐ Å OJ87 Ñ Ð»ßº ߻ߺ Ö ÐÕ È Ú Ú ÐºÀ»ß 3.5PN [8 15]. Ê Ð Ì ÐÌ 1/16, ß ºÖ Á Ê Ð Ê Ý Ð» ß º 3.5PN»ß [1,15] dv dt = Gm r [(1 + A 1PN + A PN + A.5PN + A 3PN + A 3.5PN )e r + (B 1PN + B PN + B.5PN + B 3PN + B 3.5PN )v], (1) Î x Ì Ð Ê Ð ÊÎ r x ÐÀ e r = x/r Î v dx dt Ð Á Ù m = m 1 + m Ð Ì Ú
3 3 ¼ ÓÅ OJ87 Ó ĐÁ ÜÅ 3.5 ¼Ø 187 A ipn B ipn ºÖ Æ Ð A 1PN = 1 [ c 3ṙ ν + v + 3νv Gm ] r ( + ν), () Î ν m 1 m /(m 1 + m ) ÒÌ Ì v = v, ṙ e r v. A PN = 1 [ 15ṙ ν c 5ṙ ν 9ṙ νv + 6ṙ ν v + 3νv ν v ) Gm ( ṙ 5ṙ ν ṙ ν 13νv + ν v + G m r r A 3PN = A 3.5PN = 1 c 6 A.5PN = 1 ( c 5 ṙνv 5 [ 35ṙ6 ν ṙ6 ν 16 Gm r 175ṙ6 ν ṙ ν v 136ṙν 15 ( ν )], (3) G m ), () r + 15ṙ νv 5ṙ ν 3 v 135ṙ ν v + 55ṙ ν 3 v 15ṙ νv + 11νv ν v ν 3 v 6 + Gm (79ṙ ν 69ṙ ν 30ṙ ν 3 11ṙ νv + r ) 16ṙ ν v + 0ṙ ν 3 v + 75νv + 8ν v 10ν 3 v + G m ( r ṙ + 717ṙ ν + 11ṙ ν 7ṙ ν ṙ νπ 087νv + ν 3 v νπ v ) + G3 m 3 ( 6 r ν ) ] 71ν + 1νπ, 1 16 [ ( ) 1 Gm 366ṙνv c 7 + 1ṙν v 11v νṙ 3 1ν v ṙ νṙ 5 + r 35 G m ( 69ṙνv r 7ṙv ν + 9νṙ ν ṙ 3 ) G 3 m 3 ( ) ] 3956ṙν r ṙν, 35 5 Î 3.5 Æ A 3.5PN È «Ô ṙ, [1, 15] Õ ÈÅ ± ÆË B 3PN = B PN = 1 c [ 9ṙ 3 ν B 1PN = 1 c ( ṙ + ṙν + 3ṙ 3 ν 15ṙνv B.5PN = 1 ( 8νv Gm c 5 5 r [ 1 c 6 5ṙ5 ν + 15ṙ 5 ν + 15ṙ5 ν 3 8 1ṙ 3 ν 3 v 65ṙνv ( Gm 39ṙ 3 ν r 6 G m r ṙ3 ν ṙν v + Gm r + ν ṙν v + 6ṙν 3 v + (5) (6) ), (7) ( ṙ + 1ṙν )] + ṙν, (8) G m ), (9) r + 1ṙ 3 νv 111ṙ3 ν v ) + 18ṙ 3 ν 3 15ṙνv 7ṙν v 10ṙν 3 v + ) ], ( ṙ 589ṙν + 5ṙν + 8ṙν 3 13ṙνπ 80 3 (10)
4 188 «Ò 53 B 3.5PN = [ 1 Gm ( 66νv c 7 1ν v r 35 5 G m ( 16νv r + 18ν v 8νṙ G 3 m 3 ( r ν ) ] 10ν νv ṙ 5 + 1ν v ṙ ) 10νṙ + ) ν ṙ 15 Ï A ipn, B ipn ²À Õ À«Ô v Ö ṙ (¹ c = 1), Å ²À Õ À v, ṙ, vṙ, Ö Gm/r.»Ð ÁÎ Ë A.5PN, A 3.5PN, B.5PN, B 3.5PN É Ð ÈÀÈ «Ô ν, Å Ë A 1PN, A PN, A 3PN, B 1PN, B PN, B 3PN ¹ÕÈÀ Æ È«Ô ν. Ð ÏË Ë Ä Ù Ê Ä Ì ν Á ºÀ 3.5 ºÖ Ñ Ð OJ87 Ð Ý Ê Ð»ß ÚȻйÞÐ (r, φ), (1) É Î v = ṙe r +r φe φ, e φ φ É Î Ú ºÝ Ú ÐÊ Ð»ß Ä r 0, ṙ 0, φ 0, φ 0,»ß ± r = r(t), φ = φ(t). Ê Ð ¾ Ò Ë ¾ ݻРOJ87 Ð Èà ² ÖÈ Ø Î ºÀ ¾ 3 Đ ÃÅÀÈ Å OJ87 Æ «Í [,,7,9], 1 yr Ý Õ Ê Ë ß Ê 1 yr Ñ OJ87 Ñ Ð [18 3]. ßÎ Ê Ð¹Ê Æ Û À È ² Ý Ð [0,,31]. Ö Á Ú ß Á Î ÚÀ Ð Èà ¼ ½Ê ¹ [8 9]. Ñ Ð Ë OJ87, È ± ÈÅÙ ÐÔ [6,9]. Ð Ê Ð Ð Û ² Ã Æ Ð Å Î È Ø Î [] «Ä Ð Û ÁÔ Ð Đ Û Ê ÐÆÆ È Ð Õ Ê Ð»ß (11)»ß ½ É Ê Õ Ô ² Đ À Û È Ð Ô ÌÊ Ð Æ Û Î ÈÃ Ê Ð ĐÀ Û Ð È τ dyn. À Æ È t 0 Ê Ê Ð º ¼ Ð È Ð Á¼ À Å []. Ð Ð È Ø t d = τ dyn + t 0. Ð Û Ð È τ dyn Ò ¼ t 0 ÙÅ Ê Ð Ù Î Ð t 0 À Ð Ð È Ø t d [] 3 Î À Ù É R ¹ ÄÈ τ dyn t 0 Ä t d ß R É ½ R ÌÈ t d R É Á ºÖ [7]. Å»ÐÅ OJ87
5 3 ¼ ÓÅ OJ87 Ó ĐÁ ÜÅ 3.5 ¼Ø 189 ÛºĐ R Ä Ì Á Ï ºÖ ¾ [3] 1 ß [7] 3,»Ð À t d R À É t d = R , (1) Î t d yr R Ê Ð Ð Ûº ( 0Gm 1 /c ) ß Æ ºÝ Ú Ä r 0, ṙ 0, φ 0, φ0,»ð ± Ú (1), r = r(t), φ = φ(t). Ê Ð Û φ(t i ) = nπ (n = 0, 1,,...), È Èà t i, ß Ù É R i. ¾ (1) ºÀ È Ø t d Ä Ú ÚÀ Èà Á OJ87 7 Ê Ð È Ã Â Ý OJ87 ¾»Ð [19, ] ºÀ Ûº 7 Ê Èà 1 Î 1 µ Table 1 Observed outburst times Outburst time Estimated uncertainty(yr) ± ± ± ± ± ± Î 1 ÈÃ Ä , ß»Ð Ú Ú ÈÃÄÅ Ý Ë Ë ÚÎ Ý 6 Ê ÈÃ Ñ Ð Õ Ë Èà 1 Ê È ( ) yr à ( ), Ñ Ð z = Å Ú ÚÀ Èà ÈÃ Ä δt 1,..., δt 6. Î À Û º»Ð½ Û Ì ¾ S 6 (δt i ) ÛÌ Ú ÈÃ È i=1 ÃÀ ±ÛÌ ß»Ð Û Èà (t = 0) r 0 = (Gm 1 /c ), ṙ 0 = 0, φ 0 = (Ð Á Ω), φ 0 = arc/(gm 1 /c 3 ). (Gm 1 /c ) = Au, È (Gm 1 /c 3 ) = d. ȻкÀ OJ87 Ê Ð Ð»ß 1 3 Á Á Ú ß Å Î À 7 Ù b, c,d, e, f, g, h, Èà ºÊ Ð Æ Û
