magnétiques par des courants de surface. Application aux noyaux ferrites 2D

Σχετικά έγγραφα
Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

Vn 1: NHC LI MT S KIN TH C LP 10

Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model.

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Jeux d inondation dans les graphes

Microscopie photothermique et endommagement laser

SPFC: a tool to improve water management and hay production in the Crau region

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Multi-GPU numerical simulation of electromagnetic waves

Les gouttes enrobées

Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure

Déformation et quantification par groupoïde des variétés toriques

A Convolutional Neural Network Approach for Objective Video Quality Assessment

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Couplage dans les applications interactives de grande taille

Consommation marchande et contraintes non monétaires au Canada ( )

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Forêts aléatoires : aspects théoriques, sélection de variables et applications

B m 1 giai on (1 stage) B m 1 giai on có m tng. 1 giai on 1 giai on 2 giai on sensor

Vers un assistant à la preuve en langue naturelle

ACI sécurité informatique KAA (Key Authentification Ambient)

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

Jie He. To cite this version: HAL Id: halshs

Coupling strategies for compressible - low Mach number flows

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix

Développement de virus HSV-1 (virus de l herpes simplex de type 1) oncolytiques ciblés pour traiter les carcinomes hépatocellulaires

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Batigoal_mathscope.org ñược tính theo công thức

O 2 I = 1 suy ra II 2 O 1 B.

Evaluation et application de méthodes de criblage in silico

Inflation Bias after the Euro: Evidence from the UK and Italy

Modélisation de la réaction d alkylation du motif zinc-thiolate

Clothes without an Emperor: Analysis of the Preferential Tariffs in ASEAN

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

Points de torsion des courbes elliptiques et équations diophantiennes

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA


Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)

Mesh Parameterization: Theory and Practice

ABCDA EF A A D A ABCDA CA D ABCDA EF

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).

A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation

5. Phương trình vi phân

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.

Global excess liquidity and asset prices in emerging countries: a pvar approach

Kinh tế học vĩ mô Bài đọc

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).

Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development

Langages dédiés au développement de services de communications

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

I 2 Z I 1 Y O 2 I A O 1 T Q Z N

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.

Hng dn chn n iu Khoa HSTC & C CN HEN PH QUN NNG

Năm 2017 Q 1 Q 2 P 2 P P 1

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

HONDA. Έτος κατασκευής

Spectres de diffusion Raman induits par les intéractions pour les bandes v2 et v3 de la molécule CO2 en gaz pur et en mélange avec de l argon

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên

SINH-VIEÂN PHAÛI GHI MAÕ-SOÁ SINH-VIEÂN LEÂN ÑEÀ THI VAØ NOÄP LAÏI ÑEÀ THI + BAØI THI

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).


!"#$ % &# &%#'()(! $ * +

x y y

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)

ĐỀ 56

# " $! % $ " & "! # '' '!" ' ' ( &! )!! ' ( *+ & '

Logique et Interaction : une Étude Sémantique de la

"#$%%!&' ( *+,%%- !%!%!*&."$%%/-0! !%!%4!*&."$((,%/ !%!%(!*&."$,1,$,%/,!%!%"!*&."$"%%%%!!%!%$!*&."$"(,/$!!%!%2!*&."$",%%%/%0 !%!%!*&.

TeSys contactors a.c. coils for 3-pole contactors LC1-D


! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

-! " #!$ %& ' %( #! )! ' 2003

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Des données anatomiques à la simulation de la locomotion : application à l homme, au chimpanzé, et à Lucy (A.L )

Transcript:

Modélisation PEE : epésentation des matéiaux magnétiques pa des couants de suface. Application aux noyaux feites D Hai ui Ngoc To cite this vesion: Hai ui Ngoc. Modélisation PEE : epésentation des matéiaux magnétiques pa des couants de suface. Application aux noyaux feites D. Enegie électique. Univesité de Genoble,. Fançais. <tel-737995v> HAL Id: tel-737995 https://tel.achives-ouvetes.f/tel-737995v Submitted on 3 Oct (v), last evised Jan (v) HAL is a multi-disciplinay open access achive fo the deposit and dissemination of scientific eseach documents, whethe they ae published o not. The documents may come fom teaching and eseach institutions in Fance o aboad, o fom public o pivate eseach centes. L achive ouvete pluidisciplinaie HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau echeche, publiés ou non, émanant des établissements d enseignement et de echeche fançais ou étanges, des laboatoies publics ou pivés.

ADEE ADAEFFE FADA AAAD D AFE EAADEAAD DDAE ED A EDE FFA AAAAE A AADEDED FE AEDFD AAA DE AAA

Lun án này con dành tng b m thân yêu! À mes paents!

