Antonio Pich IFIC, CSIC Univ. Valncia Antonio.Pich@ific.uv.s Topical Sminar on Frontir of Particl Physics 005: Havy Flavor Physics Bijing, August 13-17 005
Quarks Lptons Bosons up down lctron nutrino photon µ gluon charm strang muon nutrino µ Z 0 W ± τ top bauty tau nutrino τ Higgs Tau Physics A. Pich - Bijing 005
Chargd-Currnt Univrsality Lorntz Structur Nutral-Currnt Couplings Nutrinos Lpton-Flavour Violation Dipol Momnts Hadronic Dcays τ QCD Tsts: α s, m s, <α s G >, V us Tau Physics A. Pich - Bijing 005
Do not hav Strong Intractions Spin ½ Sn as Fr Particls 17 Pointlik r < ( fw 10 cm) Family Structur: ν νµ ντ,, µ τ L L L m = 0.5 MV m = 106 MV m = 1777 MV 4 6 13 610 y 10 s 310 s m < 3V m < 0.MV m < 18MV µ τ τ > τ = τ = µ τ ν ν ν µ τ Why 3?? Tau Physics A. Pich - Bijing 005
Th havir lptons µ τ and ar unstabl ν µ µ τ ν τ W W, µ, d θ ν ν, ν µ, u L g C C = u γ (1 γ5) d + ν γ (1 γ5) l + h.c. µ µ W µ θ l Th Standard Modl A. Pich - CERN Summr Lcturs 005
τ ν τ W, µ, d θ Univrsal W Couplings θ = cosθc + sinθc ν, ν µ, d d s u B l 1 1 Br ( τ ντ l νl ) = = 0% + N 5 C B = (17.81 ± 0.06)% B µ = (17.33 ± 0.06)% R τ ( τ ντ Hadrons) Γ( τ ντ ν ) Γ + = N C 1 B Bµ ; Rτ = = 3.64 ± 0.013 B Tau Physics A. Pich - Bijing 005
τ W ν τ, µ g g Tl ( νl l νl ) = 4 G M q M q << M W W W W W F ν, ν µ Γ( l ν l ν ) G m 5 l l F l 5 GF mτ 3 4 Γ( τ ντ lνl ) = f( m / ) 3 l mτ rew = + 19π ; f ( x) 1 8x 8x x 1x log x r EW τ ml W MW α( mτ) 5 3 m = 1+ π 1+ = 0.9960 π 4 5 M (Marciano-Sirlin) B Bµ τ = = τ ± ± 15 0.97564 0.000010 (163.1 1.4) 10 s Tau Physics A. Pich - Bijing 005
B Bµ τ = = τ ± ± 15 0.97564 0.000010 (163.1 1.4) 10 s m τ = 1776.9 + 0.9 MV 0.6 ( B B ) xp µ / = 0.9730 ± 0.0047 Tau Physics A. Pich - Bijing 005
LEPTON UNIVERSALITY g g µ g g µ τ Tau Physics A. Pich - Bijing 005
µ µ 5 f π ( p) dγ γ u 0 i p π µ µ ( ) γ γ5 0 K K p s u i f p 3 g m m m τ τ τ π τ = / µ gµ mm π µ mµ m π Γ( τ ν π ) 1 / Γ( π ν µ ) 1 / ( 1+ δ Rτ π ) 3 K g m τ τ τ mk mτ µ µ g µ K µ mµ K Γ( τ ν ) 1 / = Γ( K ν ) m m 1 / m ( 1+ δ Rτ / K ) δ R = (0.16 ± 0.14)% ; δ R = (0.90 ± 0.)% τπ / τ/ K Marciano-Sirlin, Dckr-Finkmir Tau Physics A. Pich - Bijing 005
g µ / g B B B τ µ τ π µ π W µ B B B W 0.9999 ± 0.000 1.0017 ± 0.0015 0.997 ± 0.011 B Γ τ τ τ µ τ Γ τ π π µ g / g τ µ 1.0004 ± 0.003 0.9999 ± 0.0036 B τ τ τ µ µ τ g τ / g 1.000 ± 0.00 Γ B Γ τ K K µ B W τ W µ 0.979 ± 0.017 1.039 ± 0.01 B B W τ W 1.036 ± 0.013 Tau Physics A. Pich - Bijing 005