6 190 «Ò Y / (Gm 1 /c ) g a: b: c: d: i e c. a h f d X / (Gm 1 /c ) b e: f: g: h: i: ¼Ø OJ87 ÑÁ Ô À Y = 0 Ý Fig.1 The 3.5 post-newtonian (PN) order orbit of OJ87. The horizontal line Y = 0 represents the accretion disk.»ð źÀ OJ87 ¾. OJ87 Table The orbital parameters of OJ87 Orbital parameter m 1 Value M m P e a M yr pc Ω at Ψ /period Î ÐÌ m 1, m,»ðï [0] ºÀ Ä P e a Ψ ß ß Î Ê Ð»ß Õµ ³»Ð ½ e = (r max r min )/(r max + r min ), a = (r max + r min )/. À P Ä»ÐÕµ ÁÑ Ê É ¹ÛÌ Ä È Ñ Ð z = Å ÚÀ Ñ Ð Õ Ä ( ), ºÀ Î P Ä ß Ψ Ý ÁÑ Ê É ¹ÛÌÄÈ Ò ¼»ß ± Á Ï ¾ ÕÝÈ Æ Ò»ÐºÀ ¾ Ä Ì 1971 «0 Ä Õ Ï¾ Í ÐºÀ È Ø Ä ºÖ ³ Ð Ê Ð Ä Ý Ù v Ê Ä Û Đ Ð Û È v ÛÌ
7 3 ¼ ÓÅ OJ87 Ó ĐÁ ÜÅ 3.5 ¼Ø c. Å Ð ÛºÈ v Û 0.57c. Î v Ä 0.11c. Ñ Ð Á Ø Á Ë º ³ v Ä Ú P a e ÝÈ Ü Ì Ψ ÝÈ t = yr È (3 33 ½), Û Ä Ψ 77 /period, r min = 9.69Gm 1 /c. Ý Ψ Ý È Ì t = yr È ß Ψ = 0, r min = 6.9Gm 1 /c. À Ψ Ä ÐÊ Ð ß É ß Ý»Ð Ù φ(t) ÛÒ Ψ É φ(t) Ý È t = yr È Û Ä Ý ÓÙ Ì Ð Ù» Ö Ñ ÐÐ ² Ö 3.5 ½ Á Ú Ö ½½ Ä Ú ÐÀ t = yr ÁÉ Ì 0.58 yr. È ³ r 6.6Gm 1 /c, º Ð Ñ Gm 1 /c, v Ä 0.65c. È Ñ Ð º Å ² 8 Orbit of OJ87 at Late Stages Y / (Gm 1 /c ) X / (Gm 1 /c ) 3.5 ¼Ø OJ87 Ñ Á (t = yr) Fig. The 3.5PN order orbit of OJ87 at late stages (t = yr) 5.5PN 3.5PN ¹ Ú É 3PN 3.5 Ë Æ Î»Ð À Đ ¹ Ì A 1PN 0.13, A PN 0.03, A.5PN 10 5, A 3PN 10 3, A 3.5PN 10 6 ; B 1PN 0., B PN 0.007, B.5PN 10, B 3PN 10, B 3.5PN ± ¹ ÊÅ Ì A.5PN Ì Ì A 3PN ;
8 19 «Ò 53 ÏÖÕ B.5PN B 3PN Ì A.5PN B.5PN È «Ô ν ÐÉ Ò Ú Ä A 3.5PN A.5PN Ì B 3.5PN B.5PN Ì Á Ê Ð»ß ÄËÕ 3.5 Ç.5 1/10. ± Ä ËÕ.5 Æ 3.5 Æ ÁÎ Ë Æ [8 11,13 1]. ½ Õ À 3.5PN ĻР3 κÀ.5PN Ú OJ87 ¾ 3.5PN Äß Ï¾ Ì 1971 «À 0 Ä Á À ± Ì.5PN ß ÙÌ Ï 3 ² º Table 3 The orbital parameters of post-newtonian approximation e a Ψ P.5PN pc /period yr 3.5PN pc /period yr 3.5PN 3.5PN ± ÚÀ Ý Û Đ 3.5PN.5PN ± 150 º ÀÝ È È ÎÛÎ Õ Ë.5PN Ü Y / (Gm 1 /c ) a X / (Gm 1 /c ) b X / (Gm 1 /c ) 3 3.5PN.5PN ÜÂÑ OJ87 Á Ñ ÌÀ 3.5PN, ÚÀ.5PN. Ý Y = 0 ÃÀ Fig. 3 The orbits of 3.5PN (solid) compared with.5pn (dots). The horizontal line Y = 0 represents the accretion disk. Ä ÆÀ Æ ß½Ô Æ Ë Æ Á Ç.5 Ƽ Ë Æ ¼ Á ß»Ð Ú Ä Ë Æ Ð Î Ý É 3.5 ºÖ Ú Ñ ÐÀ r(t) ÄÝÈ Ì ÁÉ À ¼Û.5 Æ 3.5 Æ Ë Æ Ú Ä r(t) Ä
9 3 ¼ ÓÅ OJ87 Ó ĐÁ ÜÅ 3.5 ¼Ø 193 Ý.5 Æ 3.5 Æ Á ß Ð Æ without.5pn and 3.5PN radiative terms r / (Gm 1 /c ) t / (Gm 1 /c 3 ) t / (Gm 1 /c 3 ) Fig. OJ87 ÑÁ r(t) ÞÊ ÑÜÔ The evolution of OJ87 s radius r(t) ß Ä»Ð 3.5 Æ Ù r φ É.5 Æ ÎÁ 5 6. Ð 3.5 ÆÕÅ É ÕÞÞ Õ Ð 3.5 ÆÐ ½ Î ² É Á Å Ì ³ Æ ÆÆ Ú Ò de/dt Ë.5 Æ Ò de/dt < 0, Á 3.5 Æ de/dt > 0,.5 Æ 3.5 Æ ÐºÀ de/dt < 0, Á 3.5 ÆÉ Ë ½ һР¾Ã Ö.0x x x x10-5 A.5PN 0.0.0x x10 3 t / (Gm 1 /c 3 ) 5.0x x10-6 A 3.5PN 0.0.0x x10 3 t / (Gm 1 /c 3 ) Fig.5 5 Í A 3.5PN A.5PN Ñ The coefficients of dissipative terms, A.5PN (left), and A 3.5PN (right)