Remeciements AEDEAAEEAA DDA ADAAAADADA EAEEE AAAEDDDAEAA EDADAADEDEDA DEDEAADDA AAAAA AEAEAEDADD DAAEDDADADEDEADE AAAADADED AAADE DEDAAAADDEEAAAAA DAADADDADDAEDDA DEAAADA AAAEADEDEDAE ADFDDEDADAEDEDADA ADDDA ADEDAA AAADEDFA DEDD ADAAA AEDDADAADAEDDA AAFAAADA D ADDAD DAED Je tiens à emecie bien chaleueusement mes amis vietnamiens : ám n anh Hùng, nh mt ngi anh tai ca em, Aã luôn giúp A ch ddn cho em te nhfng ngày Au em At chân lên nc Pháp. ám n anh Tng, anh c, anh Hiu béo, anh Tun bc Aã ch cho em nhfng kinh nghim v cuc sng cng nh tong hc tp và nghiên cu, cám n các anh Aã chia s vi em nhfng nm tháng Ay ý ngha ti Genoble này. m n anh ch em tong gia Aình in ti Genoble cng nh tên toàn nc Pháp vì s Aoàn kt và gn bó, vì nhfng tình cm nng m chúng ta Aã dành cho nhau, cám n anh ch em Aã luôn Ang viên và giúp A mình tong thi gian qua.

Mes denies mots iont à ma famille, qui m a continuellement soutenu : on cm n b m Aã luôn bên cnh, tin tng ng h và Ang viên con, cám n b m Aã dành cho con nhfng th tt Ap nht và to Aiu kin cho con Ac hc An ngày hôm nay. háu cám n bà Aã tn to dy bo và chm sóc cháu tong sut nhfng nm tháng cháu hc Ai hc. Không có bà chc chn cháu không có Ac ngày hôm nay, cháu cám n bà nhiu lm! ám n dì Aã luôn thng yêu và Anh hng cho cháu. ám n em yêu Aã An bên anh, cho anh nhfng giây phút ngt ngào và hnh phúc. ám n em Aã luôn bên cnh, ng h và chia s vi anh nhfng nm tháng vea qua! Meci encoe à tous!!! onne lectue! Genoble, Mai

AD F FEAFEE FEEFEA FAAEAF E DAEDE AAEDE E DAEDE EAEDDA AAEDE DEDDA DDADE EDAAEADA DA DADA FADAA DAEDAED ADAEADADDDDA D FADADDDDADDD ED

AD EAAADAAEAAEA EAEDA D DA DADDA FADAA DDAEDA FFFF DDADA DDDA DDDAD FFFF F E A A FEAFAEFE E FF AAEAAEA ADAA DE EDDE FAAADDAA FAAADEAADA AADAEA FF F DEAEAEAEEAEDED DEAEAEDED DEDEDD

AD AAAAADAAEA AAEEAAA ADAA ED DDAD ADADDA DDAED F FDFFEEA AFE FFF AAA AEEDDAAEADA AEEDDADED A DEADAA ADADAD D D A D A ADADAD DEADA EADADAD D AAD AAD EADADAD D AAD

AD AAD EADADA DEAD F DADDAEDDADDA AEAAA AEDAA EEAEA EDD EEAAA EEAEA EEA F AEDADAEDEAED AAAEDDEAAED ADAEDEAEDDEEA A F F AF A FFE AFFAFEFAF E F AAEDA ADAEAEAAEDADEA AADAE

AD DEEAEDAA DEDEAEAED ADAED ADAEADAEDAEDAAE AADADEE AADAAED AADADAAED AAD DDAE DEAEEDDADE EDE AAD DDAEDDAEAAAD ADDDDAED ADAEADDDDADEAA DA F EAFEF EFFFA EE EE A A EFA AE F FFEAAEFEFEEFA EEAAEFAAF FFEAAEEFA EEAAEAFF EE A A EFA AE F FFEAAEFAEFAFFEFEF

AD EE A A EFA AE F FFEAAEFEAEFAFEFEF EEE

F

EFADAFFD AADAEDAEADDDE EDAEDADAEAAAEDAADAE DADADEDEAAAADE EADDDDEDAEE DEADEADAEAADA DAADADAEAEADEDAAD EDEAEDDADADA EDAADADAEAADDAEE ADEDADADEAAA EDAEADAEAAAD DDAEEAEADDDAADAA DAEDEEAAADDAAADA EAA D ADAA E A E A AA EDEAEDDEA EADDAA DEADEDDAEADEAEDADADDAE EDAEDADADDAAAEAD ADDEEDADDAA DADADDA AAEAADADDADEAAED EADAEDDADAAEDDDD DDDAEEAADAEAAE AAAAEDDADAAEEAAA DAAADEADAEA DAEAD ADADDADDADA A E D DA D E D DDAFDDDEAAEDDE AADAEDEDAEDDADADDAEDA EAAAADDAD AAAAAAADDDA EEDAAEAADDDAA DAEAAEAEDAEDDE DAEAADEEDDA ADADADEAEDA AADDADEEAAAAE DDAEDAAAEDADDAD DADEDADADAAAE DDAAEDDDAAAAAEAE

