Bayesian., 2016, 31(2): : (heterogeneity) Bayesian. . Gibbs : O212.8 : A : (2016)

Σχετικά έγγραφα
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΣΤΑ ΕΛΛΗΝΙΚΑ ΝΟΣΟΚΟΜΕΙΑ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΤΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΔΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ

552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(

Introduction to the ML Estimation of ARMA processes

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Solution Series 9. i=1 x i and i=1 x i.

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Description of the PX-HC algorithm

6.3 Forecasting ARMA processes


Other Test Constructions: Likelihood Ratio & Bayes Tests


Statistical Inference I Locally most powerful tests

Bayesian modeling of inseparable space-time variation in disease risk

Congruence Classes of Invertible Matrices of Order 3 over F 2

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Prey-Taxis Holling-Tanner

Monte Carlo Methods. for Econometric Inference I. Institute on Computational Economics. July 19, John Geweke, University of Iowa

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

5.1 logistic regresssion Chris Parrish July 3, 2016

Lecture 34 Bootstrap confidence intervals

Probability and Random Processes (Part II)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

w o = R 1 p. (1) R = p =. = 1

Supplementary Appendix

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Η ΧΡΗΣΗ ΤΗΣ ΓΕΝΙΚΕΥΜΕΝΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ST5224: Advanced Statistical Theory II

Η ΧΡΗΣΗ ΤΗΣ ΓΕΝΙΚΕΥΜΕΝΗΣ ΣΤΟΧΑΣΤΙΚΗΣ ΕΝ ΔΥΝΑΜΕΙ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΗΣ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΟΥ ΒΑΘΜΟΥ ΤΗΣ ΤΕΧΝΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

Stabilization of stock price prediction by cross entropy optimization

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

FORMULAS FOR STATISTICS 1

Introduction to Bayesian Statistics

Exercises to Statistics of Material Fatigue No. 5

Summary of the model specified

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Notes on the Open Economy

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Buried Markov Model Pairwise

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

DEA (2011) DEA DEA DEA DEA. Decision DEA. Making Unit, DMU Data Envelopment Analysis DEA DEA C 2 R DEA 1978 DEA. A. Charnes W.

: , : (1) 1993, , ; (2) , (Solow,1957), ( ) (04AJ Y006)

5.4 The Poisson Distribution.

Homework 8 Model Solution Section

Applying Markov Decision Processes to Role-playing Game

Lecture 7: Overdispersion in Poisson regression

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

6. MAXIMUM LIKELIHOOD ESTIMATION

Module 5. February 14, h 0min

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models

Asymptotic distribution of MLE

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

Generalized additive models in R

Research on Economics and Management

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Simplex Crossover for Real-coded Genetic Algolithms

SECTION II: PROBABILITY MODELS

RCA models with correlated errors

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Bayesian Data Analysis, Midterm I

y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max

Approximation of distance between locations on earth given by latitude and longitude

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

2 Composition. Invertible Mappings

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Homework for 1/27 Due 2/5


MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

A General Note on δ-quasi Monotone and Increasing Sequence

Lecture 21: Properties and robustness of LSE

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Υγιεινή Εγκαταστάσεων Βιομηχανιών Τροφίμων

5.6 evaluating, checking, comparing Chris Parrish July 3, 2016

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Transcript:

2016, 31(2): 127-135 Bayesian 1, 2 (1., 010021; 2., 201306) : (heterogeney).,. Gibbs Bayesian.,.. : ; Bayesian ; ; Gibbs ; Metropolis-Hastings : O212.8 : A : 1000-4424(2016)02-0127-09 1 Aigner (1977) [1] Meeusen Broeck(1977) [2],.,,., [1], [2], [3], Gamma [4] Gamma [5].,,,,,.. (heterogeney),. [6]. [7], copula. [8],, Bayesian MCMC. [9],,. [10] Gamma Gamma Bayesian, : 2015-11-13 : 2016-04-19 : (13ZR1419100); (14YZ115)

128 31 2. [11],., GARCH(p, q).,,. p = q = 0,.,,. Gibbs Bayesian.,, Gibbs. λ α,, Griddy-Gibbs. Nakatsuma( [12]) GARCH, ARMA,, Metropolis-Hastings λ α.. 2,. y = x β + v u, i = 1, 2,, N, t = 1,, T. y i t, x k 1, i t, β k 1. v, v i t v N ( 0, σ 2). u,. v u, u log u = z γ + ε, t = 1, 2,, T, (1) ε = p h ξ, h = λ 0 + λ j ε 2 i,t j + α j h i,t j. i, t ξ N(0, 1), z m 1, γ m 1. z γ, N(0, h ). h GARCH(p, q), λ 1 = = λ p = α 1 = = α q = 0, h λ 0, u, h, (1).,, [8] [11].,.,,. λ = [λ 0, λ 1,..., λ p ], α = [α 1,..., α q ], u = [u, i = 1, 2,, N, t = 1,, T ], θ = [β, γ, α, λ, σ 2 ] u. θ p(θ), Bayesian, p(y x, u, β, σ 2 ), p(u z, γ, α, λ) p(θ), x = [x, i = 1, 2,, N, t = 1,, T ], y = [y, i = 1, 2,, N, t = 1,, T ]. y u p (y, u x, z, θ) =p(y x, u, β, σ 2 )p(u z, γ, α, λ)