10 19 «Ò 53 B.5PN B 3.5PN 1.x x10-5.0x x x x x x x10 3 t / (Gm 1 /c 3 ) t / (Gm 1 /c 3 ) 6 Í B 3.5PN B.5PN Ñ Fig.6 The coefficients of dissipative terms, B.5PN (left), and B 3.5PN (right) Ò ¾ Ú 3.5PN Ú Ú È ± Ê.5PN. Ä 3.5PN Ú Ú ¾ S , Å.5PN S Á ÚÆ Ö OJ87 Ñ Ð»ßº ÐÌ Ê ÐÌ ß ºÖ ÄÊ Ð Ê Ý Ð»ß Ê Ð Û È Ø»Ð½ É È ÆÆ Ú 3.5 ºÖ»ß ± r = r(t), φ = φ(t), Ú ß ² ¼ OJ87 ÛºÈ 7 Ê Ð Èà ÛÌ À Ä r 0, ṙ 0, φ 0, φ0 Ý Ú Ú ²²ÐÀ ºÀ È ¾ Ä P e a ß Ψ. Á Ø É ÝÈ Ò ÛÒ Ç ÝÈ Å Ì ³ ß Å Æ ½ Û Ý Ì ÈÑ Ð º 3.5PN ÚÁ ÇÎ Ï ½ ½ Ä Ú ¼ ĻРºÖ ÚÀ»ß ± ¼ ÛÌ Ë Û È 3.5PN ¾ Ì.5PN º Ö ºÀ»ß Đ ± Ì Ý È ÛÎ ± 3.5PN ß.5PN ± Ë Ì.5 Æ 3.5 Æ Á ÅÚ.5 Æ 10 5, Å 3.5 Æ 10 6, Ð 3.5 Æ Ä.5 1/10. Å ½ Ù ß 3.5 Æ.5 Æ ÎÁ ² 3.5 Æ Å²ß É Á Å Ì ³ ÆÆ Ú Ò Ä Ð.5 Æ Ò 3.5 Æ
11 3 ¼ ÓÅ OJ87 Ó ĐÁ ÜÅ 3.5 ¼Ø 195 Ò Å.5 Æ 3.5 ÆÉ Ò º»Ð ¹Ö ¼ [1] Acernese F, Amico P, Al-Shourbagy M, et al. CQGrav, 005, : S869 [] Kuroda K, The LCGT Collaboration. CQGrav, 006, 3: S15 [3] Manchester R N. ChJAA, 006, 6: 139 [] Hulse R A, Taylor J H. ApJ, 1975, 195: L51 [5] Taylor J H, Fowler L A, McCulloch P M. Natur, 1979, 77: 37 [6] Taylor J H, Weisberg J M. ApJ, 198, 53: 908 [7] Wagoner R V, Will C M. ApJ, 1976, 10: 76 [8] Iyer B R, Will C M. PhRvL, 1993, 70: 113 [9] Iyer B R, Will C M. PhRvD, 1995, 5: 688 [10] Jaranowski P, Schäfer G. PhRvD, 1997, 55: 71 [11] Pati M E, Will C M. PhRvD, 00, 65: [1] Blanchet L. LRR, 006, 9: [13] Königsdörffer C, Faye G, Schäfer G. PhRvD, 003, 68: [1] Nissanke S, Blanchet L. CQGrav, 005, : 1007 [15] Blanchet L. CRPhy, 007, 8: 57 [16] ß Ó Æ Ó¹ Ó «Ò 010, 51: 38 [17] Sun Y T, Liu J Y, Liu J Z, et al. ChA&A, 011, 35: 13 [18] Valtonen M J, Mikkola S, Merritt D, et al. IAU, 009, 61: 130 [19] Valtonen M J, Mikkola S, Merritt D, et al. ApJ, 010, 709: 75 [0] Valtonen M J, Mikkola S, Lehto H J, et al. CeMDA, 010, 106: 35 [1] Sillanpää A, Haarala S, Valtonen M J, et al. ApJ, 1988, 35: 68 [] Lehto H J, Valtonen M J. ApJ, 1996, 60: 07 [3] Sundelius B, Wahde M, Lehto H J, et al. ASP Conference Series, 1996, 110: 99 [] Sundelius B, Wahde M, Lehto H J, et al. ApJ, 1997, 8: 180 [5] Valtonen M J, Lehto H J. ApJ, 1997, 81: L5 [6] Valtonen M J, Lehto H J, Sillanpää A, et al. ApJ, 006, 66: 36 [7] Valtonen M J, Nilsson K, Sillanpää A, et al. ApJ, 006, 63: L9 [8] Valtonen M J. ApJ, 007, 659: 107 [9] Valtonen M J, Lehto H J, Nilsson K, et al. Natur, 008, 5: 851 [30] Valtonen M, Kidger M, Lehto H, et al. A&A, 008, 77: 07 [31] Valtonen M J. RMxAA, 008, 3: [3] Valtonen M J, Nilsson K, Villforth C, et al. ApJ, 009, 698: 781 The Orbit of Binary Black Hole OJ87: A 3.5th Post-Newtonian Order Calculation WU Shu-guang ZHANG Yang FU Zheng-wen ( Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 3006) ABSTRACT Supermassive binary black hole OJ87 is a strong gravitational radiation source. To detect the signal of its gravitational wave, the knowledge of the waveform will
12 196 «Ò 53 be of great help, which is mainly determined by the orbital motion of the binary. For this purpose, we carry out a detailed calculation of the orbital motion of OJ87, using the post- Newtonian (PN) approximation up to 3.5th order within the framework of general relativity. Our result is one order higher than the previous work made by others. As a radiation process, there is a time delay from the instance when the secondary black hole impacts on the accretion disk of the