P (t) t. dp (t) dt (rate of increase) P (t) = P (0)e λt (Malthusian population) (Maltusian parameter) (1) ) (Leonardo Pisano/Fibonacci)

Σχετικά έγγραφα
(Kermack and McKendrick) S(t),I(t), R(t) Kermack and McKendrick model SIR

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

«Μοντελοποίηση και Αριθµητικές Προσοµοιώσεις» Εισαγωγή στη Μαθηµατική Βιολογία. Πληθυσµιακά Μοντέλα

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Prey-Taxis Holling-Tanner

A summation formula ramified with hypergeometric function and involving recurrence relation

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Άγγελος Α. Τσιγκρής*

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Ηλεκτρονικός Άτλαντας της Νήσου Λέσβου.

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Buried Markov Model Pairwise

High order interpolation function for surface contact problem

Discriminantal arrangement

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Wishart α-determinant, α-hafnian

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Κβαντικη Θεωρια και Υπολογιστες

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

The Spiral of Theodorus, Numerical Analysis, and Special Functions

NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN

Research on Economics and Management

Additional Results for the Pareto/NBD Model

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-

Single-value extension property for anti-diagonal operator matrices and their square

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

L p approach to free boundary problems of the Navier-Stokes equation

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

21 a 22 a 2n. a m1 a m2 a mn

K. Oatley & J. Jenkins, Συγκίνηση: Ερμηνείες και Κατανόηση (μεταφ. Μ. Σόλμαν, Μπ. Ντάβου) Αθήνα, Εκδόσεις Παπαζήση, 2004, σελ

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Congruence Classes of Invertible Matrices of Order 3 over F 2

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Probabilistic Approach to Robust Optimization

Tάσεις ψήφου της λεσβιακής, γκέι, αμφισεξουαλικής και κουίρ κοινότητας

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Οι Εννοιολογικές Αλλαγές ως Συνιστώσα της Σύγχρονης Ιστοριογραφίας των Μαθηματικών

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

3. Κατανομες. Μαθηματικά και Στατιστικη στην Βιολογια. Mathematics and Statistics in Biology

OLS. University of New South Wales, Australia

Homomorphism in Intuitionistic Fuzzy Automata

Resilient static output feedback robust H control for controlled positive systems

Ηλεκτρονικοί Υπολογιστές IV

Jordan Form of a Square Matrix

ADVANCED STRUCTURAL MECHANICS

Stabilization of stock price prediction by cross entropy optimization

Οι φυσικοί αριθμοί και η αναπαράστασή τους ( ) 2 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

ΧΛΟΗ ΜΠΑΛΛΑ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Ερευνητικά ενδιαφέροντα: Πλάτων, Αριστοτέλης, Σοφιστές ιατρικοί συγγραφείς.

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Εισαγωγικά. 1 η Εβδομάδα. Κάθε Τρίτη (17:00-20:00) και Τετάρτη (13:00 15:00) στην αίθουσα Ι5. 4 ώρες Θεωρία (ΤΡ : 1η-2η ώρα, ΤΕ : 1η-2η ώρα)

:JEL. F 15, F 13, C 51, C 33, C 13

Démographie spatiale/spatial Demography

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lotka Volterra. Stability Analysis of Delayed Periodic Lotka Volterra Systems

!! " # $%&'() * & +(&( 2010

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Supplementary Appendix

2.1

H ΕΠΙ ΡΑΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ TΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΩΝ ΒΙΟΕΠΙΣΤΗΜΩΝ

27/2/2013

D Alembert s Solution to the Wave Equation

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Curran et al.,**. Davies et al ,**, ,***,**/

Markov chains model reduction

An Inventory of Continuous Distributions

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Μ. Κορφιατη - Π. Γεωργίου ΒΙΒΛΙΟΘΗΚΗ & ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΗΣΗΣ ΠΑΝ. ΠΑΤΡΩΝ

Διοίκησης Επιχειρήσεων. ΠΡΟΓΡΑΜΜΑ eμβα ΚΩΔ. ΤΜΗΜΑ ΤΙΤΛΟΣ ΔΙΕΠ5 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ. Credits 6 ΕΞΑΜΗΝΟ 3 ος κύκλος ΟΝΟΜ/ΝΟ ΔΙΔΑΣΚΟΝΤΟΣ

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

ΒΙΒΛΙΟΓΡΑΦΙΑ. 1. APPLE, M. Ιδεολογία και αναλυτικά προγράµµατα, µετφρ. αρβέρη, Τ., Εκδ. Παρατηρητής, Θεσσαλονίκη 1986.

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV

Applying Markov Decision Processes to Role-playing Game

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Exercises to Statistics of Material Fatigue No. 5

The k-α-exponential Function

GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.

ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ ΣΖ ΓΗΟΗΚΖΖ ΔΠΗΥΔΗΡΖΔΩΝ. Γηπισκαηηθή Δξγαζία ΑΠΟΣΙΜΗΗ ΑΞΙΑ ΣΗ ΔΣΑΙΡΙΑ JUMBO ΒΑΔΙ ΣΑΜΔΙΑΚΧΝ ΡΟΧΝ.

10/12/2015 ΜΕΓΑΘΕΩΡΙΑ ΒΙΟ-ΕΞΕΛΙΞΗΣ, ΠΛΑΣΤΙΚΟΤΗΤΑ, ΑΠΙΣΤΙΑ ΨΥΧΟΛΟΓΙΑ ΔΙΑΠΡΟΣΩΠΙΚΩΝ ΣΧΕΣΕΩΝ I. Κατσουρός Αντώνης,

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Transcript:

12 I 1. t P (t) β µ dp (t) = λp (t) (1) dt λ = β µ (rate of increase) P (t) = P ()e λt (Malthusian population) λ (Maltusian parameter) (1) P (t + 1) = (1 + r)p (t) (2) r t P (t) = (1 + r) t P () (T. R. Malthus) ( 1798) 17 [21] ) (Leonardo Pisano/Fibonacci) (Liber Abaci, 122) (L. Euler) (J. P. Süssmilch) [5] [28] 2. (A. Quetelet) (P. F. Verhulst) [31] (logistic model) dp (t) dt = λ ( 1 P (t) ) P (t) (3) K P (t) t K > K (carrying capacity) 1

192 (R. Pearl) (L. J. Reed)[22] 197 (Allee effect) 3. 2 (L. V. Bortkiewicz) (A. J. Lotka) [27] B(t) = G(t) + t β(a)l(a)b(t a)da (4) B(t) l(a) a β(a) a G(t) t = (stable population model) [6] [11] [16] [23] (A. G. McKendrick) [19] p(t, a) t + p(t, a) a = µ(t, a)p(t, a) (5) p(t, a) t a µ(t, a) t a (force of mortality) (5) (McKendrick equation) 195 (H. Von Foerster) t β(t, a) p(t, ) = β(t, a)p(t, a)da (6) (5)-(6) p(t, ) = B(t) (4) 198 [32] 197 (A. Rogers) [24] (R. Schoen) [26] : multistate population) 197 (Song Jian) 2

[1] [29] 4. (H. Bernardelli), (E. G. Lewis), (P. H. Leslie) [18] t =, 1, 2,... j p j (t), j =, 1, 2,... p(t) := (p (t),..., p ω (t)) T ω (Leslie matrix) A m 1 m 2...... m ω s 1...... A :=. s... 2............... s ω 1 m j t t + 1 j t + 1 s j > j 1 j (Leslie matrix model) p(t + 1) = Ap(t) (8) p() t p(t) = A t p() m j λ λ λ < λ lim t λ t At p() = < v, p() > < v, u > u, (9) v, u A λ <, > u λ 1 u (stable age distribution) v (reproductive value) (generalized Leslie matrix) (9) [2] [3] [12] 5. 192 (V. Volterra) [25] P 1 (t), P 2 (t) t (Lotka-Volterra competition equation) { P 1 (t) = (ɛ 1 λ 1 P 1 (t) µ 12 P 2 (t))p 1 (t) P 2(t) (1) = (ɛ 2 λ 2 P 2 (t) µ 21 P 1 (t))p 2 (t) ɛ j λ j µ ij j i λ 1 = λ 2 =, ɛ 1 >, ɛ 2 <, µ 12 >, µ 21 < P 1 P 2 (7) 3

(prey-predator model) { P 1 (t) = (a bp 2 (t))p 1 (t) P 2(t) = ( c + dp 1 (t))p 2 (t) (11) a, b, c, d (P 1, P 2 ) = (c/d, a/b) [3] 6. 1974 (Gurtin and MacCamy) [9] ( t + a) p(t, a) + µ(a, P (t))p(t, a) = p(t, ) = β(σ, P (t))p(t, σ)dσ (12) p(, a) = p (a), P (t) = p(t, σ)dσ P (t) β µ P (t) P (G. F. Webb) [32] (structured population dynamics) [2] (Eastalin model) B(t) = β(a, B(t a))l(a)b(t a)da. (13) β(a, B(t a)) t a B(t a) β(a, x) x (Easterlin hypothesis) [4] [7] 7. 194 (D. G. Kendall)[14] P m (t) P f (t) P c (t) P m(t) = (β m + σ)p c (t) µ m P m (t) Ψ(P m, P f ) P f (t) = (β f + σ)p c (t) µ f P f (t) Ψ(P m, P f ) (14) P c(t) = (µ m + µ f + σ) + Ψ(P m, P f ) 4

