Sho Matsumoto Graduate School of Mathematics, Nagoya University. Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University

Σχετικά έγγραφα
Wishart α-determinant, α-hafnian

Discriminantal arrangement

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

A summation formula ramified with hypergeometric function and involving recurrence relation

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Single-value extension property for anti-diagonal operator matrices and their square

IUTeich. [Pano] (2) IUTeich

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Expansion formulae of sampled zeros and a method to relocate the zeros

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications

Congruence Classes of Invertible Matrices of Order 3 over F 2

On the Galois Group of Linear Difference-Differential Equations

X g 1990 g PSRB

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and Determinants

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Jordan Form of a Square Matrix

C-19 (B) Development of stochastic numerics and probability theory via lacunary series (FUKUYAMA KATUSI)

SPECIAL FUNCTIONS and POLYNOMIALS

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Example Sheet 3 Solutions

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Probability and Random Processes (Part II)

Diderot (Paris VII) les caractères des groupes de Lie résolubles

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

1. Introduction and preliminaries

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Second Order Partial Differential Equations

High order interpolation function for surface contact problem

arxiv: v1 [math.sp] 29 Mar 2010

Orthogonal systems and semigroups

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

x xn w(x) = 0 ( n N)

Tridiagonal matrices. Gérard MEURANT. October, 2008

Higher spin gauge theories and their CFT duals

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4


A thermodynamic characterization of some regularity structures near the subcriticality threshold

Markov chains model reduction

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

The Jordan Form of Complex Tridiagonal Matrices

The q-commutators of braided groups

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

arxiv: v1 [math.ra] 19 Dec 2017

Numerical Analysis FMN011

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

The k-α-exponential Function

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Gradient Descent for Optimization Problems With Sparse Solutions

Hartree-Fock Theory. Solving electronic structure problem on computers

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction

w o = R 1 p. (1) R = p =. = 1

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

H ΕΠΙ ΡΑΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ TΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΩΝ ΒΙΟΕΠΙΣΤΗΜΩΝ

Module 5. February 14, h 0min

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Homomorphism in Intuitionistic Fuzzy Automata

Transcript:

Sho Matsumoto Graduate School of Mathematics, Nagoya University Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University. Kac f n (t) = n k=0 a kt k ({a k } n k=0 i.i.d. ) N n E[N n ] = π R (t ) (n + ) t n (t n+ ) dt Littlewood-Offord n E[N n ] π log n [0] [4] Logan- Shepp {a k } α [] Shepp-Vanderbei f n (t) [8] Kac n = f(z) = a k z k ( z < ) [4] [4] k=0 {ζ k } k=0 Peres-Virág [5] f C (z) = k=0 ζ kz k Bergman Krishnapur (Ginibre ) [](7 ) ( ) Peres-Virág [9]. * RIMS, Dec. 8-, 0 * (Hafnian) E. R. Caianiello Hafnia [3, ]

n n B = (b ij ) i,j n Pf B n n A = (a ij ) i,j n Hf A Pf B = η F n ϵ(η)b η()η() b η(3)η(4) b η(n )η(n) Hf A = η F n a η()η() a η(3)η(4) a η(n )η(n) ϵ(η) η F n := {η S n η(i ) < η(i)(i =,,..., n), η() < η(3) < < η(n )}.. n =, F, F F = Pf Hf {}, F = 0 b = b b 0, Pf a a = a a a, Hf { 3 4, 3 4 3 4, 3 4 ( 3 )} 4 4 3 0 b b 3 b 4 b 0 b 3 b 4 b 3 b 3 0 b 34 = b b 34 b 3 b 4 + b 4 b 3 b 4 b 4 b 34 0 a a a 3 a 4 a a a 3 a 4 a 3 a 3 a 33 a 34 = a a 34 + a 3 a 4 + a 4 a 3 a 4 a 4 a 34 a 44 a ii, i =,,..., n (permanent) det A = n sgn(η) a iη(i), η S n i= per A = n η S n i= a iη(i) Borchardt 3. A n B n C n : det B = (Pf B). det A = ( ) n(n )/ O A Pf A T. O