primary to the moment of the optical outburst. This time delay has to be taken into account when we try to fit the calculated orbit to the observed outburst times. Adopting a linear relation between the time delay and the impact distance as an empirical model, we fit the calculated orbit to the observed data of the recent seven outbursts of OJ87, obtain the solution of its orbital motion, and give the important orbital properties, including the averaged orbital parameters. By analyzing the result of 3.5PN order calculation of the binary system, we find some interesting features. The precession rate of secondary black hole is shown to increase to a maximum, and then to decrease at late stages, and to eventually turn into a negative value. This result might indicate the breakdown of 3.5PN approximation at late stages when a more accurate calculation is needed. More interestingly, as a main finding of this paper, we discover that the dissipative terms of.5th order and 3.5th order have opposite signs. This implies that the 3.5th order term itself does not radiate, but absorbs energy. However, the sum of the two terms still radiates gravitational waves outward. This is confirmed by the change rate of the energy of the system. Our results of the orbit of binary black hole OJ87 up to 3.5PN can be further used to calculate its radiated gravitational waves. Key words quasars: individual: OJ87, galaxy: kinematics and dynamics, gravitation: post-newtonian approximation, gravitational waves
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280
Ó³ Ÿ.. 2012.. 9, º 8.. 89Ä97 Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280 ƒ. ƒ. ƒê²ó ±Ö,.. Ê, ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö Ò μ±μî ÉμÉ Ö Ê ±μ ÖÕÐ Ö É ³ ÉÒ ³μ μ μ Éμ Ö - ÒÌ ±Í ³. ƒ.. ² μ Ñ μ μ É ÉÊÉ Ö
2 SFI
ų 2009 2 Û 9  ¼ Ü «Ë ÐÁ Û ¼ÞÝÁ «Ð¼Â ß Ú Ì ÑÓ ±¼ ¼µÕ Û (Santa Fe) «Đ Þ ¼± «ÐÐÇ ¾ ¼Ï ««¼ Ã«Ø Ú Ó Ý¼ºÏ «Å Å ¾»«¼ É ½ ÒØ ÒÚ Ç 1944 ²Ì ¼ ÉÌ (Patrick J. Hurley, 1883 1963) ¼È Ë 1984 ÞÎ ¼ Ë ÉÜ Ò «Þ Þ ÅÌÞ Ù
UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库
ß¼ 0384 9200852727 UDC Î ± À» An Integral Equation Problem With Shift of Several Complex Variables Û Ò ÖÞ Ô ²» Ý Õ Ø ³ÇÀ ¼ 2 0 º 4 Ñ ³ÇÙÐ 2 0 º Ñ Ä ¼ 2 0 º Ñ ÄÞ Ê Ã Ö 20 5  Š¾ º ½ É É Ç ¹ ¹Ý É ½ ÚÓÉ
.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ
13-2016-82.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ ˆ Œ ˆŸ Š Š Š ( ) ƒ ˆ ˆ ˆŒ Œ Ÿ Š Œ Š ˆŒ NA62. I. ˆ Œ ˆŸ Ÿ Œ ² μ Ê ² μ Ò É Ì ± Ô± ³ É ƒ²μ É... 13-2016-82 ² ³ Éμ μ²μ Ö μ ÒÌ μ μ²μ± Éμ ±μ É ÒÌ Ëμ
P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25
P6-2011-64.. Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25 Œ ²μ... P6-2011-64 ² μ Ö ²Õ³ Ö ± ³ Ö μ Í Ì μ Ò Ö μ-ë Î ± ³ ³ Éμ ³ μ²ó μ ³ ³ ± μé μ Œ -25 μ³μðóõ Ö μ-ë
Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή
ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ
13-2009-159.. ƒê,.. ± É,.. Ëμ μ Š ˆŒ œ ˆ ˆ ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ ² μ Ê ² ² ±É Î É μ ƒê.., ± É.., Ëμ μ.. 13-2009-159 ± ³ É ²Ó μ ² μ Ê ² Î Ö ³ É μ μ μ²ö Ð Í ² Î ± - ³³ É Î μ μ ³ É μ ³