EFADAFFD DEDAAEDDAADAE EAEDAEAAAEADA AADAEDADAADEEEDAD DAEEAEEDAADAAEA DEDDDAEE AEDADDAADDA ADADADA EEEDED DDAEADAAEDDEAADA ADAEEADAEDE ADADDAEAADED EDDAEAADAD EAAEDDEEDADDAAADE DDDDDDADAEDAEAADDAE DADADEDAEEADDAA DAEDEADDAEADADAADAE D ADADDA DDAEDDAEDE DEAAAEEE EAAAADEDADDAADAED AEAEADADA DDAADADAAAEA EDEDDEAD AAADADAEDE D EA DA E DEA E AEDEAADADAA DADADAEAAA DDDED DDEAAEDEDD AAAEA AADADEDADAE DDEDAADEDD ADDAEEDDADADA DADEAAADDEDDA DADAEDDADEADAD AAAAADDAADAEDEAED

EFADAFFD ADADAAAEAA EDDAAEAAEDE EDDA EADAAAEADAED DAEDDEDDAAEAADA ADADAAAADA AEA

EFADAFFD

ADFFAAFDAFDDA FEAFE DDAEDDAEDED EAAAEEEEAAAADE DADDAAAEEEDEDADADA AD DA A DAA A D EAADAADDAEEDADAEDDAE ADADADADAEAAAEE AADAAEAEAAE EAAFEADAEED EEEADAAE A EADEAEDEDAEDADDA EEAEAAA DDADADDDAEAEDD AEDEDDADEDADAAEAADA AEADADDEEAADDAEE AADDDAEDDDAAADA DEDEDEAADAE DEEDDADADADAAD DAAEADADEAEDAA A DADADAAEAE AAAADEEAEED AAEDAEAEADAEAA EDADDDAAEEAE ADADEDAAEA DADAEAADAEDDDADD ADDAEDDDAAEDEEA AEEDAADDEEADDA AEDEEDADAAEDDEAD DEDAADDAEADAEEAAAA DDADAEAE EAAA EDAEDDADAEAA EDEDDAAEDEDEEDDA

ADFFAAFDAFDDA DADDAEAAEDEAEDEDD EAAAEAADEA EEDEEAAADDDAAED EDEAAEAEADDEDEDAD EA AEDADADAAFADAED AEADEAEDDEEDADD DAEDAEAAA ot H = J ote = t div = dive = EDADEADEDAAD J = σ E = H ADAEADAEAAAE AAEADDAAD = ot A diva = A E = gadu t ADDAADAAEA = J A DDADDAADA DDAEDD U =

ADFFAAFDAFDDA DDDAEADAEA A( ) = 4π espace J ( ) dv EDDAAED AAAEDEEAEDAD DDAEEAADEAADAADDE DAEDADEAAE AAEDAAADA EDADDEDAEAAAE EDEAAEAEEADAA DDEDAA D DADAEDDADAED DADAEDDDD AEDDADAEEADAAEDA AEADDADAADAA EDA [ V ] = [ Z ][. I ] [ Z ] = R j. ω. i M ij DEEDDAEDEADAEA AEAEDEDADEAAADAEAED DAAADDAEAAA AEDDEEDAEDDA EAAEAAEAEDADAAAEDD DFAEDDAADEADDDA

ADFFAAFDAFDDA DDDADDDD EAEDDA M ij = AS. dl j I S i A S ADS j j I DED A A A E DA A A ADDAAAEDDAD AAEAADAEAEEDA EAAADEEDADA DA DADAAEDADAAA AEDADEDAEAAE AEAAD DADEDADEDD EEDDAEDD AEDADEDDDEAED ADDDAEDADD EADA A A D AADA ADEDE DEDDDDADDADD DAEDAAADDEDAEA AAEADAEEAAAADDADADAA

ADFFAAFDAFDDA EDEDEDAAEA EADAEDA AADAEDEAEEE EDADDADDADEDAADAA DDEADADAAAAD EDADDAADADA EDADE EDDEDDDEA EDEAEEEDADDA EAAAAAAEDADDADEA DADAADAAEAAA EAADDAA DAADAADAADADAE DAEAADDAADADDA AEA = H FAAA AEAEDDAAAAD EAEDEDEDED A ( ) = 4π espace J ( ) dv DEAADAADEDAAEA DA ot ( H gad H ) = ( oth H gad ) = J DDDAEAEA A = J H gad DA ADEEAADA DDDEDEDDADEAD

ADFFAAFDAFDDA H gad A ( ) = dv 4π espace DA J libe DAADEADAE DDAJ lié EADEEED DAADAAADEAADAAEDD AEDADDA M = χ H = ( ) H ADAEDAEAAEDE DAAEAAAAADAADADDDDAEDDEAA EEDEAAEDADE DEEADAEAA J = ( ) J lié libe DAEAEEEDEEA ADAEA DADADA H F D AAEAADDDEDAD DADDAD EDAAEDDAA EAAE DADEADDDD EADAEDEDAEDEDADAD DEAEEDDDA A ) = 4π H n ε εds = 4π ( S S ( ) H n ds DAAAEDED K A A K A ( ) = ds 4π S K = ( ) H n

ADFFAAFDAFDDA DADDED KDAA DDA J lié EEDDDDAED AEDEEADDAE DDFFDA D DEDDAAE H I = σ J lié ds = ( ) oth ds = ( ) H dl σ DDAD J SAEDDAADDD DE F AADDDDEA DED K = J S ε dldddadddaee F A A dσ = n dlε DEAED F DE I = ( ) J s ( n dlε ) = K( n dl) DD KDAAA F D AD D I = ( ) ( H n)( n dl) = ( ) H dl

ADFFAAFDAFDDA DAEDDAAED DDEDDAEDDD DAAADEDADDAAAD AEAAADAADADADAAAEDE ADAAAAADA D DE E E E E EAAA AD E DAD DAADDEEAAAADADEAAA DADDAADDEDAEDA DDADEAADAEAD DADDAADDDAEDDEAAA ADAEAAAEAEEAAA DADADAAAEDADDAEEA EAADDDDAAEAAAEAEDAD DAEDEAAED EDEDEAADAEADED ADADEAA EDADEAAEDDE DEDAADAAAEDEAAAD AAEADADAAEAEAAAEAEADA t = t

ADFFAAFDAFDDA AEDEAAAADAEAAEAEAAA AEDADDAADADAEDEDEDD EDD Ht = Ht DEAAADEAAAEADADAAADA EDEEAADDDEAED ADADAADEDAEDDDAADEAAA AAAADADADAAEDDAA ADDEDADDEADA DA K Ht = K Ht DAEAAEADADAE DAAEDADDA K = Ht ADADAAEDAEEAA EDDEEDD DAAADDDAEAD = ( ) K Hft Hst AEDDADAEDAA DAEAEEADAEDAAADA DAAD EDDADADADA DDDEAEDADED A Hft i = Ki Hst i i = j Hst U. K ij j Hft K U K U K δ A = = D E D ij i i ij j ij ij j j j δ E

ADFFAAFDAFDDA AAADADAEDDEEAE EEAEDAADDDAAAED EEDADAA V ij = δ ij U [ Hft ] [ V ][. K] ij = AADEDEAEDAAAEDD DAAEDDA DAAED DEDAEAAEAA DDEAEDDAADAEEEAAAD DEADDA EADADAAEADDADAD EEAADAEAEAAAADAA AADAEDAEADAEAE DDDA ADDAEAEDDAEEEDAED EAADAEDAEADEDD DDEAAAAAAAAA AEDDDAADA ADAEAADEAADAAAAEAED DDDAEDEEDDAAEE AEDADADDAEDAD

ADFFAAFDAFDDA AADAEAEAADAD EA DEDDA A EDDA A DEDDADA ED A EAEDED DEAEAEA DEAEAEDEDD FFEFFE DDAAEEAA D AA DA A E AD E DA DDEDEDEDDAE DADAEADEDE DADDADEDED EAEAEDEDAA D AED AAEDAA F ADDDE AADDDEAEDA f, φ fddd

ADFFAAFDAFDDA AA DD ADAAEAEEAE AEADADEDADAADDDAAE AAEDA [ cos( φ φ )] Af (, φ) = I f ln f f f 4π DDDAEAEAADDEADAED EAAAADADADADAEEAEAADD AAAAEDA [ cos( φ φ )] Af f f Hft(, φ) = = I f 4π cos( φ φ ) EDDEAAAEAE π R N DEDAE f f f π A ( i, φ ) = R, i i N D E AAAAA FAF

ADFFAAFDAFDDA FA DEAEDDAEEDDEAE DADEDD πr K j N AADDAADDADADAD EDDEAEA πr K j N D AADDADADADD. A R, φ ja R, φi Hst πr [ R R cos( φ φ )] i j i, j = K j = 4π N R R R. R cos( φi φ j ) K j N ADADADD DADAEDAEADEADDE DDDADDAAE ADDDAEADA AD DDAEEADAEADDDAED = N U i, j = δ V i, j i, j U i, j AEEADDEEAEDDA

ADFFAAFDAFDDA EAEDAAEDD DEDAADADDD AD DF AAEDAEEADED AAEADAAAEDA AEAEEEAAAA AAA AAA F

ADFFAAFDAFDDA DEAADEAE DADDADDAAEADEDDAE DAEDEDDDED DDAAEDDDE ADAADDAEAED AA D A DDA E EDDDAEDD EAADA DEAAEAADDDD E AA E EEA A EDEAAA EDA DAAE Ai AE AA A F AADA AA DA A ADE EAA DDA At DDDDDEAA AEDDAAEDDAD AEDAAADAEAAAAA EDAADAAADAAEDAA = t A(, φ) = 4π I f t ln D f f f cos( φ φ ) f A E AEDAADEAAAE EAADAAAAAA EADAAA ( =, φ ) DD R f f D AADAAEA =

ADFFAAFDAFDDA A A f A(, φ) = I ln I ln f f 4π D f f cos( φ φ f ) 4π E D cos( φ φ f ) E DDEADADADDD DAADDEDAEDEDEDDEDD DEADADAADADAEDAAE EA K(φ ) K( φ ) = H( R, φ) H( R, φ) φ φ AADADAEEAEAEAEADAEAADD DDAA EAE A Hφ = φ = EEADEAAAEDEAEDAA K(φ ) I f cos( ) R f φ φ f K( φ ) = π R R cos( φ φ ) f f f AAADADDADDDDD DAEAD = π φ Itot K( φ) d( ) =,366. A ADADAADDDAEEAA ADAEAADAAE EDDDAEEADEAAE DAAEDAAAADAADEDADA DAADAEDEA