Pf(C T BC) = det C Pf B. (Wick ). (X, X,..., X n ) 0 () E[X X X n ] = Hf(E[X i X j ]) n i,j=. (Z,..., Z n, W,..., W n ) 0 E[Z Z n W... W n ] = per ( E[Z i W j ] ) n i,j=.. n = Wick E[X X X 3 X 4 ] = E[X X ]E[X 3 X 4 ] + E[X X 3 ]E[X X 4 ] + E[X X 4 ]E[X X 3 ]. X = X = X 3 = X 4 = X E[X 4 ] = 3(E[X ]) Wick () X i = X (i =,,..., n) E[X n ] = F n (E[X ]) n F n = E[X n ]/(E[X ]) n = (n )!! Borchardt(855) [] ( det s i t j ) ( per s i t j ) = det ( s i t j ) 3 ([9]). ( si t j Pf s i t j ) ( Hf ) = Pf s i t j si t j ( s i t j ). f(z) 3. f(z) {f(t), t (, )} σ(s, t) := E[f(s)f(t)] = st f. f n ρ n (t,..., t n ) t, t,..., t n (, ) ρ n (t,..., t n ) = π n Pf(K(t i, t j )) i,j n.

K(s, t) (s, t (, )) Pf(K(t i, t j )) i,j n n n (K(t i, t j )) i,j n K(s, t) K(s, t) = ( s t K s K ) σ(s, t) t K, K (s, t) = sgn(t s) arcsin. K (s, t) σ(s, s)σ(t, t) sgn t t > 0 sgn t = + t < 0 sgn t = t = 0 sgn 0 = 0 K(s, t) s t t K (s, t) = ( s )( t )( st), K (s, t) = K (s, t) = s st, s t st, K ( s )( t = sgn(t s) arcsin ) st. 3. : s (, ) : s, t (, ) ρ (s) = π K (s, s) = π( s ). ρ (s, t) = π {K (s, s)k (t, t) K (s, t)k (s, t) + K (s, t)k (s, t)} = π( s ) 3 t s + O( t s ). s, t (, ) 4. ρ (s, t) ρ (s)ρ (t). t, t,..., t n (, ) E[ f(t )f(t ) f(t n ) ] = Σ = (σ(t i, t j )) i,j n n/ (det Σ) Pf(K(ti, t j )) i,j n π E[ f(t )f(t ) f(t n ) ] f(t) E[sgn f(t ) sgn f(t n )] n E[sgn f(t ) sgn f(t n )]

3. t, t,..., t n (, ) E[sgn f(t ) sgn f(t ) sgn f(t n )] =. 3 n sgn(t j t i ) Pf(K (t i, t j )) i,j n π i<j n E[sgn f(t ) sgn f(t ) sgn f(t n )] = Pf(E[f(t i )f(t j )]) i,j n Wick 5. f(z) 4. D + = {z C; z <, Iz > 0} z,..., z n D + f(z) n ρ c n(z,..., z n ) = (π ) n n j= z j Pf(Kc (z i, z j )) i,j n K c (z, w) K c (z, w) = ( z w ( zw) z w ( zw) z w ( z w) z w ( z w) ) 4. ρ c (z) = z z π z ( z ), ( ρ c (z, w) = ρ c (z)ρ c z w (w) + π z w zw z w z w z, w D + ρ c (z, w) < ρ c (z)ρ c (w). 4 Forrester [5] Hammersley [7, 8] 3 )

6. i.i.d. N R (0, ) N N N [, 6]. K Gin (s, t) = ( s t K s K ) t K. K (s, t) K (s, t) = sgn(t s) e x / dx. s t π λ > 0 annihilating B.M. {B λ (t), t > 0} Maximal entrance law annihilating B.M. {B λ (t), t > 0} λ t > 0 ( ) [0] K abm t (x, y) = x y K Gin t, t t K(s, t) = ( s t K s K ) t K K (s, t) K 7. (X,..., X n ) n (n )- S n ( n) k (X,..., X k ) d N(0, I k ) Poincaré [6] McKean [3] S ( ) Zyczkowski-Sommers [3] Krishnapur Peres-Virág [] Haar (k + N) (k + N) ( ) Ak k B U = k N C N k V N N

V = V N N λ,..., λ N f N (z) := ( ) N det U det(zi V ) det(i zv ) = ( )N det U N k= z λ k zλ k N k/ f N (z) }{{} d det( G j z j ) j=0 }{{} G j k k i.i.d. Ginibre U k = f(z) {X k (t)} k=0 Ornstein-Uhlenbeck i.i.d. f t (z) = X k (t)z k k=0 OU f t ξ t t ξ t Krishnapur ξ t [] C. W. Borchardt, Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden Funktion, Crelle s Journal 53 (855), 93 98. [] A. Borodin and C. D. Sinclair, The Ginibre ensemble of real random matrices and its scaling limits, Comm. Math. Phys. 9 (009), no., 77 4. [3] E. R. Caianiello, On quantum field theoy I, Nuovo Cimento (9) 0 (953), 634 65. [4] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. 3 (995), 37. [5] P. J. Forrester, The limiting Kac random polynomial and truncated random orthogonal matrices, J. Stat. Mech. (00), P08. available at arxiv:009.3066v [6] P. J. Forrester and T. Nagao, Eigenvalue statistics of the real Ginibre ensemble, Phys. Rev. Lett. 99, (007), 050603, 4 pp. [7] J. M. Hammersley, The zeros of a random polynomial, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 954 955, vol. II, pp. 89. University of California Press, Berkeley and Los Angeles, 956.

[8] J. B. Hough, M. Krishnapur, Y. Peres and B. Virág, Zeros of Gaussian Analytic Functions and Determinantal Point Processes, University Lecture Series, 5. American Mathematical Society, Providence, RI, 009. [9] M. Ishikawa, H. Kawamuko, and S. Okada, A Pfaffian-Hafnian analogue of Borchardt s identity, Electron. J. Combin. (005), Note 9, 8 pp. (electronic). [0] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (943), 34 30. [] M. Krishnapur, From random matrices to random analytic functions, Ann. Probab. 37 (009), 34 346. [] B. F. Logan and L. A. Shepp, Real zeros of random polynomials. II, Proc. London Math. Soc. 8 (968), 308 34. [3] P. McKean, Geometry of differential space, Ann. Probab. (973), 97 06. [4] S. Matsumoto and T. Shirai, Correlation functions for zeros of a Gaussian power series and Pfaffians, available at http://arxiv.org/abs/.608 [5] Y. Peres and B. Virág, Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process, Acta Math. 94 (005), 35. [6] H. Poincaré, Calcul des Probabilités, Gauthier-Villars, Paris, 9. [7] S. O. Rice, Mathematical theory of random noise, Bell. System Tech. J. 5 (945), 46 56. [8] L. A. Shepp and R. J. Vanderbei, The complex zeros of random polynomials, Trans. Amer. Math. Soc. 347 (995), 4365 4384. [9] T. Shirai, Limit theorem for random analytic functions and their zeros, RIMS Kôkyûroku Bessatsu 34 (0), 335 359. [0] R. Tribe and O. Zaboronski, Pfaffian formulae for one dimensional coalescing and annihilating systems, Electronic Journal of Probability, 6, Article 76 (0). [] T. Umeda, CAPELLI 009, available at http://dml.ms.u-tokyo.ac.jp/psrt/ [] A. Zvonkin, Matrix integrals and map enumeration: an accessible introduction, Combinatorics and physics (Marseilles, 995), Math. Comput. Modelling 6 (997), no. 8 0, 8 304. [3] K. Zyczkowski and H. J. Sommers, Truncations of random unitary matrices, J. Phys. A, 33 (000), 045 057.