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö
P11-2015-60. É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œ Œ ˆ Š Œ ˆ ˆ Œˆ ˆŸ ƒ Š ˆŒ Š ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 Œμ μ²ó ± μ Ê É Ò
Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ
Ó³ Ÿ. 218.. 15, º 2(214).. 171Ä176 Š Œ œ ƒˆˆ ˆ ˆŠ ˆ ˆ ˆ Š Š Œ Œ Ÿ ˆ Š ˆ Š ˆ ˆŠ Œ œ ˆ.. Š Ö,, 1,.. ˆ μ,,.. μ³ μ,.. ÉÓÖ μ,,.š. ʳÖ,, Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ± Ê É
P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ
P9-2008-102.. Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ Ë ³μ... P9-2008-102 ˆ μ²ó μ Ô± μ³ Î ± ³ μ³ ²Ö μ²êî Ö Êα μ μ - ÉμÎ ± μ²êî É ÒÌ Ê ±μ ÒÌ Êαμ 48 Ö ²Ö É Ö μ μ ±²ÕÎ
Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³
P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï
P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ
2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp
Ñ 47 ± Ñ 3 Vol.47 No.3 2011 Đ 3 Ñ 284 290 ACTA METALLURGICA SINICA Mar. 2011 pp.284 290 ÚĐ Ó ± Ð ß Þ II. ¾½ 1,2) ¹ 1) 2) ¼ 1) 1)»º 1) 1) µ ÍÉ²È É µ ÉÆ, 150001 2) µ ÍÉ٠IJÈÐ Æ Ð Ò Ë, 150001 ƾ Ù ¾ Ź Ù
Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ
Ó³ Ÿ. 2007.. 4, º 5(141).. 719Ä730 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ Š Œ Œ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ÖÉ Ö Ê²ÓÉ ÉÒ μéò μ ³ Õ ±μ Í É Í CO 2 O 2 ϲ μì
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10
À 34 À 3 Ù Ú ß Vol. 34 No. 3 2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ 100044) (Ø À Ø 550025) (Email: dingtaopeng@126.com) Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ
P13-2009-166 Œ ˆŸ ˆ Œ Œ ˆ Šˆ Œ ˆ Š Š Š ˆ Š ˆ œ ˆ -2Œ Œ P13-2009-166 ² Ö É ³μ³ Ì Î ± Ì ³ Ð ±Éμ ÒÌ ±μ É Ê±Í ±É μ ÉÓ ˆ -2Œ μ²ó μ ³ μ ³³ SCALE DORT μ Î É Ò ² ² Ö Ö É ³μ³ Ì Î ± Ì ³ Ð Ëμ ³ Í ±Éμ ÒÌ ±μ É Ê±Í
ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ
Ó³ Ÿ. 2015.. 12, º 1(192).. 256Ä263 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Š ˆ ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ.. ƒê,.. μ Ö, ƒ.. ³μÏ ±μ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ μ Ò μμé μï Ö ³ Ê μ ³ Ê ³Ò³ μ Í μ Ò³ ² Î ³ μ ³ É μ- ÊÕÐ
ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ
Ó³ Ÿ. 2008.. 5, º 2(144).. 219Ä225 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ ˆ ˆ Œ Œ ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ.. Šμ ²μ a,.. Š,.. μ ±μ,.. Ö a,.. ² ± a,.. ² Õ± a a ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ Œμ
ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa
54 5 Å ² Vol.54 No.5 2013 9 ACTA ASTRONOMICA SINICA Sep., 2013 ËÃ Ý Ï Õ Ç 1,2 ¾ ½ 1,2 ¼ 1,2 º»¹ 1,2 (1 ÆÆ 210008) (2 Ð ¼² 210008) ÝÙºÝÐ Å µ» Ð ºÝÐ À Ò Ì Å ½ ¼¾»Ð Ö»ÖÈÙ Ä Üº Ö Â ± J2000.0 Ú Đ» (118.02,
AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),
½ ³ J. Sys. Sci. & Math. Scis. 34(12) (2014, 12), 1438 1450 µ Ñ RFID Ô À (»Ì ÖÚ, Å À ºÓ Ê Â, Å 300071; Ä Õ Ì, Å 300300) Á (Ä Õ Ì, Å 300300) ÚÍ FNN RFID Ò ĐÓ IPS, ÒÇ Ú Í RFID Đ Ó Ù, Ù ½ ² Ë «, Á Å ÈÀ ß
Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.