: Bayesian 129 [ ] =(2πσ 2 ) (NT/2) exp 1 2σ 2 (y + u x β) 2 N T [ (h ) 1/2 exp 1 ] (log u z 2h γ) 2 log u 3 Bayesian Bayesian Gibbs.,,,. β, γ, α, λ σ 2, β, γ, α, λ p (β, γ, α, λ) = p (β) p (γ) p (λ, α).,., β, γ, α, λ., h, λ α λ i 0, α i 0 p λ i + α i < 1., β, γ, α, λ p p q p (β, γ, α, λ) I( λ i + α i < 1) I(λ i 0) I(α i 0)., I( ). i=0 σ 2 Gamma ( [13]),, p 0 > 0 q 0 > 0. p ( σ 2) σ p0 1 exp ( q 0 /σ 2) RG ((p 0 1)/2, q 0 ). Bayesian,. θ u p (θ, u x, z, y) p (y, u x, z, θ) p (θ), N [ T σ (NT +p0+1) (h ) 1/2 exp + N i=0 1 2σ 2 ( N ( 1 2h (log u z γ) 2 log u ) ] I( (y + u x β) 2 + 2q 0 ) p λ i + α i < 1) p q I(λ i 0) I(α i 0). (2), Bayesian. MCMC Monte Carlo,,. MCMC Markov Markov,,. Gibbs.

130 31 2 MCMC, Gibbs. MCMC Markov (2), Gibbs. Gibbs Markov {β (i), σ 2(i), γ (1), λ (i), α (i), u (i), i = 1,..., M}., Gibbs, E[ ˆf(θ)] 1 M = f(θ (i) ). M m i=m+1 Gibbs : {β (1), σ 2(1), γ (1), λ (1), α (1), u (1) }, i = 2,..., M, i : 1 p(β (t) σ 2(t 1), γ (t 1), λ (t 1), α (t 1), u (t 1), y, x) β (t), 2 p(σ 2(t) β (t), γ (t 1), λ (t 1), α (t 1), u (t 1), y, x) σ 2(t), 3 p(u (t) β (t), σ 2(t), γ (t 1), λ (t 1), α (t 1), y, x) u (t), 4 p(γ (t) β (t), σ 2(t), λ (t 1), α (t 1), u (t), y, x) γ (t) 5 p(λ (t) β (t), σ 2(t), γ (t), α (t 1), u (t), y, x) λ (t), 6 p(α (t) β (t), σ 2(t), γ (t), λ (t), u (t), y, x) α (t), 7 h = [h, i = 1, 2,, N, t = 1,, T ].. (2). p (β u, γ, λ, α, y, x) exp{ 1 2σ 2 (y + u x β) 2 } N((x x) 1 x (y + u), σ 2 (x x) 1 ), p ( σ 2 y, x, u, β, γ, λ, α ) σ (NT +p0+1) exp{ 1 2σ 2 [ N (y + u x β) 2 + 2q 0 ]} ( (y + u x β) (y + u x β) + 2q 0 σ 2 ) NT +p0+3 2 1 exp{ (y + u x β) (y + u x β) + 2q 0 2σ 2 }. (3), x (N T ) k, y (N T ) 1. (3), ((y + u x β) (y + u x β) + 2q 0 )/σ 2 Ga ((NT + p 0 + 3)/2, 1/2). = χ 2 NT +p 0+3., χ 2 NT +p NT + p 0+3 0 + 3 χ 2. (log u z p(γ u, z, λ, α) exp{ γ)2 } N(µ γ, Σ γ ). 2h t=2 γ, µ γ = Σ γ ( z h 1 log u ), Σ γ = ( z h 1 z ) 1. β, γ σ 2,.

