(Kermack and McKendrick) S(t),I(t), R(t) Kermack and McKendrick model SIR

Σχετικά έγγραφα
P (t) t. dp (t) dt (rate of increase) P (t) = P (0)e λt (Malthusian population) (Maltusian parameter) (1) ) (Leonardo Pisano/Fibonacci)

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

MSM Men who have Sex with Men HIV -

Homomorphism in Intuitionistic Fuzzy Automata

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Why We All Need an AIDS Vaccine? : Overcome the Challenges of Developing an AIDS Vaccine in Japan

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Mathematical model for HIV spreads control program with ART treatment

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

2.1

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Prey-Taxis Holling-Tanner

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος

Heisenberg Uniqueness pairs

Single-value extension property for anti-diagonal operator matrices and their square

High order interpolation function for surface contact problem

SOME PROPERTIES OF FUZZY REAL NUMBERS

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

10/12/2015 ΜΕΓΑΘΕΩΡΙΑ ΒΙΟ-ΕΞΕΛΙΞΗΣ, ΠΛΑΣΤΙΚΟΤΗΤΑ, ΑΠΙΣΤΙΑ ΨΥΧΟΛΟΓΙΑ ΔΙΑΠΡΟΣΩΠΙΚΩΝ ΣΧΕΣΕΩΝ I. Κατσουρός Αντώνης,

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Κβαντικη Θεωρια και Υπολογιστες

Probabilistic Approach to Robust Optimization

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Υγιεινή Εγκαταστάσεων Βιομηχανιών Τροφίμων

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

A summation formula ramified with hypergeometric function and involving recurrence relation

Bayesian modeling of inseparable space-time variation in disease risk

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

mixi Vol mixi mixi mixi social capital SNS mixi Facebook social networking services SNS SNS mixi Coleman 1988 SNS boyd & Ellison

Longitudinal Changes in Component Processes of Working Memory

Approximation Expressions for the Temperature Integral

Η φυματίωση στην Ελλάδα και τον κόσμο. Σ.Η. Κωνσταντόπουλος

Τμήμα Επιδημιολογικής Επιτήρησης και Παρέμβασης

A Mathematical Analysis of HIV/TB Co-Infection Model

Η διδασκαλία της θεωρίας της εξέλιξης στη δευτεροβάθμια εκπαίδευση

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

Buried Markov Model Pairwise

Fundamentals of Probability: A First Course. Anirban DasGupta

Support and Life Reconstruction for Living with HIV-infected Hemophilia in Japan

clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

On the study of an SEIV epidemic model. concerning vaccination and vertical transmission

OLS. University of New South Wales, Australia

Σχήμα 1. Επιπολασμός HIV λοίμωξης ανά έτος σε άτομα ηλικίας > 15 ετών.

ΚΙΝ ΥΝΟΙ ΛΟΙΜΩΞΕΩΝ ΧΕΙΡΟΥΡΓΙΚΗΣ ΘΕΣΗΣ ΓΥΝΑΙΚΩΝ ΠΟΥ ΥΠΟΒΑΛΛΟΝΤΑΙ ΣΕ ΚΑΙΣΑΡΙΚΗ ΤΟΜΗ

Κέντρο Ελέγχου και Πρόληψης Νοσημάτων Αγράφων 3-5, Μαρούσι, 15123,

Ενότητα: Ο κόσμος αύριο: προβλέψεις και υγειακό τοπίο

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Supplemental Material for: The effect of the incidence function on the existence of backward bifurcation

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ - ΒΙΟΓΡΑΦΙΚΟ

Οι Εννοιολογικές Αλλαγές ως Συνιστώσα της Σύγχρονης Ιστοριογραφίας των Μαθηματικών

Διπλωματική εργασία Τσινοπούλου Δέσποινα

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Wishart α-determinant, α-hafnian

ΙΜΒ 023: Επιδημιολογία και Μεθοδολογία έρευνας

Καθηγητής Παν Πειραιά, Δρ Φούντας Ευάγγελος. Δρ ΦΟΥΝΤΑΣ ΕΥΑΓΓΕΛΟΣ. Καθηγητής Πανεπιστημίου Πειραιώς Πρόεδρος Τμήματος Πληροφορικής

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Diderot (Paris VII) les caractères des groupes de Lie résolubles

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

ΙΑΤΡΟΦΙΚΗ ΦΡΟΝΤΙ Α ΓΙΑ ΤΑΞΙ ΙΩΤΕΣ ΣΥΝΤΟΜΗΣ ΚΑΙ ΜΑΚΡΑΣ ΙΑΡΚΕΙΑΣ

CAP A CAP

The k-bessel Function of the First Kind

Supporting Information

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Supplementary Appendix

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Mouse Gene 2.0 ST Array Shn3. Runx2 Shn3. Runx2 Shn3 Runx2. adult. (Schnurri, Shn)3/Hivep3. Runx2 Shn/Hivep. ST2 BMP-2 Shn3

Démographie spatiale/spatial Demography

ΕΠΙΤΡΟΠΗ ΜΕΛΕΤΗΣ ΕΠΙΠΤΩΣΕΩΝ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ

Αξιολόγηση πληροφοριακών συστηµάτων και υπηρεσιών πληροφόρησης

έ ς ά ς ής ί ς έ ς ής ύ ς ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ ΧΗΜΕΙΑΣ, ΦΑΡΜΑΚΕΥΤΙΚΗΣ, ΙΑΤΡΙΚΗΣ ΣΥΜΜΕΤΟΧΗ: ΦΙΛΟΛΟΓΙΑΣ & ΦΙΛΟΣΟΦΙΑΣ έ ές ά ΐ ώ έ ύ ύ έ ί ώ

Cardiovascular Center Aalst

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

þÿº ¹½É½¹ºÌ ºÌÃÄ Â ÃÄ ½ º ¹½É½

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Ιατρικά Μαθηματικά & Βιοστατιστική

Quick algorithm f or computing core attribute


1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Lippincott Illustrated Review in Pharmacology 4

On the Galois Group of Linear Difference-Differential Equations

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Βιοπληροφορική. Ενότητα 6 η : Φυλογενετική ανάλυση 3. Ηλίας Καππάς Τμήμα Βιολογίας

Price Predictions Based on Evolvable Strategies, Principal Component Analysis, and Randomness of Data Strings

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Ε Μέρος ΠΑΡΑΡΤΗΜΑ. Ε.1 Μοντέλα μάθησης. Ε.1.1 Το μοντέλο μετάδοσης της γνώσης

Επιδημίες ΟΚΤΩΒΡΙΟΣ 2011

Άγγελος Α. Τσιγκρής*

ΑΝΑΛΥΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Models for Probabilistic Programs with an Adversary

In vitro και in vivo φαρμακοκινητική ανάλυση των παραγώγων ανθρακινόνης σε φυτικά σκευάσματα

Mean-Variance Analysis

DOI /J. 1SSN

Transcript:

1 ( ) 2 1 18 (Anderson 1991) (Kermack and McKendrick) 192-3 2 Kermack and McKendrick (1927) S(t),I(t), R(t) Kermack and McKendrick model SIR S (t) = λs(t)i(t) I (t) = λs(t)i(t) γi(t) R (t) = γi(t) λ γ N) I (t) = λni(t) γi(t) (2) (1) R = λn γ > 1 (3) N cr = γ λ R (basic reproduction number) (Diekmann, et al. 199) R > 1 R < 1 ( ) Kermack and McKendrick model Kermack and McKendrick : disease-age (infectivity) (susceptibility) 1 2 12 7-8 2 E-mail: inaba@ms.u-tokyo.ac.jp 1

b µ Kermack and McKendrick model S (t) = b µs(t) λs(t)i(t) I (t) = λs(t)i(t) (µ + γ)i(t) (4) R (t) = µr(t) + γi(t) R(t) N(t) = S(t) + I(t) + R(t) N() = b µ N = b µ R = λn γ + µ (5) R 1 (disease-free steady state: DFSS) (S, I ) = ( b µ, ) R > 1 DFSS (endemic steady state: ESS) R > 1 SIR ( 199) (Pease 1987, Inaba 1998) (Anderson and May 1991, Iannelli 1995, Inaba 199 ) SIR 3 1927 193 (Pease 1987) s(t, τ) t τ i(t, τ) t τ r(t, τ) t τ. m µ γ(τ) τ β 1 (τ)β 2 (σ) σ τ γ, β j L + (R + ), (j = 1, 2) β 1 (τ) σ β 1 ( )β 2 (σ) β 1 ( ) := sup τ β 1 (τ). β 2 (τ) 2

β 1 (τ) s(t,τ) t i(t,τ) t r(t,τ) t + s(t,τ) τ = µs(t, τ) s(t, τ)β 1 ( ) β 2 (σ)i(t, σ)dσ, + i(t,τ) τ = (µ + γ(τ))i(t, τ), + r(t,τ) τ = µr(t, τ) r(t, τ)β 1 (τ) β 2 (σ)i(t, σ)dσ, (s(t, τ) + i(t, τ) + r(t, τ))dτ, i(t, ) = {β 1( )s(t, τ) + β 1 (τ)r(t, τ)}dτ β 2 (τ)i(t, τ)dτ, s(t, ) = m r(t, ) = γ(τ)i(t, τ)dτ, s(, a) = s (a), i(, a) = i (a), r(, a) = r (a), (s, i, r ). N R = Nβ 1 ( ) (6) β 2 (ζ)e µζ ζ γ(σ)dσ dζ. (7) R 1 R > 1 (Inaba 2b) s(t, τ) (Yang 2) 4 HIV mating HIV Kermack-McKendrick model S (t) = b (µ + λ(t))s(t) ( t + ) τ i(t, τ) = (µ + γ(τ))i(t, τ) (8) i(t, ) = λ(t)s(t) λ(t) = β(τ)i(t, τ)dτ C(P (t)) P (t) τ P (t) = S(t) + i(t, τ)dτ C(P ) C(x)/x R < 1, ) R > 1 (Thieme and Castillo-Chavez 1993) ( ) b R = C β(τ)e µτ τ γ(σ)dσ dτ (9) µ (Iannelli, Loro, Milner, Pugliese and Rabbiolo 1992) ( b µ 3

(pair formation model) R (Knolle 199, Diekmann, et al. 1991, Inaba 1997) τ l 1 (a), l 2 (a), l 3 (a) ρ, σ µ β(a) a η ρ, σ, µ, η HIV l 1(a) = (2µ + σ)l 1 (a) + ρβ(a)l 2 (a) + β(a)ηl 3 (a) l 2(a) = (σ + µ)l 1 (a) (ρ + µ)l 2 (a) + (σ + µ)l 3 (a) l 3(a) = (1 β(a))ρl 2 (a) (β(a)η + σ + 2µ)l 3 (a) l 1 () = 1, l 2 () = l 3 () = l 3 (a) = ρ(σ + µ) σ + ρ + µ (1) l 2 (a) = σ + µ σ + ρ + µ e µa (1 e (σ+ρ+µ)a ), (11) a e a s (β(ζ)η+σ+2µ)dζ (1 β(s))e µs (1 e (σ+ρ+µ)s )ds (12) R = [β(a)ρl 2 (a) + β(a)ηl 3 (a)]da (13) HIV R = S(a) := β(a) + (1 β(a)) φ(a) := a S(a)φ(a)da (14) β(τ)ηe τ a (β(ζ)η+σ+2µ)dζ dτ, (15) ρ(σ + µ) µ(σ + ρ + 2µ) e µa (1 e (σ+ρ+µ)a ) (16) S(a) a φ(a) a HIV (endemic state) Kakehashi (1998) HIV 4

(Nowak and May 1991, Kirschner 1996) HIV HIV Brookmeyer and Gail (1994) 5 198 8 [1] R. M. Anderson (1991), Discussion: The Kermack-McKendrick epidemic threshold theorem, Bull. Math. Biol. 53(1/2): 3-32. [2] R. M. Anderson and R. M. May (1991), Infectious Diseases of Humans: Dynamics and Control, Oxford UP, Oxford. [3] R. Brookmeyer and M. H. Gail (1994), AIDS Epidemiology: A Quantitative Approach, Oxford UP, New York Oxford. [4] O. Diekmann, J. A. P. Heesterbeak and J. A. J. Metz (199), On the definition and the computation of the basic reproduction ratio R in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28: 365-382. [5] O. Diekmann, K. Dietz and J. A. P. Heesterbeek (1991), The basic reproduction ratio for sexually transmitted diseases I. Theoretical considerations, Math. Biosci. 17: 325-339 [6] M. Iannelli, R. Loro, F. Milner, A. Pugliese and G. Rabbiolo (1992), An AIDS model with distributed incubation and variable infectiousness: Applications to IV drug users in Latium, Italy, Eur. J. Epidemiol. 8(4): 585-593. [7] (1994), HIV, 5(4), 31-44. 5

[8] H. Inaba (1997), Calculating R for HIV infection via pair formation, In Advances in Mathematical Population Dynamics -Molecules, Cells and Man, O. Arino, D. Axelrod and M. Kimmel (eds.), World Scientific, Singapore: 355-382. [9] H. Inaba (1998), Mathematical analysis for an evolutionary epidemic model, in Mathematical Models in Medical and Health Sciences, M. A. Horn, G. Simonett and G. F. Webb (eds.), Vanderbilt University Press, Nashville, pp.213-236. [1] H. Inaba (2a), Endemic threshold and stability in an evolutionary epidemic model, to appear. [11] H. Inaba (2b), Kermack and McKendrick Revisited: The Variable Susceptibility Model for Infectious Diseases, to appear in JJIAM. [12] (199),, 7, 481-489. [13] M. Kakehashi (1998), A mathematical analysis of the spread of HIV/AIDS in Japan, IMA J. Math. Appld. Med. Biol. 15: 299-311. [14] W. O. Kermack and A. G. McKendrick (1927), Contributions to the mathematical theory of epidemics-i, Proceedings of the Royal Society 115A: 7-721. (reprinted in Bulletin of Mathematical Biology 53(1/2): 33-55, 1991) [15] W. O. Kermack and A. G. McKendrick (1932), Contributions to the mathematical theory of epidemics-ii. The problem of endemicity, Proceedings of the Royal Society 138A: 55-83. (reprinted in Bulletin of Mathematical Biology 53(1/2): 57-87, 1991) [16] W. O. Kermack and A. G. McKendrick (1933), Contributions to the mathematical theory of epidemics-iii. Further studies of the problem of endemicity, Proceedings of the Royal Society 141A: 94-122. (reprinted in Bulletin of Mathematical Biology 53(1/2): 89-118, 1991) [17] D. Kirschner (1996), Using mathematics to understand HIV immune dynamics, Notices of the AMS, 43(2): 191-22. [18] H. Knolle (199), Age preference in sexual choice and the basic reproduction number of HIV/AIDS, Biom. J. 32(2): 243-256. [19] J. A. J. Metz (1978), The epidemic in a closed population with all susceptibles equally vulnerable; some results for large susceptible populations and small initial infections, Acta Biotheoretica 27, 1/2: 75-123. [2] M. A. Nowak and R. M. May (1991), Mathematical biology of HIV infections: Antigenic variation and diversity threshold, Math. Biosci. 16(1): 1-21. [21] C. M. Pease (1987), An evolutionary epidemiological mechanism, with applications to type A influenza, Theor. Poul. Biol. 31: 422-452. [22] (1992). [23] H. R. Thieme and C. Castillo-Chavez (1993), How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math. 53(5): 1447-1479 6