Ó³ Ÿ. 2017.. 14, º 6(211).. 630Ä636 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ ˆ Š ˆŸ ˆŸ ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ. œ.., 1,.. ³,. ƒ. Š ² ±μ,.. ³ ±,.. ³ μ,. ˆ. É ²μ,. ˆ. ÕÉÕ ±μ, ƒ.. Ë,, ˆ.. ±μ ˆ É ÉÊÉ μ Ð Ë ± ³.. Œ.
Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.
Ó³ Ÿ. 2010.. 7, º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ œ ˆŠ Ÿ ˆŸ Š Ÿ Š. ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ. Ð ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ Ö ± É μ É Êα Ê ±μ ÒÌ μéμ μ
P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.
P3-2009-104.. ² ± μ ˆ ˆ Š Š ˆ œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. ² ± μ.. ²μ μ ± μé±²μ μé ÓÕÉμ μ ±μ μ ±μ ÉÖ μé Ö μ³μðóõ É μ μ ³ ²ÒÌ Ô P3-2009-104 ÓÕÉμ
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2010.. 41.. 1 Š ƒ ˆ ˆŸ Å Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. ÉÉÊ,. Ê μ μ ± Ö μ Í Ö Ö ÒÌ
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
Blowup of regular solutions for radial relativistic Euler equations with damping
8 9 Ö 3 3 Sept. 8 Communication on Applied Mathematics and Computation Vol.3 No.3 DOI.3969/j.issn.6-633.8.3.7 Õ Îµ Ï̺ Eule»²Ö µ ÝÙÚ ÛÞ ØßÜ ( Ñ É ÉÕ Ñ 444 Î ÇÄ Eule ± ÆÃ ¼ Û Â Þ Û ¾ ³ ÇÄ Eule ± Å Å Þ Å
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº
ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία
P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.
P13-2011-120. ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É E-mail: sobolev@nrmail.jinr.ru μ μ². ƒ., ˆ μ Œ.., μ ± Î.. P13-2011-120 É μ ± ²Ö ³ Ö μ² ÒÌ Î Ö ÒÌ ±Í Ò É Ö Ô± ³ É ²Ó Ö
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2015.. 12, º 3(194.. 673Ä677 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŸ ˆ Šˆ ˆ ˆ Œ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï μé É ² Ò Ê Ö Ö Î ² Ò Ê²ÓÉ ÉÒ,
Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±
Ó³ Ÿ. 2012.. 9, º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ Ÿ Œ Ÿ.. Ëμ μ,.. μ, Š.. ±μ Î ± É ÉÊÉ ³..., Œμ ± Ö Ì μ ÊÌ É³μ Ë μ μ ² Ö ³ ± ³ ²Ó μ³ Ö μ³ Êɱ μé 0,8 μ 1,2 Œ É μ μ ³ Ê²Ó μ É μ ±μ ²ÊÎ Ô ± Éμ μ² 5 ±Ô
ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ
ÔØ Ö ¾ ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ¾º½ Δημιουργία απλού παραθύρου Γιατηνδημιουργίαπαραθύρουθαχρειασ τείοχρήσ τηςνατοποθετήσ ειμέσ ασ ε μιακυρίωςεφαρμογήέναοπτικόσ υσ τατικό Ï ØµΤοπιοαπλόοπτικόσ υσ τατικόπουμπορείναχρησ
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200
P9-2011-62. Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200 Î.. P9-2011-62 É μ É μ μ Í μ μ Ö μ ±μ Êα Ê ±μ É ²Ö -200 É ² μ μ Ê É μ É μ Í μ μ Ö Ò ÒÌ μ - ±μ, ±μéμ μ Ö ²Ö É Ö Î ÉÓÕ É ³Ò μ É ± Êα ²
ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ
ÔØ Ö ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Στοκεφάλαιοαυτόθαπαρουσ ιασ τούνμερικέςαπότιςδυνατότητεςπουπαρέχειη βιβλιοθήκη ÉÌσ εαρχείακαθώςκαιτρόποισ ύνδεσ ηςκαιεκτέλεσ ηςερωτημάτων σ εβάσ ειςδεδομένωνº º½ Ηκατηγορία
{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.