µ m, µ f β m, β f σ Ψ(x, y) (marriage function) [15] [a] (u, v) Ψ(u, v), [b] Ψ(u, ) = Ψ(, v) =, [c] (u, v) (u, v ) Ψ(u, v) Ψ(u, v ), [d] k > Ψ(ku, kv) = kψ(u, v), [d] [1] (monogamous marriage) (A. G. Fredrickson) [8] [13] [1] S. Anita (2), Analysis and Control of Age-Dependent Population Dynamics, Kluwer, Dordrecht. [2] H. Caswell (21), Matrix Population Models, 2nd Edition, Sinauer, Sunderland. [3] J. M. Cushing (1998), An Introduction to Structured Population Dynamics, SIAM, Philadelphia. [4] C. Y. Cyrus Chu (1998), Population Dynamics: A New Economic Approach, Oxford UP, Oxford. [5] L. Euler (176), Recherches générales sur la mortalité et la multiplication du genre humaine, Histoire de l Academie Royale des Sciences et Belles Lettres 16, 144-164. [A general investigation into the mortality and multiplication of the human species, Translated by N. and B. Keyfitz, Theoretical Population Biology 1: 37-314] [6] W. Feller (1941), On the integral equation of renewal theory, Ann. Math. Stat. 12: 243-267. [7] J. C. Frauenthal and K. E. Swick (1983), Limit cycle oscillations of the human population, Demography 2(3): 285-298. [8] A. G. Fredrickson (1971), A mathematical theory of age structure in sexual populations: Random mating and monogamous marriage models, Math. Biosci. 1: 117-143. [9] M. E. Gurtin and R. C. MacCamy (1974), Non-linear age-dependent population dynamics, Archive for Rational Mechanics and Analysis 54: 281-3. [1] K. P. Hadeler, R. Waldstätter and A. Wörz-Busekros (1988), Models for pair formation in bisexual populations, J. Math. Biol. 26, 635-649. [11] M. Iannelli (1995), Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori in Pisa. 5

[12] (1986),, 179: 1-15. [13] H. Inaba (2), Persistent age distributions for an age-structured two-sex population model, Math. Pop. Studies 7(4): 365-398. [14] D. G. Kendall (1949), Stochastic processes and population growth, J. Roy. Stat. Soc. B 11: 23-264. [15] N. Keyfitz (1972), The mathematics of sex and marriage, In 6th Berkeley Symp. Math. Statist. Prob., Biology-Health Section, Part II, Berkeley, CA: 89-18. [16] N. Keyfitz (1977), Introduction to the Mathematics of Populations with revision, Addison-Wesley: Reading. [17] N. Keyfitz (1985), Applied Mathematical Demography, Second Edition, Springer-Verlag: Berlin. [18] P. H. Leslie (1945), On the use of matrices in certain population mathematics, Biometrika 33: 183-212. [19] A. G. McKendrick (1926), Application of mathematics to medical problems, Proc. Edinburgh. Math. Soc. 44: 98-13. [2] J. A. J. Metz and O. Diekmann (1986), The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics 68, Springer-Verlag: Berlin. [21] (1944),,,. [22] R. Pearl and L. J. Reed (192), The rate of growth of the population of the United States since 179 and its mathematical representation, Proc. Nat. Acad. Sci. 6: 275-288. [23] J. H. Pollard (1973), Mathematical Models for the Growth of Human Populations, Cambridge University Press: Cambridge. [24] A. Rogers (1975), Introduction to Multiregional Mathematical Demography, John Wiley: New York. [25] F. M. Scudo and J. R. Ziegler (eds.) (1978), The Golden Age of Theoretical Ecology: 1923-194, Lecture Note in Biomathematics 22, Springer, Berlin. [26] R. Schoen (1988), Modeling Multigroup Populations, Plenum Press, New York and London. [27] F. R. Sharpe and A. J. Lotka (1911), A problem in age-distribution, Philosophical Magazine, Series 6, Vol. 21: 435-438. [28] D. Smith and N. Keyfitz (1977), Mathematical Demography: Selected Papers, Springer-Verlag, Berlin. [29] J. Song and J. Yu (1988), Population System Control, Springer-Verlag, Berlin. [3] (1997),,, [31] P. F. Verhulst (1838), Notice sur la loi que la population suit dans son accroissement. Correspondance Mathématique et Physique Publiée par A. Quételet 1: 113-121. [32] G. F. Webb (1985), Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker: New York and Basel. 6