ADFFAAFDAFDDA AAAAAAAAA D AA A F A D DAEDDEAEDDAA ADDEAEDADDADEAEDD EEAEDEAEADADAEEDED D DADAEAAAAEAEA EDDEEAEDEADD EEAEAEADAAEADE ADADAEEDEAD ( R, φ) φ ( R, φ) φ K( φ) = DEA D F AD EAEADAEEDEDD AEADA

ADFFAAFDAFDDA A DADEAEDD EAEEDEDAA AEDAA EDAA ADDDF AA AEAE DA 6 K PEE K FLUXD K analytique AED 4.57 3.4 4.7 6.8 / 3/ DE DEAEDEEEAEDDADA DAEDDDAD A AAEDADDDADA EAEEDDDADAD DDDA

ADFFAAFDAFDDA Eeu elative ente PEE et analytique 3 DA.57 3.4 4.7 6.83 / 3/ DE DDADAEEDE A EDAEDEEDED DADDAEDAEDEDDDDA ADEDEDEDDADDDAAEAA DADADDDDAEDADD EAADAEAAADAADAEAA DDDDAEDA DDDAEDDDEDEEAE

ADFFAAFDAFDDA Eeu elative ente PEE et FLUXD.% DA.57 3.4 4.7 6.8 / 3/ DE A DADAEADDDAED DAAEAEADAADAE EAADADEAEDDD DDDA DDAAAEDDDA DDDAAADAAEEAD AA D D D AA E D EE E E D EAADAADAEDE ADDAEDDDDADA DAAAEDDDEAADA DEDAEEDEDEA AAEDAEAAAEADADADAA AADAAEDAEDEAA DADEDEDEDDA ADA

ADFFAAFDAFDDA ADEFDFEAE ADAAEDEEDEADAEA EAEDEDEDADDAADD DEAAEDADA DEEAADDAEAEAED DADDADADEDDADD DAEAAADDAEDA DEDEAAEDEADAED ADADDDDA D AEDEDADDAADADD ADAED W m = V Hdv ADAEDEDDD DADEDEDAEDEDDE ADAAEDDEAED DADADAEAEAAD div( A H ) = Hot( A) Aot ( H ) AA V div ( P) dv = Pds S EAE div A H ) dv = ( A H ) ds = H dv V ( AJdv S V V W m = H dv = AJdv ( A H ) ds V V S AAAEEEAEDADA EAEHDEDDAAAAADEDE

ADFFAAFDAFDDA DDAAAAEDDDDDAAAE AAADDEADAEEDDD EDDADEAAAAE AEDDADAEDAEDD AAAEEEAEAADE ADE ADADDDDADDA AEAA ADDADDAEDADDDA DADDDEAEDD DA DAAEDEAD π ( A H ) ds = l AHφ dφ S DEAE AEDAEDDE n { [ α cos( nφ) β sin( nφ) ]} = Aext(, φ) I α ln( ) n n π n= n { n [ α cos( nϕ) β sin( nϕ ]} I = Hext(, φ) φ α n n ) π n= DDDEEAEAA EAAA AAADEEF ADA AH φ = I π I π [ α ln( ) ]....... ADD l π I π [ α ln( ) ]. dϕ = l [ α ln( ) ] I I π π AADDADDADEDAE EADEAAAEAEEDAA ADADDAAAADDE DDAAADAAEDDADDE

ADFFAAFDAFDDA DAAAEDDDAD AE D AEDADEDEA AAADAAAADDD EDDADEDEDEA ADEAEDA AEAAADAEAAEAAAED D F DDD D F DEADEEA ADEDAED D DADAAEAA Af int = I f 4 R AAEA π D Af ext = I f AEA π 4 R A D E ADDEDD ADADDDED DEAAEAAADDADAEA EDAEADDDAEAFADA DADAEAEDAAAEAA DAEDADDEAADA A E Af int = ln I f 4π d d cos( φ) D R A E

ADFFAAFDAFDDA R Af ext = ln ln cos( ) I f 4 φ π d D d A E D d A E DDADADAE = Wm AJdv = A T J f ds AT J f ds V S S F F AAEA EADEA DAEAADA AAADDA AEAEDEA DDADADAEA EAEDEAEAD S = πr S = πr I f I f Wm = A T ds AT ds S S S DADEDADEADDDA DAEEAEEAEDEA DEF S A T ds = S S S S S ( Af int Af ext ) Af int ds = ( ) I f πd = I f S πr R 4π ds A D R E 8π EDE S S Af extds = πr 4π R π R ln D d A E ln D d d A cos( φ) I E f dφd DEAAAEEDEE EADAADAEA

ADFFAAFDAFDDA EAADDADAEE DDD = E A D = E A D ) cos( ) cos( ln n n d n n d d φ φ AD ln 4 f S I d R extds Af S E A D = π DADDDEAA DEADEAADADDAE EEEADDEAEA ( ) ( ) F F F F E A D F F F F E A D = ln 4 8 ln 4 8 f f f f f f m I d R I I I d R I I W π π π π ADAEEDD ( )( ) 4 4ln 8 f f f f f f f f m I I I I I I R R d I I W E A D = π π AAADEEDDDAEA DADAEDAEDAADAAAEEDEAEADA EAEEEAAEAAADAAE D D F ln 8 I R R d W m E A D = π

ADFFAAFDAFDDA D DA D E D E ADADDADDA EAEDA DDADEDAA EA E AA D D D DA D F DA DDED AEDAD DAE F D DAEDEDEDA DAEEDADD DA DEAAADAD DAAEDEAEDEAEDED AAEDDDAAEAEA D W m I f = S ( A A A ) p i S noy ds f A I S S A p f EA I S S ds A i EA D EA ds EAEADAD EA F EEDEDED DA f AA I S S A noy ds EAEADAD DDAEADEDD D. ADDADDADD A

ADFFAAFDAFDDA ( A A A ) ( A A A ) m = Wm Wm = p i noy p i noy W DEAEADAEAEA DDAAADAEEDEDAD DAD DED D F DAA DADEAADDEE DDDAEDEE EDADADDDDADD ADDEEDEED AEDAEDDFAEDAAE EDEDAAADDADE A n jnφ Aext (, φ) = c e DDDEAD DDD EADAEAEEDDA n R π R π n n A jnϕ jnϕ MoyA = c n e dϕ d = c n e dϕ d πr n= πr n= D E R π R F π n A jnφ n F jnφ MoyA = c = n e dφd cn e dφ d πr πr F D E F ADDEEDD EAEAFA R π π π R MoyA = c d c R c π R = = AAADDEADEAD AEAEDDDD DEEDAEDDADDAD AEAE I f DADEEDDE DA

ADFFAAFDAFDDA DD W noy = I f AK ( x f, y f ) EDAEEE ADDED EAEADDAEA DAEEDDAAE ADAAADAEAEDDD ADAEAEDEAD ADDD ( φ ) ( ) f, f f, φ f φ f = φ f = φ f D DAAAEDDED A D DAEEAADDAAEAAAD EDEDDDADDA DEEADDAEAAEDDAEEAEDD EAADDDEDAAEDDED DDEAEADAA EDEAEDDDADAEDAEDA

ADFFAAFDAFDDA EDDADDAED AEE DDADEDAD EEDDAADAE DAADADEDADEDAEDD ADAADADAADDA AEADDEDADAEDAEDD AAEEAEDAEDDD EDAEDDEAADA DEAAEAAEDDDAAAE EEAAEDDAADADAEA AEDDEAEDDAE DAE A ADADAADDDAEEAA ADAEAADAAEED EED DDAEEA DEAAEDAAEDAAAADAAD EAADADADAADAED EA AAAAAAAA AA D

ADFFAAFDAFDDA DDAEDAADEAAAD DADDAADAEDAA DAAE DAE DEAEDEAEF AEDDDDEDDEDAE DADAED AEDD EEAA Wm L = I DDAAEDEDDDE DDDDADAD DDA F A A AAEEDEEDD DADAEAEDE AEDEAAEDE AF EDEDDAEAAEDE DAAAAEADDEEADDA

ADFFAAFDAFDDA DAAEADDAEDA EDEDDADADA DA A D DAD DA F A D A D E D F A D DADDA F D AADDDDDEADDAEAAA EAEDAEEADEADED DDAEAEDDADAEDDAE DDEEDDEADAAEAD DDEEAEDEDEDADDAE DEDAEEDDDDADDE DDDDAADADAE

ADFFAAFDAFDDA AADAEDDEEADDAE DDDADEADEDE EAADAAADAEAADAA EDDDDAAEDDA AAAA AAAAAAA AAAAAA DAA AA AEEDEDDAAEEAAEDAA.DDADAEDD. DEDDAADDDF AAA AAEDD AAAEDD F DAD DA DAAADADAEED ADAADA

ADFFAAFDAFDDA AA AA DADEDDAAEDDEA AAAEDEAAAA AEAADDAEDDADDA EADDEDAA DAAD D DEAAAAE DADDAEDAA DDEAA DDEDAADEEAE EAAEA F AAAE DADDA D AAE DADDA DAADAAEEAADADDA EEDAADDADDA EAAEADEDED EE

ADFFAAFDAFDDA DADEDDDEDDAD DADDADAAEDDA DEDDAADA DDD F AADADADED DEAAEDADDAEAAAA EDEAAAAADDAED DADDA AA AA D

ADFFAAFDAFDDA DAADEEDDDADAA EEAADADDAEEE DDDEDAAEAADAA DDAEA F AAAE DADDA D AAE DADDA DDADEDDDEE ADDDDA AADADADED DEAAEDADDAEAAAA DAADADAAEDDADE ADEEAE EAED

ADFFAAFDAFDDA A A AA AA D DAADEEDDDADAA EEAADADDAEEE DDEAADDDAA DDAEA F AAAE DADDA D AAE DADDA

ADFFAAFDAFDDA EAFEF DDADDEA ADEDADDAAEDEED AADDADDEAAD EDADDAADDEEAA AEDEEDAEDADDA AEEDDAE E AEDDAAAEEE DAD D ADA E E E DDA ADAAEDDAA EEADEDEE AAEDADDDEDA EEAAADDEDEAEDD ADA AADDADA EEAAADEAADADEADAE EAAAAEADEAEDADDEADDAA EEEAADDADD