Ù ¼ 2 Ô ØÙ ½ ÅÜ À Û ÐÄ Ñ Ñ À ³ Û À ³À ÆÀ 21 Ñ Ó Ï Ó±Ï ¹ ÐÄ Ý± ß Ð F ß Ð G B = (F, P) Ó±Ï Ó Ð WFF B B Ê Ð T B WFF B Ã Ó Ð QFF B À Ï Ð Ó±Ï ß È WFF B Ó È T B Ê 211 º Ó ± È Ó±Ï ¹ È Ñг Ó³ Ó³ ³ Ç Ó±Ï ½ ÁÂ
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM
Ó 49 µ Ó 11 Vol.49 No.11 2013 11 Æ Ó 1369 1373 ACTA METALLURGICA SINICA Nov. 2013 pp.1369 1373 Ý Er Ù Nb TiAl Đß Æ ¹ ¾º ½ ( Ź Å Å, 100124) ± ½Þ Cu ÛÀ ÊÚ Ti 46Al 8Nb È Ti 46Al 8Nb 0.1Er Ì. ¼² ÚÆÆ, «Ì XRD,
NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING
Ö 7 Ö Vol.7 No. 11 Ö Ö È ACTA METALLURGICA SINICA Jun. 11 pp. ÐÅÔ ÎÔ Ê Đ 1,) 1) 1) 1) ß ÍÊ ½ Ñ٠ؽÁ, ÔÒ 51 ) ß Í Ñ ß, ÔÒ 511 µ² Ç Æ Đ, ÅËÀ Ð Ï (PAW). Â, mm É PAW» ½ËÁ ÕË, Ë Ð¹ ²Á»¼Á Î. µ²» Ǽ, PAW È À
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
P13-2014-14. .. ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy
P13-2014-14.. ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3,,. ʳÌÊÊ Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ Ÿ ˆ ˆŸ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ ² μ Ê ² Annals of Nuclear Energy 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ² ² Œƒ Œˆ, Ê, μ Ö 3 ˆ É ÉÊÉ Ë ± É Ì μ²μ Œ,
Ó³ Ÿ , º 1(199).. 66Ä79 .. Ê 1. Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ±
Ó³ Ÿ. 216.. 13, º 1(199).. 66Ä79 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Œ Ÿ ƒˆÿ ˆ Œ ƒ ˆ ˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± μé ³± Ì ²ÖÉ É ±μ É μ É Í ³μÉ Î μ ²μ± ²Ó μ³ μ- Éμ± Ö ² ±É ± ³ ÏÉ Ì ±μ²ó± Ì ³ ±, Ò
Ó³ Ÿ , º 4(181).. 501Ä510
Ó³ Ÿ. 213.. 1, º 4(181.. 51Ä51 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ ƒ ˆ ˆŸ Ÿ ƒ Ÿ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ Š.. Œμ Éμ 1,.. Ê 2 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ƒ ÒÎ ² É μ Ô - ³ Ê²Ó ²Ö ³ É ± Š. Ò Ï É Í μ Ò Ô Ö ³μ³
þÿ ¹µ ½  ±À±³É³ À±¹ ¹Î½ º±Ä þÿ ͼ²±Ã Ä Â ³ Â Ä Å
Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ¹µ ½  ±À±³É³ À±¹ ¹Î½ º±Ä þÿ ͼ²±Ã Ä Â ³ Â Ä Å 1 9 8 0 þÿ ¼ à ½ ÅÂ,
ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 1(130).. 101Ä110 Š 621.386.85 ˆ Œ Š Ÿ Œ ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ É ÉÊÉ É μ É Î ±μ Ô± ³ É ²Ó μ Ë ±, Œμ ± ²Ö
P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É
P13-2009-117.. μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É 1ˆ É ÉÊÉ Éμ³ μ Ô, ±Ä Ï, μ²óï 2 Ì μ²μ Î ± Ê É É, Õ ², μ²óï μ... P13-2009-117 μ ³ μ ³μ² ±Ê²Ö ÒÌ Êαμ
P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.
