Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System

Σχετικά έγγραφα
Area Location and Recognition of Video Text Based on Depth Learning Method

Detection and Recognition of Traffic Signal Using Machine Learning

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Quick algorithm f or computing core attribute

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

ER-Tree (Extended R*-Tree)

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Robust Feature Extraction Method Based on Run-Length Compensation for Degraded Character Recognition

Reading Order Detection for Text Layout Excluded by Image

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Stabilization of stock price prediction by cross entropy optimization

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

Elements of Information Theory

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis

Buried Markov Model Pairwise

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

ST5224: Advanced Statistical Theory II

A Method for Singularity Detection in Fingerprint Images

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

{takasu, Conditional Random Field

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Numerical Analysis FMN011

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ECE 468: Digital Image Processing. Lecture 8

Sampling Basics (1B) Young Won Lim 9/21/13

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Supporting Information

A High Precision Iris Feature Extraction and Its Application in Iris Recognition


Simplex Crossover for Real-coded Genetic Algolithms

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Χαρακτηρισµός Νεοπλασµάτων στη Μαστογραφία από το Σχήµα της Παρυφής µε χρήση Νευρωνικών ικτύων

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2


[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

SMD Shielded Power Inductors SPIA Series. SPIA Series. Product Identification

Automatic extraction of bibliography with machine learning

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal

ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Βίντεο (Video) Περιεχόµενα. Βιβλιογραφία. Καγιάφας [2000]: Κεφάλαιο 5, [link]

Table of Contents 1 Supplementary Data MCD

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Statistical Inference I Locally most powerful tests

Bayesian modeling of inseparable space-time variation in disease risk

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΣΤΟΙΧΕΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΕΙΡΟΓΝΩΜΟΝΟΣ Προσωπικά Στοιχεία:

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

FORMULAS FOR STATISTICS 1

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

EE512: Error Control Coding

Spectrum Representation (5A) Young Won Lim 11/3/16

Adaptive grouping difference variation wolf pack algorithm

Εκτεταμένη περίληψη Περίληψη

Kernel Methods and their Application for Image Understanding

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

; +302 ; +313; +320,.

NMBTC.COM /

Homework 8 Model Solution Section

Design Method of Ball Mill by Discrete Element Method

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

CorV CVAC. CorV TU317. 1

Reminders: linear functions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Biostatistics for Health Sciences Review Sheet

Transcript:

Vol. 15, No. 3 2008 165 173 1 2 1 1 2 Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System Jumpei Koyama, 1 Masahiro Kato 2 and Akira Hirose 1 Department of Electronic Engineering, The University of Tokyo 1 Fuji Xerox Co., Ltd. 2 Spectrum-domain local fluctuation detection, SDLFD SDLFD SDLFD 1. Optical character recognition, OCR OCR OCR 1 113 8656 7 3 1 2 259 0157 430 Fan 1) Kuhnke 2) Pal Chaudhuri 3) 4, 5)

166 Vol. 15, No. 3 2008 Fig. 1 Example of a local region I(x, y) in a document image and its power spectrum P (u, v). 6 8) Julesz 9) 10 12) 13, 14) 15) 16 18) 19) Spectrum-domain local fluctuation detection, SDLFD 20 22) SDLFD Multilayer perceptron, MLP 2 SDLFD 3 4 SDLFD 2. SDLFD 2.1 I(x, y) Fig. 1 w w I(x, y) (1) F (u, v)

167 Fig. 3 2-layer perceptron. Fig. 2 Spectrum-domain local fluctuation detection method. Every dotted rectangle is a power summation region in θ l direction. F (u, v) = w 2 1 w 2 1 x= w y= 2 w 2 exp I(x, y)h(x, y) { 2πj( x w u + y w v ) } (1) j = 1 H(x, y) F (u, v) Fig. 1 P (u, v) = F (u, v) 2 (2) 2 (u, v) Fig. 1 P (u, v) Fig. 2 θ l f l f l = v tan(θ l )u 1 P (u, v) P (u, v) u v (3) l =16 SDLFD 2 2 2.2 2.1 Fig. 3 2 f l h n 64 1 1 h 1

168 Vol. 15, No. 3 2008 Table 1 Mean square error (MSE) and correct-distinction rate of the optimized multilayer perceptron in each letter type class. Letter type class Correct-distinction rate (%) MSE ( 10 2 ) Alphanumeric 99.70 0.387 Hiragana 98.75 0.550 Katakana 99.75 0.366 Chinese character 97.45 1.31 All letter type 97.00 1.26 t f l h 1 t E E t 0.9 0.1 Mean square error, MSE ɛ =1.0 10 6 T = 1000 Fig. 4 A document image which has randomly arranged characters. 3. SDLFD 2 3.1 Fig. 4 Fig. 4 640 480 3.1.1 ETL 23) 120 w c (w, c) = (128, 64) ETL ETL1 ETL2 ETL9 5 ETL 1000 1000 ETL 500 500 4000

169 Fig. 5 Binarized handwriting likelihood map with window interval d = 8. The threshold value for binarization is 0.5. Characters in dashed-line frames are misclassified. Fig. 6 Relationship between the window interval d and number of correctly distinguished characters. 5 η β SDLFD 0.5 Table 1 MSE 99.75% 97.45% 98.1% 15) SDLFD 97% 3.1.2 3.1.1 d d ETL c p 64 w p 128 ETL c l w l p l processing learning 3.1.3 Fig. 5 d =8 0.5 0.0 1.0 70% Fig. 5 50 47 94%

170 Vol. 15, No. 3 2008 Table 2 Mean square error (MSE) and correct-distinction rate of the optimized multilayer perceptrons with datasets which have machine-printed character images in MS Gothic font. Letter type class Correct-distinction rate (%) MSE ( 10 2 ) Alphanumeric 99.9 1.59 Hiragana 98.6 1.69 Katakana 99.8 1.87 Chinese 96.5 1.35 All letter type 97 2.23 Fig. 7 A sample document image. Fig. 6 d d 16 47 d c p d c p 4 3.2 Fig. 7 r w 3.2.1 Fig. 7 MS MS ETL ETL 3.1.1 2000 4000 w l 128 c l 64 Table 2 MS MSE Correct-distinction rate 3.2.2 3.1.2 Table 3 r c p w p d 3.2.3 Fig. 8 Table 3 0.5 150 dpi Set A 300 dpi Set C 600 dpi Set D 4 150 dpi Set A 300 dpi Set C 600 dpi Set

171 Table 3 Parameters of datasets A, B, C and D. Label Resolution r Character size c p Analysis window size w p Interval d Set A 150 32 64 8 Set B 200 43 64 8 Set C 300 64 128 16 Set D 600 128 256 32 (a) (b) Fig. 8 (c) (d) Binarized handwritten likelihood maps of the document images scanned in various resolutions. Threshold of binarization is 0.5. (a) Set A, (b) Set B, (c) Set C, (d) Set D. D 200 dpi Set B w p c p 150 dpi Set A 300 dpi Set C 600 dpi Set D w p c p w p /c p w l c l w l /c l 2 200 dpi Set B 1.5 w p r c p w l w p (4) c l c p (4) 4. Spectrum-domain local fluctuation detection, SDLFD SDLFD

172 Vol. 15, No. 3 2008 OCR SDLFD 1) Fan, K.C., Wang, L.S., and Tu, Y.T. (1998): Classification of machine-printed and handwritten texts using character block layout variance, Pattern Recognition, Vol.31, No.9, pp.1275 1284 2) Kuhnke, K., Simoncini, L., and Kovács-V, Zs. M. (1995): A system for machine-written and hand-written character distinction, Proc. IEEE Int. Conf. on Document Analysis and Recognition, Vol.2, pp.811 814 3) Pal, U. and Chaudhuri, B.B. (2001): Machine-printed and hand-written text lines identification, Pattern Recognition Letters, Vol.22, pp.431 441 4) Khoubyari, S. and Hull, J.J. (1996): Font and function word identification in document recognition, Computer Vision and Image Understanding, Vol.63, No.1, pp.66 74 5) Zramdini, A. and Ingold, R. (1998): Optical font recognition using typographical features, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.20, No.8, pp.877 882 6) Nothdurft, H.C. (1985): Sensitivity for structure gradient in texture discrimination tasks, Vision Research, Vol.25, No.12, pp.1957 1968 7) Kingdom, F.A.A., Keeble, D., and Moulden, B. (1995): Sensitivity to orientation modulation in micropattern-based textures, Vision Research, Vol.35, pp.79 91 8) Motoyoshi, I. and Nishida, S. (2002): Spatiotemporal interactions in detection of texture orientation modulations, Vision Research, Vol.42, pp.2829 2841 9) Julesz, B. (1965): Texture and visual perception, Scientific American, Vol.212, pp.38 48 10) Papathomas, T.V., Kashi, R.S., and Gorea, A. (1997): A human vision based computational model for chromatic texture segregation, IEEE Trans. on Systems, Man, and Cybernetics Part B: Cybernetics, Vol.27, No.3, pp.428 440 11) Wouwer, G.V., Scheunders, P., and Dyck, D.V. (1999): Statistical texture characterization from discrete wavelet representations, IEEE Trans. on Image Processing, Vol.8, No.4, pp.592 598 12) Han, J. and Ma, K.K. (2007): Rotationinvariant and scale-invariant Gabor features for texture image retrieval, Image and Vision Computing, Vol.25, pp.1474 1481 13) Jones, J.P. and Palmer, L. (1987): An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex, J. Neurophysiology, Vol.58, No.6, pp.1233 1258 14) Daugman, J.G. (1985): Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, J. Opt. Soc. Am. A, Vol.2, No.7, pp.1160 1169 15) Zheng, Y., Li, H., and Doermann, D. (2004): Machine printed text and handwriting identification in noisy document images, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.26, No.3, pp.337 353

173 16) Zhu, Y., Tan, T., and Wang, Y. (2001): Font recognition based on global texture analysis, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.23, No.10, pp.1192 1200 17) Tan, T.N. (1998): Rotation invariant texture features and their use in automatic script identification, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.20, No.7, pp.751 756 18) Morris, R.A. (1992): Classification of digital typefaces using spectral signatures, Pattern Recognition, Vol.25, No.8, pp.869 876 19) Busch, A., Boles, W.W., and Sridharan, S. (2005): Texture for script identification, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.27, No.11, pp.1720 1732 20) Koyama, J., Kato, M., and Hirose, A. (2007): Handwritten character distinction method inspired by human vision mechanism, Proc. Int. Conf. on Neural Information Processing (ICONIP) 2007 Kitakyushu, FMF-5 21) Koyama, J., Kato, M., and Hirose, A. (2008): Distinction between handwritten and machine-printed characters without extracting characters or text lines, Proc. IEEE World Congress on Computational Intelligence (WCCI) 2008 Hong Kong, NN1075 22) Koyama, J., Kato, M., and Hirose, A. (2008): Local-spectrum-based distinction between handwritten and machine-printed characters, Proc. IEEE Int. Conf. on Image Processing (ICIP) 2008 San Diego (to be presented) 23) ETL character databases, Advanced industrial science and technology, http://www.is.aist.go.jp/etlcdb/