Assuming Univrsality: V V us ud fk τ π f m m K m m Γ( τ ν K ) 1+ δ R τ τπ / = = (7.1 ± 0.7) 10 π τ Γ( τ ντ π ) 1+ δ Rτ / K V V us ud 3 fk mπ mµ mk 3 f mk m m π Marciano Γ( K ν µ µ ) 1+ δ Rπ = = (7.60 ± 0.035) 10 µ π Γ( π ν µ µ ) 1+ δ RK Tau Physics A. Pich - Bijing 005
l ν l ν l l G n n H = 4 ll g l ε ( l ) σ ( l ) λ n l ω εω Γ ν ν Γ n, εω, S V µ T 1 µν Γ = I ; Γ = γ ; Γ = σ ; ε, ω, σ, λ = LR, Normalization: 1 Γ + + + 4 ( ) ( ) ( 3 ) S S S S T T V V V V grr + grl + glr + gll + grl + glr + grr grl glr gll 1 Q + Q + Q + Q LL LR RL RR Standard Modl: V n Gll = GF ; gll = 1 ; all othr g εω = 0 Tau Physics A. Pich - Bijing 005
Michl Paramtrs l ν l l d Γ dxdcsθ m ω π ξ ( ) cosθ A( x) 4 l l l = G 3 ll x x0 F x Pl x x0 o 3 ν l ω E = ( m + m )/ m ; x E / ω ; x m / ω max l l l l l 0 l ( ) F( x) = x (1 x) + ρ(4x 3 x x ) + ηx (1 x) ; A( x) = 1 x + δ 4x 4+ 1 x 9 3 0 0 0 Γ 5 Gll m l f m r l l = l ml EW ( / ) 3 19π m m g( m / m ) f( m / m ) l l l 3 Gll Gll 1+ 4 η ; l l l g( z) = 1+ 9z9z z + 6 z(1 + z) logz Standard Modl: 3 ρ = δ = ; η = η = α = β = 0 ; ξ = ξ = ξ = 1 4 Tau Physics A. Pich - Bijing 005
Michl Paramtrs l ν l l d Γ dxdcsθ m ω π ξ ( ) cosθ A( x) 4 l l l = G 3 ll x x0 F x Pl x x0 o 3 ν l ω E = ( m + m )/ m ; x E / ω ; x m / ω max l l l l l 0 l ( ) F( x) = x (1 x) + ρ(4x 3 x x ) + ηx (1 x) ; A( x) = 1 x + δ 4x 4+ 1 x 9 3 0 0 0 1 S V 1 16 1 16 QLL = gll + gll = 3 + ρ ξ + ξδ + ξ + ξ 4 4 3 3 9 1 S V 1 16 1 16 QRR = grr + grr = 3 + ρ + ξ ξδ ξ + ξ 4 4 3 3 9 1 S V T 1 16 1 16 QLR = glr + glr + 3 glr = 5 ρ + ξ ξδ + ξ ξ 4 4 3 3 9 1 S V T 1 16 1 16 QRL = grl + grl + 3 grl = 5 ρ ξ + ξδ ξ ξ 4 4 3 3 9 1 ξ 16 1 Ql Q 1 ; (1 ) R RR + QLR = ξδ Ql Q R RR QRL ξ + + = 3 9 Tau Physics A. Pich - Bijing 005
n g N n εω ( N S =, N V = 1, N T = 1/ 3) Q R τ µ = 0.06 ± 0.037 < 0.047 (90% CL) Q τ R = < 0.017 ± 0.07 0.055 (90%CL), Q τ µ R = 0.00 ± 0.00 < 0.035 (90% CL) (90% CL) µ, τ g µ > 0.960 (90% CL) Tau Physics A. Pich - Bijing 005 V LL ( νµ νµ )
, γ Z µ + µ + + Z ν ν Flavour Consrving g Q l γ γ Sam intraction for both lpton hlicitis NC Univrsality: Z Diffrnt coupling to and Lft-handd nutrinos only µ γ ; Z µ ± ( Q = Q = Q ; Q = 0) µ τ ν g = g = g g Z Zµµ Zττ Zνν l R l L. 3 Familis with light (narly masslss) nutrinos Tau Physics A. Pich - Bijing 005