P1-2017-59.. ² Ì μ ˆ Š ˆ ˆ ƒˆ ˆˆ γ-š ƒ Œˆ Š ˆ Œˆ Š Œ Œˆ ² μ Ê ² Nuclear Instruments and Methods in Physics Research. Section A E-mail: zalikhanov@jinr.ru ² Ì μ.. P1-2017-59 μ ÒÏ ÔËË ±É μ É É Í γ-± Éμ μ
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ
Ó³ Ÿ. 2018.. 15, º 6218).. 467Ä475 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± μ± μ, ÎÉμ ³μ Ë ± Í Ö ³³ É Î ±μ, μ ² μ μ ƒ ²Ó ÉÊ μ² μ ²μÉ μ É É μ Ô -
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ
P13-2013-6.. ²ÒÏ,.. μ μ ƒ ˆ Šˆ Š Š ˆ -2Œ. Œ ƒ Š Š ˆ ˆ Ÿ ˆ ²ÒÏ.., μ μ.. P13-2013-6 É Î ± Ê ± ±Éμ ˆ -2Œ. ³ É Ò Ìμ μ μ ÔËË ±É ±É μ É μ É μ Ö μ ÖÉ Ö Ê²ÓÉ ÉÒ ² μ Ö Ìμ ÒÌ ÔËË ±Éμ ±É μ É - ±Éμ ˆ -2Œ, Ò μ² μ μ
ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 582Ä588 œ ˆ Œ ˆ Š Ÿ Š Œ ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02.. ² ± 1, Š. Œ. ²μͱ 2,.. μ μ³μ²μ 1,. ˆ. Ê 2,.Œ.ƒ ²Ó 2,.. Ê 1,.. Š ²²μ 1, 2,.. ŠÊ Íμ 1,,.. ʱÓÖ μ 1,. ƒ. Œ
þÿ ±Á±² ±Ã Äɽ ¹º±¹É¼ Äɽ
Neapolis University HEPHAESTUS Repository School of Law and Social Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2016-03 þÿ ±Á±² ±Ã Äɽ ¹º±¹É¼ Äɽ þÿཱུ弱乺  ¹ ¹ ºÄ à ±Â ÃÄ þÿ ¹± ºÄÅ ¼ ñ
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 06.. 3, º 7(05).. 479Ä486 ˆ ˆŠ ˆ ˆŠ Š ˆ Š ˆŒ œ ˆ ˆ - Š Ÿ ˆ Œ Š ƒ ˆŸ. ³ μ, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ±É NICA ±²ÕÎ É Ö É ³Ê Ô² ±É μ μ μ μì² Ö Êαμ Ö ÒÌ Î É Í μ μ² μ Ô μ
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6
31 6 Ʋ ± Vol.31 No.6 2011 12 Journal of Chinese Society for Corrosion and Protection Dec. 2011 Te-Ni-Cr Æ 3.5%NaCl»±½ ÁÄ à ÅÀ (Â Ç ¼ Ì ÓÎ Ú Â 730050) : Ë ÖÎ Î Te-Ni-Cr ÍÚ ±± Ú Ë ÁÐÈ Ø ¹ Ö± ÑØ Ö EDS XRD
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾ Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò
Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2008.. 5, º 5(147).. 777Ä786 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ ˆŒˆ Šˆ Œ Š ƒ ˆŒ œ ƒ - Ÿ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ± μ, ÎÉμ ² ³ Ö Éμ³ μ-ô³ μ μ μ ±É μ³ É μ Ìμ É μ μ ³μ² ±Ê² CN CO 2 N 2. ±
Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±
Ó³ Ÿ. 2016.. 13, º 7(205).. 1263Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ˆŸ ˆŸ Œ Š ƒ Š ˆ ƒ Š ˆ Ÿ Œ ƒ ˆ ˆŸ Š Š ˆ œ ˆŸ ˆˆ ƒ.. ƒμ ² Î,1,. Œ. μ²μ μ,.. ² Î,,. ˆ. Š μëμ Éμ,.. Š É ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö
þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016-08 þÿ µà±³³µ»¼±ä¹º ½ ÀÄž ÄÉ þÿµºà±¹ µåä¹ºî½ - ¹µÁµÍ½ à Äɽ þÿ³½îãµé½
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ
P13-2017-81. ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1 ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ² ±É μé Ì
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2018.. 49.. 4.. 1343Ä1350 ˆ ƒ ŒŒ ˆ ˆ Œ ƒˆ ˆˆ ˆ Š ˆ ˆ Š -3.. ŠÊ Ö 1,, ˆ.. μ 2,.. ɱμ 1, 2,.. 1, 2,.. Ê 1,.. Ê 2,.. μ ±μ 2, ˆ. Œ. μ 1, 2,.. Ÿ 1, Œ.. ² ± 2 1 ˆ É ÉÊÉ Ö ÒÌ ² μ, Œμ ± 2 ˆ É
Ó³ Ÿ , º 1(206).. 133Ä143 ˆ ˆŠ ˆ ˆŠ Š ˆ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 217.. 14, º 126.. 133Ä143 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ Œ Œˆ ˆŸ ŒˆŠ Š.. Š μ,. ˆ. Š Î 1, ˆ.. Š ² Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μé μ²êî Ò Ê Ö ²Ö Î É ± ² Ëμ ³ μ Ö ³ ± μ Êαμ. Š ² μ Éμ É ÊÌ μμ ÒÌ Ë ³ Ê ³ r 1,2 ³ Ï Ê μ³ r
Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1
P13-2011-43 Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1 Š ˆ ˆ Œ Š Œ ˆ Š ˆ - ˆ ˆ Œ ˆ ˆŸ ² μ Ê ² μ Ò É Ì ± Ô± ³ É 1 Í μ ²Ó Ò ÊÎ μ-êî Ò Í É Ë ± Î É Í Ò μ± Ì Ô -
Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2010.. 7, º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆŠˆ œ Š Šˆ Š ˆ ILC Ÿ ƒ ˆ ˆ ƒ ˆ ˆŸ.. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ É ± ʲÓÉ ±μ μé± Ì Ô² ±É μ ÒÌ Î, ÉÒ ³
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.
P6-2009-30.. Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U ² μ Ê ² μì ³ Ö, μ, μ² Ö Œ ²μ... ³ μ É Ê±ÉÊ μ μ ³ É ² ²Ö ² Ö 238U 237 U, μ²êî ³μ
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Πειράματα Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες