Antonio Pich. IFIC, CSIC Univ. Valencia.

Σχετικά έγγραφα
The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Hadronic Tau Decays at BaBar

Solar Neutrinos: Fluxes

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Το άτομο του Υδρογόνου

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις

Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον

Δομή του Πρωτονίου με νετρίνο. Εισαγωγή στη ΦΣΣ - Γ. Τσιπολίτης

ασθενείς αλληλεπιδράσεις

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

CP Violation in B- and K-Meson Systems

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΑΛΑΝΤΩΣΕΙΣ ΝΕΤΡΙΝΩΝ NEUTRINO OSCILLATIONS

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4&#3 $!&$3% 2!% #!.1 & &!" //! &-!!

Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry.

Pairs of Random Variables

/T interactions and chiral symmetry


(... )..!, ".. (! ) # - $ % % $ & % 2007

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Theory predictions for the muon (g 2): Status and Perspectives

Particle Physics: Introduction to the Standard Model

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

CP-violation from Non-Unitary Leptonic Mixing

CP Violation in Kaon Decays

Lifting Entry (continued)

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Predictions on the second-class currents

16 Electromagnetic induction

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

HONDA. Έτος κατασκευής

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

ITU-R P ITU-R P (ITU-R 204/3 ( )

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

Στοιχειώδη Σωματίδια II. Διάλεξη 7η Πετρίδου Χαρά


Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

ITU-R P (2009/10)

Paul Langacker. The Standard Model and Beyond, Second Edition Answers to Selected Problems

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

Matrices and Determinants

Physics of CP Violation (III)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

κ α ι θ έ λ ω ν α μ ά θ ω...

ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

derivation of the Laplacian from rectangular to spherical coordinates

Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων

ITU-R P (2012/02) khz 150

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Α Ρ Ι Θ Μ Ο Σ : 6.913

Αλληλεπίδραση ακτίνων-χ με την ύλη

Neutrino emissivities in quark matter

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards

Index , 332, 335, 338 equivalence principle, , 356

ITU-R P (2009/10)

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

ITU-R P (2012/02) &' (

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Questions on Particle Physics

Ó³ Ÿ , º 7(170) Ä Ê³μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Derivation of Optical-Bloch Equations

Answers to practice exercises

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

Gradient Descent for Optimization Problems With Sparse Solutions

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

Section 9: Quantum Electrodynamics

Θεωρία Cabibbo - CKM Πίνακας

MICROMASTER Vector MIDIMASTER Vector


Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

SPECIAL FUNCTIONS and POLYNOMIALS

The Θ + Photoproduction in a Regge Model

Polarizations of B V V in QCD factorization


What happens when two or more waves overlap in a certain region of space at the same time?

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

The Simply Typed Lambda Calculus

Wb/ Μ. /Α Ua-, / / Βζ * / 3.3. Ηλεκτρομαγνητισμός Ι Μ. 1. Β = k. 3. α) Β = Κ μ Π 2. B-r, 2 10~ ~ 2 α => I = ~ } Α k M I = 20Α

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

Transcript:

Antonio Pich IFIC, CSIC Univ. Valncia Antonio.Pich@ific.uv.s Topical Sminar on Frontir of Particl Physics 005: Havy Flavor Physics Bijing, August 13-17 005

Quarks Lptons Bosons up down lctron nutrino photon µ gluon charm strang muon nutrino µ Z 0 W ± τ top bauty tau nutrino τ Higgs Tau Physics A. Pich - Bijing 005

Chargd-Currnt Univrsality Lorntz Structur Nutral-Currnt Couplings Nutrinos Lpton-Flavour Violation Dipol Momnts Hadronic Dcays τ QCD Tsts: α s, m s, <α s G >, V us Tau Physics A. Pich - Bijing 005

Do not hav Strong Intractions Spin ½ Sn as Fr Particls 17 Pointlik r < ( fw 10 cm) Family Structur: ν νµ ντ,, µ τ L L L m = 0.5 MV m = 106 MV m = 1777 MV 4 6 13 610 y 10 s 310 s m < 3V m < 0.MV m < 18MV µ τ τ > τ = τ = µ τ ν ν ν µ τ Why 3?? Tau Physics A. Pich - Bijing 005

Th havir lptons µ τ and ar unstabl ν µ µ τ ν τ W W, µ, d θ ν ν, ν µ, u L g C C = u γ (1 γ5) d + ν γ (1 γ5) l + h.c. µ µ W µ θ l Th Standard Modl A. Pich - CERN Summr Lcturs 005

τ ν τ W, µ, d θ Univrsal W Couplings θ = cosθc + sinθc ν, ν µ, d d s u B l 1 1 Br ( τ ντ l νl ) = = 0% + N 5 C B = (17.81 ± 0.06)% B µ = (17.33 ± 0.06)% R τ ( τ ντ Hadrons) Γ( τ ντ ν ) Γ + = N C 1 B Bµ ; Rτ = = 3.64 ± 0.013 B Tau Physics A. Pich - Bijing 005

τ W ν τ, µ g g Tl ( νl l νl ) = 4 G M q M q << M W W W W W F ν, ν µ Γ( l ν l ν ) G m 5 l l F l 5 GF mτ 3 4 Γ( τ ντ lνl ) = f( m / ) 3 l mτ rew = + 19π ; f ( x) 1 8x 8x x 1x log x r EW τ ml W MW α( mτ) 5 3 m = 1+ π 1+ = 0.9960 π 4 5 M (Marciano-Sirlin) B Bµ τ = = τ ± ± 15 0.97564 0.000010 (163.1 1.4) 10 s Tau Physics A. Pich - Bijing 005

B Bµ τ = = τ ± ± 15 0.97564 0.000010 (163.1 1.4) 10 s m τ = 1776.9 + 0.9 MV 0.6 ( B B ) xp µ / = 0.9730 ± 0.0047 Tau Physics A. Pich - Bijing 005

LEPTON UNIVERSALITY g g µ g g µ τ Tau Physics A. Pich - Bijing 005

µ µ 5 f π ( p) dγ γ u 0 i p π µ µ ( ) γ γ5 0 K K p s u i f p 3 g m m m τ τ τ π τ = / µ gµ mm π µ mµ m π Γ( τ ν π ) 1 / Γ( π ν µ ) 1 / ( 1+ δ Rτ π ) 3 K g m τ τ τ mk mτ µ µ g µ K µ mµ K Γ( τ ν ) 1 / = Γ( K ν ) m m 1 / m ( 1+ δ Rτ / K ) δ R = (0.16 ± 0.14)% ; δ R = (0.90 ± 0.)% τπ / τ/ K Marciano-Sirlin, Dckr-Finkmir Tau Physics A. Pich - Bijing 005

g µ / g B B B τ µ τ π µ π W µ B B B W 0.9999 ± 0.000 1.0017 ± 0.0015 0.997 ± 0.011 B Γ τ τ τ µ τ Γ τ π π µ g / g τ µ 1.0004 ± 0.003 0.9999 ± 0.0036 B τ τ τ µ µ τ g τ / g 1.000 ± 0.00 Γ B Γ τ K K µ B W τ W µ 0.979 ± 0.017 1.039 ± 0.01 B B W τ W 1.036 ± 0.013 Tau Physics A. Pich - Bijing 005

Assuming Univrsality: V V us ud fk τ π f m m K m m Γ( τ ν K ) 1+ δ R τ τπ / = = (7.1 ± 0.7) 10 π τ Γ( τ ντ π ) 1+ δ Rτ / K V V us ud 3 fk mπ mµ mk 3 f mk m m π Marciano Γ( K ν µ µ ) 1+ δ Rπ = = (7.60 ± 0.035) 10 µ π Γ( π ν µ µ ) 1+ δ RK Tau Physics A. Pich - Bijing 005

l ν l ν l l G n n H = 4 ll g l ε ( l ) σ ( l ) λ n l ω εω Γ ν ν Γ n, εω, S V µ T 1 µν Γ = I ; Γ = γ ; Γ = σ ; ε, ω, σ, λ = LR, Normalization: 1 Γ + + + 4 ( ) ( ) ( 3 ) S S S S T T V V V V grr + grl + glr + gll + grl + glr + grr grl glr gll 1 Q + Q + Q + Q LL LR RL RR Standard Modl: V n Gll = GF ; gll = 1 ; all othr g εω = 0 Tau Physics A. Pich - Bijing 005

Michl Paramtrs l ν l l d Γ dxdcsθ m ω π ξ ( ) cosθ A( x) 4 l l l = G 3 ll x x0 F x Pl x x0 o 3 ν l ω E = ( m + m )/ m ; x E / ω ; x m / ω max l l l l l 0 l ( ) F( x) = x (1 x) + ρ(4x 3 x x ) + ηx (1 x) ; A( x) = 1 x + δ 4x 4+ 1 x 9 3 0 0 0 Γ 5 Gll m l f m r l l = l ml EW ( / ) 3 19π m m g( m / m ) f( m / m ) l l l 3 Gll Gll 1+ 4 η ; l l l g( z) = 1+ 9z9z z + 6 z(1 + z) logz Standard Modl: 3 ρ = δ = ; η = η = α = β = 0 ; ξ = ξ = ξ = 1 4 Tau Physics A. Pich - Bijing 005

Michl Paramtrs l ν l l d Γ dxdcsθ m ω π ξ ( ) cosθ A( x) 4 l l l = G 3 ll x x0 F x Pl x x0 o 3 ν l ω E = ( m + m )/ m ; x E / ω ; x m / ω max l l l l l 0 l ( ) F( x) = x (1 x) + ρ(4x 3 x x ) + ηx (1 x) ; A( x) = 1 x + δ 4x 4+ 1 x 9 3 0 0 0 1 S V 1 16 1 16 QLL = gll + gll = 3 + ρ ξ + ξδ + ξ + ξ 4 4 3 3 9 1 S V 1 16 1 16 QRR = grr + grr = 3 + ρ + ξ ξδ ξ + ξ 4 4 3 3 9 1 S V T 1 16 1 16 QLR = glr + glr + 3 glr = 5 ρ + ξ ξδ + ξ ξ 4 4 3 3 9 1 S V T 1 16 1 16 QRL = grl + grl + 3 grl = 5 ρ ξ + ξδ ξ ξ 4 4 3 3 9 1 ξ 16 1 Ql Q 1 ; (1 ) R RR + QLR = ξδ Ql Q R RR QRL ξ + + = 3 9 Tau Physics A. Pich - Bijing 005

n g N n εω ( N S =, N V = 1, N T = 1/ 3) Q R τ µ = 0.06 ± 0.037 < 0.047 (90% CL) Q τ R = < 0.017 ± 0.07 0.055 (90%CL), Q τ µ R = 0.00 ± 0.00 < 0.035 (90% CL) (90% CL) µ, τ g µ > 0.960 (90% CL) Tau Physics A. Pich - Bijing 005 V LL ( νµ νµ )

, γ Z µ + µ + + Z ν ν Flavour Consrving g Q l γ γ Sam intraction for both lpton hlicitis NC Univrsality: Z Diffrnt coupling to and Lft-handd nutrinos only µ γ ; Z µ ± ( Q = Q = Q ; Q = 0) µ τ ν g = g = g g Z Zµµ Zττ Zνν l R l L. 3 Familis with light (narly masslss) nutrinos Tau Physics A. Pich - Bijing 005

+ γ,z ff γ, Z f f θ + + f f dσ { A (1 cos θ ) cosθ - h f (1 cos θ) D cosθ } α = + + + + f dω 8 s N B C α ( ) 1 ; 1 s M Z Nl = Nq = NC + + ; hf =± 1 π A = 1+ v ν R( χ) + (v + a ) (v + a ) f f f χ B = 4 a a R( χ) + 8 v a v a f f f C = v a R( χ) + (v + a ) v a f f f χ χ χ = G M F Z πα s s M + isγ / M Z Z Z D = 4 a v R( χ) + 4 v a (v + a ) f f f χ Tau Physics A. Pich - Bijing 005

+ γ,z ff γ, Z f f θ + + f f dσ { A (1 cos θ ) cosθ - h f (1 cos θ) D cosθ } α = + + + + f dω 8 s N B C A A FB Pol () s () s N N F B = F h N + N B 3 8 B A =+ 1 h =1 ( f ) ( f ) σ σ C 4πα ( hf=+ 1) ( hf=1) = ; σ = σ + σ A 3s N f A A Pol FB () s ( + 1) ( 1) ( + 1) ( 1) F F B + B ( + 1) ( 1) ( + 1) ( 1) F + NF + NB + NB N N N N = N 3 8 D A Tau Physics A. Pich - Bijing 005

Z Pak (s = M Z) σ = 1π M Γ Γ f f Z ΓZ ; Γ Γ( Z f f ) 3 Pol 3 AFB () s = P Pf ; APol () s = Pf ; AFB () s = P 4 4 σ σ L R LR A LR () s = P ; A FB () s = Pf σl + σr 4 3 Final Polarization A Pol () s = P A = v a f f f f vf + af Only Availabl for f=τ 1 vl = 1+ 4sin θ 1 P l Snsitiv to Highr Ordr Corrctions Tau Physics A. Pich - Bijing 005

Snsitiv to Havir Particls: TOP, HIGGS Tau Physics A. Pich - Bijing 005

Nutral Currnt Univrsality LEPEWWG July 005 Evidnc of Elctrowak Corrctions Low Valus of M H Prfrrd Tau Physics A. Pich - Bijing 005

HOW MANY NEUTRINOS? σ ( Z hadrons) N ν = Γ( Z invisibl) Γ( Z νν ) i i Th =.9840± 0.008 Γ( Z invisibl) Γ( Z all) Γ( Z visibl) Tau Physics A. Pich - Bijing 005

Th ν τ Mainz 05: m ν <.3 V (95% CL) m ν µ < 0.19 MV (90% CL) DONUT: First Dirct ν τ Obsrvation! Tau Physics A. Pich - Bijing 005

ν Wakly Intracting Particls Among most abundant particls in th Univrs Each scond pass through your body 14 10 from th SUN ν pp d + ν,... Tau Physics A. Pich - Bijing 005

Each scond pass through your body 14 10 from th SUN ν pp d + ν,... Thy also com from blow! ν Tau Physics A. Pich - Bijing 005

ν Masurd ν < Prdictd SNO CC: ES: NC: ν ν ν x x + d p+ p+ + ν + x + d p+ n + ν x ( x=, µ, τ ) Nutrino Oscillations ν ν µ, τ Tau Physics A. Pich - Bijing 005

Nutrino Oscillations ν ν µ τ Lpton Mixing ν R, CP? NEW PHYSICS ν ν µ M. Maltoni Tau Physics A. Pich - Bijing 005

m ν 0 NEW PHYSICS Standard Modl + Dirct (singlt) ν ir : Stril ν ir Nw Intractions? Low-Enrgy Effctiv Fild Thory: cd L = LSM + O Λ d 4 d d 1 SU() L U(1) Y Invariant Oprator with d=5 ( φ iτ φ *) cij t c 1 c L SSB iφφ Lj + h.c. νilmijνjl + h.c. ; Mij Λ c ij Λ v Small Majorana Mass: m ν > 0.05 V Λ / c ij < 10 15 GV Lpton Numbr Violation. Lpton Mixing. CP Tau Physics A. Pich - Bijing 005

LEPTON MIXING L CC g { i µ j i µ = ν j } L γ Ui L + L γ i L + Wµ jl u V jd i j h.c. Lpton Flavour Violation Mixing Structur U V : (M.C. Gonzálz-García) U ij 1 1 (1 + λ) (1 λ) ε 1 1 1 (1 λ + ε) (1 + λ ε) ; λ 0. ; ε < 0. 1 1 1 (1 λ ε) (1 + λ + ε) Opn Qustions: ν Masss (Dirac, Majorana). Lptonic Lptognsis (Baryon Asymmtry) CP Tau Physics A. Pich - Bijing 005

LEPTON FLAVOUR VIOLATION 90% CL Uppr Limits on Br(l X ) [BABAR / BELLE] Dcay U.L. Dcay U.L. Dcay U.L. µ γ 1. 10 11 µ + 1.0 10 1 µ γγ 7. 10 11 τ γ 3.9 10 7 τ + 1.5 10 7 τ + µ 1. 10 7 τ µ γ 6.8 10 8 τ µ + µ 1.4 10 7 τ µ + µ 0.7 10 7 τ µ + 0.6 10 7 τ µ µ + µ 0.8 10 7 τ π 0 1.9 10 7 τ µ π 0 4.1 10 7 τ η 10 10 7 τ µ η 4.7 10 7 τ η.3 10 7 τ µ η 1.5 10 7 τ pγ 3.0 10 7 τ K + K 1.4 10 7 τ K + π 1.7 10 7 τ π + K 3. 10 7 τ µ K + K.5 10 7 τ µ K + π 3. 10 7 τ µ π + K.6 10 7 τ π + π 1. 10 7 τ µ π + π.9 10 7 τ Λπ 0.7 10 7 τ + K K 1.5 10 7 τ + K π 1.8 10 7 τ + π π.7 10 7 τ µ + K K 4.8 10 7 τ µ + K π. 10 7 τ µ + π π 0.7 10 7 Tau Physics A. Pich - Bijing 005

LEPTON FLAVOUR VIOLATION C L = L + l Γ l f Γ f ff SM i i i i Λ Prsnt Exprimntal Limits : µ : Br 10 1 Λ / C ½ i 175 TV τ : Br 10 7 Λ / C ½ i 5 TV J/ψ : Br(J/ψ µ) < 1.1 10 6 ; Br(J/ψ µτ) <.0 10 6 Br(J/ψ τ) < 8.3 10 6 BES (90% CL) Z : Br(Z µ) < 1.7 10 6 ; Br(Z µτ) < 1. 10 5 Br(Z τ) < 9.8 10 6 LEP (95% CL) Tau Physics A. Pich - Bijing 005

µ l Anomalous Magntic Momnt g l m l a l 1 ( gl ) a (QED) = A + A ( m / m ) + A ( m / m ) + A ( m / m, m / m ) 1 µ τ 3 µ τ () α (4) α 3 4 (6) α (8) α i i i i i A ( m / m µ ) = 7.373 941 58 (8) 10 A = A + A + A + A + π π π π (8) A 1 =1.783 (35) (6) 6 (Kinoshita Nio) a = (115 965 18.59 ± 0.38) 10 11 1 α = ± 137.035 998 83 0.000 000 51 Atom Intrfromtry + Csium D1 Lin: 1 α = ± 137.036 000 3 0.000 001 0 World Avrag: 1 < α > = ± 137.035 999 13 0.000 000 45 Tau Physics A. Pich - Bijing 005

µ l Anomalous Magntic Momnt g l m l a l 1 ( gl ) xp a µ = (11 659 08.0 ± 6.0) 10 10 (BNL-E81) 10 10 x a µ th = 11 658 470.4 ± 1.5 QED Kinoshita-Nio + 15.4 ± 0. EW Czarncki-Marciano-Vainshtin + 703.1 ± 8.8 hvp (711.0 ± 5.8) τ, (693.4 ± 6.4) + Davir t al 9.8 ± 0.1 hvp NLO Kraus, Hagiwara t al + 1.0 ± 3.5 light-by-light Mlnikov-Vainshtin, Knch t al = 11 659 191.1 ± 9.6 (11 659 199.0 ± 6.9) τ, (11 659 181.4 ± 7.5) + a µ xp - a µ th = 1.5 σ 1.0 σ.8 σ Tau Physics A. Pich - Bijing 005

Hadronic Vacuum Polarization Contribution to a µ σ Γ τ ν τ + had Davir t al a µ α QED (M Z ) F. Jgrlhnr Contributing E rgions and associatd rrors (gry) scald up by 10 Tau Physics A. Pich - Bijing 005

( ) { ( ) ( ) } α T Q 1 +Π Q +Π Q + Q α ( Q ) Q Effctiv (Running) Coupling: α ( Q ) α α = 1Π( Q ) α Q 1 log 3π m SCREENING α ( Q ) Incrass with Q q Dcrass at Larg Distancs Tau Physics A. Pich - Bijing 005

Th Photon Coupls to ff Virtual Pairs Vacuum Polarizd Dilctric Mdium α = α( m ) = 137.03599913 (45) ; α ( M ) = 18.95 ± 0.05 1 1 1 Z + ( l l and qq contributions includd ) Tau Physics A. Pich - Bijing 005

Elctromagntic and Wak Momnts F( q ) F 3( q ) µ µν µν T llγ = εµ ( q) l F1( q ) γ + i σ qν + σ γ5qν l ; F( 0) = al ; F3(0) = d ml ml l d = (0.07 ± 0.07) x 10 6 cm ; d µ = (3.7 ± 3.4) x 10 19 cm From + τ + τ, τ + τ γ, + τ + τ data: (95% CL) 0.04 < a τ < 0.016 [ a τ th = 0.0011773 (3) ]. < R(d τ ) < 4.5 ;.5 < Im(d τ ) < 0.8 ( x 10 17 cm) Wak Momnts: 0.00114 < R(a w τ ) < 0.00114 ; 0.0065 < Im(a w τ ) < 0.0065 3.56 < R(d w τ ) <.6 ; 6.9 < Im(d w τ ) < 7.7 ( x 10 18 cm) Tau Physics A. Pich - Bijing 005

τ ν τ τ Hadrons d θ W u d d s θ = cos θc + sin θc Only lpton massiv nough to dcay into hadrons R τ ( τ ντ Hadrons) Γ( τ ντ ν ) Γ + N C 1 B Bµ ; Rτ = = 3.64 ± 0.013 B Tau Physics A. Pich - Bijing 005

τ ν τ H probs th τ ν τ Hadrons hadronic VA currnt W d θ µ θ γ H d (1 γ ) u 0 5 u + H 0 probs th hadronic lctromagntic currnt + γ Hadrons µ 0 H Qq qγ q q 0 Isospin : Γ( τ ν V ) 3cos θ Γ( τ ν ν ) πα 1 τ C I = 1 = S EW dx(1 x) (1 x) xσ + 0 xm + 0 V τ ( ) τ Tau Physics A. Pich - Bijing 005

τ ν π π τ 0 µ ( ) p 0 ( + ) 0 ππ d γ u 0 Fπ ( s) p ; s p p 0 π π π π µ CLEO 10 5 slctd vnts Tau Physics A. Pich - Bijing 005

+ π + π vrsus τ ν τ π π 0 (CVC) Davir, Höckr, Zhang Tau Physics A. Pich - Bijing 005

Davir, Höckr, Zhang Tau Physics A. Pich - Bijing 005

Quarks Lptons Bosons up down lctron nutrino photon µ gluon charm strang muon nutrino µ Z 0 W ± τ top bauty tau nutrino τ Higgs Tau Physics A. Pich - Bijing 005