+ γ,z ff γ, Z f f θ + + f f dσ { A (1 cos θ ) cosθ - h f (1 cos θ) D cosθ } α = + + + + f dω 8 s N B C α ( ) 1 ; 1 s M Z Nl = Nq = NC + + ; hf =± 1 π A = 1+ v ν R( χ) + (v + a ) (v + a ) f f f χ B = 4 a a R( χ) + 8 v a v a f f f C = v a R( χ) + (v + a ) v a f f f χ χ χ = G M F Z πα s s M + isγ / M Z Z Z D = 4 a v R( χ) + 4 v a (v + a ) f f f χ Tau Physics A. Pich - Bijing 005
+ γ,z ff γ, Z f f θ + + f f dσ { A (1 cos θ ) cosθ - h f (1 cos θ) D cosθ } α = + + + + f dω 8 s N B C A A FB Pol () s () s N N F B = F h N + N B 3 8 B A =+ 1 h =1 ( f ) ( f ) σ σ C 4πα ( hf=+ 1) ( hf=1) = ; σ = σ + σ A 3s N f A A Pol FB () s ( + 1) ( 1) ( + 1) ( 1) F F B + B ( + 1) ( 1) ( + 1) ( 1) F + NF + NB + NB N N N N = N 3 8 D A Tau Physics A. Pich - Bijing 005
Z Pak (s = M Z) σ = 1π M Γ Γ f f Z ΓZ ; Γ Γ( Z f f ) 3 Pol 3 AFB () s = P Pf ; APol () s = Pf ; AFB () s = P 4 4 σ σ L R LR A LR () s = P ; A FB () s = Pf σl + σr 4 3 Final Polarization A Pol () s = P A = v a f f f f vf + af Only Availabl for f=τ 1 vl = 1+ 4sin θ 1 P l Snsitiv to Highr Ordr Corrctions Tau Physics A. Pich - Bijing 005
Snsitiv to Havir Particls: TOP, HIGGS Tau Physics A. Pich - Bijing 005
Nutral Currnt Univrsality LEPEWWG July 005 Evidnc of Elctrowak Corrctions Low Valus of M H Prfrrd Tau Physics A. Pich - Bijing 005
HOW MANY NEUTRINOS? σ ( Z hadrons) N ν = Γ( Z invisibl) Γ( Z νν ) i i Th =.9840± 0.008 Γ( Z invisibl) Γ( Z all) Γ( Z visibl) Tau Physics A. Pich - Bijing 005
Th ν τ Mainz 05: m ν <.3 V (95% CL) m ν µ < 0.19 MV (90% CL) DONUT: First Dirct ν τ Obsrvation! Tau Physics A. Pich - Bijing 005
ν Wakly Intracting Particls Among most abundant particls in th Univrs Each scond pass through your body 14 10 from th SUN ν pp d + ν,... Tau Physics A. Pich - Bijing 005
Each scond pass through your body 14 10 from th SUN ν pp d + ν,... Thy also com from blow! ν Tau Physics A. Pich - Bijing 005
ν Masurd ν < Prdictd SNO CC: ES: NC: ν ν ν x x + d p+ p+ + ν + x + d p+ n + ν x ( x=, µ, τ ) Nutrino Oscillations ν ν µ, τ Tau Physics A. Pich - Bijing 005
Nutrino Oscillations ν ν µ τ Lpton Mixing ν R, CP? NEW PHYSICS ν ν µ M. Maltoni Tau Physics A. Pich - Bijing 005
m ν 0 NEW PHYSICS Standard Modl + Dirct (singlt) ν ir : Stril ν ir Nw Intractions? Low-Enrgy Effctiv Fild Thory: cd L = LSM + O Λ d 4 d d 1 SU() L U(1) Y Invariant Oprator with d=5 ( φ iτ φ *) cij t c 1 c L SSB iφφ Lj + h.c. νilmijνjl + h.c. ; Mij Λ c ij Λ v Small Majorana Mass: m ν > 0.05 V Λ / c ij < 10 15 GV Lpton Numbr Violation. Lpton Mixing. CP Tau Physics A. Pich - Bijing 005
LEPTON MIXING L CC g { i µ j i µ = ν j } L γ Ui L + L γ i L + Wµ jl u V jd i j h.c. Lpton Flavour Violation Mixing Structur U V : (M.C. Gonzálz-García) U ij 1 1 (1 + λ) (1 λ) ε 1 1 1 (1 λ + ε) (1 + λ ε) ; λ 0. ; ε < 0. 1 1 1 (1 λ ε) (1 + λ + ε) Opn Qustions: ν Masss (Dirac, Majorana). Lptonic Lptognsis (Baryon Asymmtry) CP Tau Physics A. Pich - Bijing 005
LEPTON FLAVOUR VIOLATION 90% CL Uppr Limits on Br(l X ) [BABAR / BELLE] Dcay U.L. Dcay U.L. Dcay U.L. µ γ 1. 10 11 µ + 1.0 10 1 µ γγ 7. 10 11 τ γ 3.9 10 7 τ + 1.5 10 7 τ + µ 1. 10 7 τ µ γ 6.8 10 8 τ µ + µ 1.4 10 7 τ µ + µ 0.7 10 7 τ µ + 0.6 10 7 τ µ µ + µ 0.8 10 7 τ π 0 1.9 10 7 τ µ π 0 4.1 10 7 τ η 10 10 7 τ µ η 4.7 10 7 τ η.3 10 7 τ µ η 1.5 10 7 τ pγ 3.0 10 7 τ K + K 1.4 10 7 τ K + π 1.7 10 7 τ π + K 3. 10 7 τ µ K + K.5 10 7 τ µ K + π 3. 10 7 τ µ π + K.6 10 7 τ π + π 1. 10 7 τ µ π + π.9 10 7 τ Λπ 0.7 10 7 τ + K K 1.5 10 7 τ + K π 1.8 10 7 τ + π π.7 10 7 τ µ + K K 4.8 10 7 τ µ + K π. 10 7 τ µ + π π 0.7 10 7 Tau Physics A. Pich - Bijing 005
LEPTON FLAVOUR VIOLATION C L = L + l Γ l f Γ f ff SM i i i i Λ Prsnt Exprimntal Limits : µ : Br 10 1 Λ / C ½ i 175 TV τ : Br 10 7 Λ / C ½ i 5 TV J/ψ : Br(J/ψ µ) < 1.1 10 6 ; Br(J/ψ µτ) <.0 10 6 Br(J/ψ τ) < 8.3 10 6 BES (90% CL) Z : Br(Z µ) < 1.7 10 6 ; Br(Z µτ) < 1. 10 5 Br(Z τ) < 9.8 10 6 LEP (95% CL) Tau Physics A. Pich - Bijing 005
µ l Anomalous Magntic Momnt g l m l a l 1 ( gl ) a (QED) = A + A ( m / m ) + A ( m / m ) + A ( m / m, m / m ) 1 µ τ 3 µ τ () α (4) α 3 4 (6) α (8) α i i i i i A ( m / m µ ) = 7.373 941 58 (8) 10 A = A + A + A + A + π π π π (8) A 1 =1.783 (35) (6) 6 (Kinoshita Nio) a = (115 965 18.59 ± 0.38) 10 11 1 α = ± 137.035 998 83 0.000 000 51 Atom Intrfromtry + Csium D1 Lin: 1 α = ± 137.036 000 3 0.000 001 0 World Avrag: 1 < α > = ± 137.035 999 13 0.000 000 45 Tau Physics A. Pich - Bijing 005
µ l Anomalous Magntic Momnt g l m l a l 1 ( gl ) xp a µ = (11 659 08.0 ± 6.0) 10 10 (BNL-E81) 10 10 x a µ th = 11 658 470.4 ± 1.5 QED Kinoshita-Nio + 15.4 ± 0. EW Czarncki-Marciano-Vainshtin + 703.1 ± 8.8 hvp (711.0 ± 5.8) τ, (693.4 ± 6.4) + Davir t al 9.8 ± 0.1 hvp NLO Kraus, Hagiwara t al + 1.0 ± 3.5 light-by-light Mlnikov-Vainshtin, Knch t al = 11 659 191.1 ± 9.6 (11 659 199.0 ± 6.9) τ, (11 659 181.4 ± 7.5) + a µ xp - a µ th = 1.5 σ 1.0 σ.8 σ Tau Physics A. Pich - Bijing 005
Hadronic Vacuum Polarization Contribution to a µ σ Γ τ ν τ + had Davir t al a µ α QED (M Z ) F. Jgrlhnr Contributing E rgions and associatd rrors (gry) scald up by 10 Tau Physics A. Pich - Bijing 005
( ) { ( ) ( ) } α T Q 1 +Π Q +Π Q + Q α ( Q ) Q Effctiv (Running) Coupling: α ( Q ) α α = 1Π( Q ) α Q 1 log 3π m SCREENING α ( Q ) Incrass with Q q Dcrass at Larg Distancs Tau Physics A. Pich - Bijing 005
Th Photon Coupls to ff Virtual Pairs Vacuum Polarizd Dilctric Mdium α = α( m ) = 137.03599913 (45) ; α ( M ) = 18.95 ± 0.05 1 1 1 Z + ( l l and qq contributions includd ) Tau Physics A. Pich - Bijing 005
Elctromagntic and Wak Momnts F( q ) F 3( q ) µ µν µν T llγ = εµ ( q) l F1( q ) γ + i σ qν + σ γ5qν l ; F( 0) = al ; F3(0) = d ml ml l d = (0.07 ± 0.07) x 10 6 cm ; d µ = (3.7 ± 3.4) x 10 19 cm From + τ + τ, τ + τ γ, + τ + τ data: (95% CL) 0.04 < a τ < 0.016 [ a τ th = 0.0011773 (3) ]. < R(d τ ) < 4.5 ;.5 < Im(d τ ) < 0.8 ( x 10 17 cm) Wak Momnts: 0.00114 < R(a w τ ) < 0.00114 ; 0.0065 < Im(a w τ ) < 0.0065 3.56 < R(d w τ ) <.6 ; 6.9 < Im(d w τ ) < 7.7 ( x 10 18 cm) Tau Physics A. Pich - Bijing 005
τ ν τ τ Hadrons d θ W u d d s θ = cos θc + sin θc Only lpton massiv nough to dcay into hadrons R τ ( τ ντ Hadrons) Γ( τ ντ ν ) Γ + N C 1 B Bµ ; Rτ = = 3.64 ± 0.013 B Tau Physics A. Pich - Bijing 005
τ ν τ H probs th τ ν τ Hadrons hadronic VA currnt W d θ µ θ γ H d (1 γ ) u 0 5 u + H 0 probs th hadronic lctromagntic currnt + γ Hadrons µ 0 H Qq qγ q q 0 Isospin : Γ( τ ν V ) 3cos θ Γ( τ ν ν ) πα 1 τ C I = 1 = S EW dx(1 x) (1 x) xσ + 0 xm + 0 V τ ( ) τ Tau Physics A. Pich - Bijing 005
τ ν π π τ 0 µ ( ) p 0 ( + ) 0 ππ d γ u 0 Fπ ( s) p ; s p p 0 π π π π µ CLEO 10 5 slctd vnts Tau Physics A. Pich - Bijing 005
+ π + π vrsus τ ν τ π π 0 (CVC) Davir, Höckr, Zhang Tau Physics A. Pich - Bijing 005
Davir, Höckr, Zhang Tau Physics A. Pich - Bijing 005
Quarks Lptons Bosons up down lctron nutrino photon µ gluon charm strang muon nutrino µ Z 0 W ± τ top bauty tau nutrino τ Higgs Tau Physics A. Pich - Bijing 005