: Bayesian 131 u, i t u p(u y, x, z, β, γ, h) 1 exp{ 1 u 2σ 2 (y + u x β) 2 1 (log u z 2h γ) 2 }.,,., u 1. 1( u ) 1 U[0, f 1 (u (t 1) )] ω 1. 2 U[0, f 2 (u (t 1) )] ω 2. 3 U A u (t). U A A, A = {x; f i (x) ω i, i = 1, 2}. 1 f 1 f 2 u, p(u y, x, z, β, γ, h) = f 1 (u )f 2 (u ). f 1 (u ) = exp{ (y + u x β) 2 /(2σ 2 )}, f 2 (u ) = exp{ 1 2h (log u z γ) 2 log(u )}. λ α N T p(λ, α u, γ) (h ) 1 2 exp{ h = λ 0 + p λ j ε 2 i,t j + (log u z γ)2 2h }. α j h i,t j., u, γ, λ α,. Nakatsuma( [12]) GARCH, Metropolis-Hastings. h = λ 0 + w = ε 2 h, p λ j ε 2 i,t j + ε 2, GARCH : l ε 2 = λ 0 + (λ j + α j ) ε 2 i,t j + w l = max{p, q}, α j h i,t j α j w i,t j, w N ( 0, 2h 2 ). E(w ε 2, h, λ, α) = 0, Var(w ε 2, h, λ, α) = 2h 2. λ, Metropolis-Hastings : 2( λ) 1 π(λ) λ. 2 U(0, 1) e.

132 31 2 3 e α(λ (t 1), λ ), λ (t) = λ ;, λ (t) = λ (t 1) ; { α(λ (t 1), λ ) = min 1, p(λ β, σ 2, α, u, y, x)π(λ (t 1) } ). p(λ (t 1) β, σ 2, α, u, y, x)π(λ ) 2 λ, GARCH :,, λ, π ( ε 2 λ, α, u, γ ) N T N 1 exp{ w2 h 4h 2 } T 1 exp{ (ε2 ζ λ ) 2 } h N(ˆµ λ, ˆΣ λ ). ζ = [ ι, ε 2 i,t 1,..., ε 2 i,t p], ι = 1 + 4h 2 α j ι i,t j, ε 2 = ε 2 + λ α, u, γ N(ˆµ λ, ˆΣ λ ) ˆµ λ = ˆΣ λ N ε 2 ζ 2h 2 p I(λ i 0). i=0, ˆΣ λ = ( ζ ζ 2h 2 ) 1. α j ε 2 i,t j. α, w (α) α Taylor, GARCH π (α λ, u, γ) N T N 1 exp{ w2 h 4h 2 } T 1 exp{ (w (α ) ζ (α α ) ) 2 } h N(ˆµ α, ˆΣ α ). 4h 2 α α, α w (α) = arg min 2h 2, (0 < α j < 1, j = 1,..., q). ζ = [ζ 1,..., ζ q ], ζ j w αj. dw (α j ) dw i,t s = h i,t j + α s, dα j dα j s=1 ζ j = dw (α j ) dα j = h i,t 1 (α ) + αsζ i,t s,j. s=1

: Bayesian 133, α ˆµ α = ˆΣ α N α λ, γ, u N(ˆµ α, ˆΣ α ) q I(α i 0). Y α = w (α ) + ζ (α ), X α = ζ, t=2 Y α Xα 2h 2, ˆΣ α = ( t=2 4 (X α) (X α) 2h 2 ) 1. Gibbs,., p = q = 1, : y = x β + v u, i = 1, 2, t = 1,, T, log u = z γ + ε, ε = h ξ, h = λ 0 + λ 1 ε 2 i,t 1 + α 1 h i,t 1. k = 3, m = 3, x, z 1,, x, z k 1, 0.5, [14]. β [1, 1, 1], γ [ 0.3, 1, 1]. σ 2 = 0.05, λ 0 = 0.05, λ 1 = 0.2, α 1 = 0.7. p 0 = 4, q 0 = 0.01. 100, 500 1000, 60000 10000. 1. 1 T=100 T=500 T=1000 sd sd sd β 1 1 1.083 0.067 1.015 0.025 1.040 0.019 β 2 1 0.977 0.026 0.972 0.012 1.010 0.009 β 3 1 1.053 0.031 1.004 0.012 1.012 0.009 γ 1-0.3-0.184 0.135-0.282 0.051-0.239 0.038 γ 2 1 0.917 0.086 0.949 0.034 0.996 0.026 γ 3 1 0.949 0.101 1.003 0.033 0.984 0.026 σ 2 0.05 0.036 0.011 0.037 0.004 0.047 0.004 λ 0 0.05 0.133 0.066 0.054 0.026 0.048 0.011 λ 1 0.2 0.209 0.096 0.124 0.041 0.120 0.021 α 1 0.7 0.584 0.131 0.727 0.096 0.774 0.035 1,, β, z. λ 0, λ 1, α 1 σ 2,,., λ 0, λ 1 α 1,,., Gibbs Bayesian.,, λ 0, h,., λ 0 Metropolis-Hasting., λ 0, λ 0, Metropolis-Hasting.

134 31 2, λ 0. λ 0 U[δ, 1], δ, λ 0. 5. [15], 1998-2012,, 12 174. log y =β 0 + β 2 log x 1 + β 3 log x 2 + 1 2 β 4 log x 1 log x 1 + 1 2 β 5 log x 2 log x 2 + β 6 log x 1 log x 2 + v u, log u =γ 0 + γ 1 z + ε., y, x 1, x 2 i t,. z i t. [16]., p q 1. Gibbs 60000 10000. 2,. 2 β 0 β 1 β 2 β 3 β 4 β 5-18.403-0.574-0.871 0.869 1.281-1.028 (0.433) (0.292) (0.244) (0.124) (0.195) (0.153) γ 0 γ 1 σ 2 λ 0 λ 1 α 1-6.058 0.102 0.017 0.012 0.192 0.160 (0.893) (0.209) (0.001) (0.003) (0.136) (0.148) 2, γ,. λ 0 0.011, λ 1 α 1 0.192 0.160,.,. h GARCH(1,1),., [8] [11],. : [1] Aigner D, Knox-Lovell C A, Schmdt P. Formulation and estimation of stochastic frontier production function models [J]. J Econometrics, 1977, 6: 21-37. [2] Meeusen W, van der Broeck J. Efficiency estimation from Cobb-Douglas production functions wh Composed Error[J]. Internat Econom Rev, 1977, 18: 435-444. [3] Stevenson R E. Likelihood functions for generalized stochastic frontier model[j]. J Econometrics, 1980, 13: 57-66. [4] Greene W H. A gamma-distributed stochastic frontier model[j]. J Econometrics, 1994, 61: 273-303. [5],. Gamma Bayesian [J]., 2013, 28(4): 488-496. [6] Greene W. Reconsidering heterogeney in panel data estimators of the stochastic frontier model[j]. J Econometrics, 2005, 126: 269-303.

: Bayesian 135 [7] Carta A, Steel M F J. Modelling multi-output stochastic frontiers using copulas[j]. Comput Statist Data Anal, 2012, 56: 3757-3773. [8] Tsionas E. Inference in dynamic stochastic frontier models[j]. J Appl Econom, 2006, 21: 669-676. [9] Chen Yi-Yi, Schmidt P, Wang Hung-Jen. Consistent estimation of the fixed effects stochastic frontier model[j]. J Econometrics, 2014, 181: 65-76. [10] Griffin J, Steel M. Flexible mixture modelling of stochastic frontiers[j]. J Prod Anal, 2008, 29: 33-50. [11] Gal n J, Veiga H, Wiper M. Bayesian estimation of inefficiency heterogeney in stochastic frontier models[j]. J Prod Anal, 2014, 42: 85-101. [12] Nakatsuma T. Bayesian Analysis of ARMA-GARCH Models A Markov chain Sampling Approach[J]. J Econometrics, 2000, 95: 57-69. [13] Fernandez C, Osiewalski J, Steel M F J. On the use of panel data in stochastic frontier models[j]. J Econometrics, 1997, 79: 169-193. [14] Wang Hung-Jen, Schmidt P. One step and two step estimation of the effects of exogenous variables on technical efficiency levels[j]. Prod Anal, 2002, 18: 129-144. [15] Gal n J E, Pollt M. Inefficiency persistence and heterogeney in Colombian electricy utilies[j]. Energ Econ, 2014, 46: 31-44. [16] Growsch T, Jamasb T, Pollt M. Qualy of service, efficiency and scale in network industries: an analysis of European electricy distribution[j]. Appl Econ, 2005, 41: 2555-2570. Bayesian inference for dynamic heterogeney stochastic frontier model CHENG Di 1, ZHANG Shi-bin 2 (1. School of Math. Sci., Inner Mongolian Univ., Hohhot 010021, China; 2. Dept. of Math., Shanghai Marime Univ., Shanghai 201306, China) Abstract: If heterogeney of the inefficiency term is disregarded, will result in the incorrect estimate of this term in the stochastic frontier model. By combining the influence from characteristic differences of individuals wh the time-varying property of variance, a dynamic heterogeney stochastic frontier model is proposed. dynamic heterogeney stochastic frontier model is given. By the Gibbs sampling, the methodology for Bayesian analysis of the For each model parameter, the posterior distribution is derived. A simulation study shows that under the crerion of minimizing the posterior mean square error, the Bayesian estimate is close to s true value for small and medium sized samples. From the Bayesian analysis based on the real electric power company generation data, is evidenced that there exists the time-varying property for the variance of the logarhm inefficiency term. Keywords: stochastic frontier model; Bayesian inference; heterogeney; Gibbs sampling; Metropolis-Hastings sampling MR Subject Classification: 62F15; 65C60