ADFFAAFDAFDDA

ADFDDFAFFFAD FEAFE EDADDEDEEDA AADAEAEDEDDD DAADAADDDE DADAAEDDDADAAEADAD AA DADEDAED D DA E A E AD D A AAA EAAA A DDA A ADDDDAEDAEDDEDEADAD AA FEAEEAFAAEFAF DADEAAEEAAADA ADEAAEDAAAAAD EAEDAEEED EDEAADD AEDAEAAAEDEDAEDAA AEAADEDEEAAEEAAAEA DEDDAEEDDEAA E yoz

ADFDDFAFFFAD DAEEAAADDDD EDAAEEDDADDD DAADAEDAADADDAEDAD EADEDDEAAEEDE. AD DDEEDEAADEAEDE AADDDDE AAAEDEAD EAAEAEADDAAADDAD AAEDDADAAD D DDADDAEADAEE DADEDEAEA DAEEAADDA AAA F AE DD

ADFDDFAFFFAD DAAADDAEADD EDEDAEDD DADAAEDADAA DEAADAEADEAAAAAEDDE A EA 3 3 omposante x x_pee x_fluxd EA. 5 3 y_pee y_fluxd omposante y 5 3...3.4.5.6.7.8.9 AEA....3.4.5.6.7.8.9 AEA D DADAEDDAD AEDAAAEDAED DAEAEEAEDEAEDAEADA A DEAEDAAEEAEAEA AADADDDDDADDADAD EADDDDADD AEDDEAADAED AEDDADDAEEDDA DAAEDADA DE FDEADDADDDE DAAADADEADDE DEADAADAEAEADAEE EDDEDEDAEAEDEAAAAD DEADAEEAEADEAEDAAA

ADFDDFAFFFAD AED 8 3 6 3 4 3 3 K_PEE tacée su les contous intéieu et extéieu K_int K_ext AED.4 4.8 4. 4 6 3 K_FLUXD tacée su les contous intéieu et extéieu K_int K_ext 3..4.6.8...4.6.8.. E 6 3..4.6.8...4.6.8.. E DAAAEEDDDADAEAD DAEAAAADEDD DDADEAAEDEAD DAEDAD DAEAADEDDE ADAEAAEAEEED DDADDEEDADADAEAE ADA DAEAEAEDAED AADEDAADADAED DAEAAAAEDEDADAEDAADDED DAADADDAAEDDADAE EDDDAADD DDDAED EAADA DAADED ADDDDAAEDEADD AEDAEDDDADADADDEAADA AAEAADAADADA DDAAADADADD

ADFDDFAFFFAD EA 4 5 3 5 5 omposante x x_pee x_fluxd EA 4 5 5 5 5 y_pee y_fluxd omposante y 5 4...3.4.5.6.7.8.9 AEA.5 4...3.4.5.6.7.8.9 AEA DADDDAADAD ADADDAADA ADDDDED ADAEEDDA DDDADDA AAAAA AAA DDEADAAAEDEAADAAEA DAAADDADDAADAD FDADEAADAADEDEAE AEDAEDD DADEDAEAADAAADAA E DADADEDDDD AAEDEEAADADDEDDAADED AAEAEAEAAADEAAAAA DAAAAAAEAAADDD DADEDAAEEDAD DDADADADDDEDAD DAEAAEEAAEAEA EDDDDAAADEADAE EDAAADEAEDEDADED DA

ADFDDFAFFFAD EA 3 3 3 3 omposante x x_pee 88 x_fluxd x_pee 8 EA.5.5 5 3 5 3 omposante y y_pee 88 y_fluxd y_pee 8.5...3.4.5.6.7.8.9 AEA.5...3.4.5.6.7.8.9 AEA AAAAAA AAAA DEAEDDDEADAEDA AAEAAEDADADEADDE EDDDDAADED DDAAEDADEAADDADE ADADEDEDDA AEDAEEDADDD EAEDDDDDAAD EDADEAEDDADADA AA DADADAEDADAAE DDDEDDAEDEDAA AADDEDDEAAAADAED DDEDADAEDAEDADA EDDEDADAAED AAADDAD DDEEDAA EDDDDDDD, 3, 7, 7 A Rn = ( n ) n n, 7 D E

ADFDDFAFFFAD EAAADADAAEAAAD EADAEAAEDAEADAEAA EADAAAAAEDAEDA EAAEDADEDDDEED DADADDAADEAAD DAEDDDDEDDDA EAEAADADAADDDE DDADDDDAE EEADDEDDDE ADADADDEEAEDA AED.4 4.8 4. 4 6 3 K_PEE tacée su les contous intéieu et extéieu K_int K_ext AED.4 4.8 4. 4 6 3 K_FLUXD tacée su les contous intéieu et extéieu K_int K_ext 6 3..4.6.8...4.6.8.. E 6 3..4.6.8...4.6.8.. E ADAEDEDDAADDE DEADEADEE AEADEEAEA ADDEDAFAEDDA DAADDEAAAADAD DADAEADAADDEDAD AAAEDDDEEDADE EDDEEDDEAAA

ADFDDFAFFFAD E AE E AE DF FEAF DADDADDAEADADA AEDADDEEDDADD AAAAEDDDAD EAEAEDADDAAAAADADADD AEDDDA DADAADEADEAD EEAEAEADEDDEDAE DADDAAEDA Milieu 3A R A R A D AR AR ep ep ep Milieu h ep ep ep AR AR D A A R 3A R ep Milieu 3 EDEEDDDEADDA AEDEDADADEAEA ADDEDEDDEAAAE

ADFDDFAFFFAD ADDDDDADEEAEAE ADD DADAADAE i x ( x, y) I y h = π ( ) x y h ( ) ( ) I m y h m ep y h m ep ( x, y) = t ( ) x y ( h m ep) x y h ( m ) ep D { } px 3 3 π m = ( ) ( ) I m y h m ep y h m ep ( x, y) = ( ) x { y h ( m ) ep } x y h ( m ) ep D { } px 3 3 π m = ( ) ( ) I m y h m ep y h m ep ( x, y) = ( ) x y ( h m ep) x y h ( m ) ep D { } nx 3 3 π m = I m y ( h m ep) y ( h m ep) ( x, y) = t ( ) D x y ( h m ep) x y ( h m ep) 3nx 3 3 π m = A E A E A E A E DADDDAAAEDAA EA EDDAEAAA j j i t = et = ==> = t ij ij ij ij j i j i AEAEADAA ADDDDEDDDAE AEADDEEAADAEDEDAD DEDAEDEDDDEDEA AEAAADAADDADF EEDDFDEDAAAEAEEA AADDDDAAAEA i x ( y) = K y h y h AEAEEEDEDDADAAEDEADD EDAEAAADEADAE DAADDDADDA ( ) ( ) K m y ( h m ep) y h m ep A px ( y) = t ( 3 ) 3 m = y ( h m ep) y h m ep D E

ADFDDFAFFFAD ( ) ( ) ( ) ( ) K m y h m ep y h m ep A px ( y) = 3 ( 3 ) m = y h m ep y h m ep D E ( ) ( ) K m y ( h m ep) y h m ep A nx ( y) = ( 3 ) 3 m = y ( h m ep) y h m ep D E ( ) ( ) ( ) ( ) K m y h m ep y h m ep 3nx ( y) = t3 ( 3 ) m = D y h m ep y h m ep A E AAEDEAAAEADDAA EADAAD F AEDDDDDADA EDAEDEDAAEED EDEDA F D K K t t t px = 3 3 = 3 3 m = m = m m ( ) ( ) ( ) K K t px = 3 3 = 3 3 m = m = m m ( ) ( ) ( ) K K t nx = 3 3 = 3 3 m = m = m m ( ) ( ) ( ) K K t t t m ( ) ( ) m 3nx = 3 3 = 3 ( 3 ) m = m = ADAADDAAAEDAAAA K t t K ; t K ; t K = = = ; = t t 3 3 3 3 px px nx 3nx 3 3 3 3 ADEDDAAAEE EAAEDDDDAAEADAD DAEDDDADDAADEAEE AAEA DF D DADDDAAEEDEEAAE AEADDAEAA AEADEAEDD DD E A E E D E D A DAAAEAEADAEAE EAADAEAD DEADAEADD DDDEEDDAAEEAEA

ADFDDFAFFFAD K t 3 = 3 K K 3 3t = 3 K DADEAEAADE EADDDEADEDAA DEAEDDAAAAEEAAD EDAEAEDEEAAA DF F DD EEDADADA AADADAEEDADDDDEADA EDDADAEADADDDEEE AAADAAA A A Hs = K K3 Hs A KA ==> = soit : U = Hs3 K3 Hs3 = K K D E 3 D E D E D E AAEA DDDEDDE DAAAEAAAADDDDE DEAAEDEAAEEDEAEEA V = U δ ij ij ij DAEDD EDEDEDEE AEA DF DDA F DDAAAEAD ADAEA FD DF. A A A A V = -U = - = D E D 3E D 3E D 3E DADDEDEADEAAD D AD Hft Hft 3 = K = K D A K D K 3E 3 A = E KA D K E

ADFDDFAFFFAD K D K 3 A = E 3 t D3t 3 A E K DDEADDDDE EAEADEAAEAA DDAADADADDDAD DE DF DADDD F ADDEDED ADAEAA FD AAAADAED ADAEDDEAAAD F D F AEAEDDDADAEADDF AADADAF EADADAF EAEAADAADDAAAEAA DEDEADAADAADAEA A DADAEDDAEADA AAEEEADEDDAAAEDAEA FD F EDAEAAADDEEAAD AAAADDADAAAA AAADAADDED DADEEAAEAAADADAAAAAED A AAAAEAAAEDD DEEDAEAADAEDE EDDADAAEDADDE DADDAAEDDE DEDADDDAAAEE DADAD AEEDAAAADA ADADDDEAEDDD DADADEAEDDADDADAD EDDADDDEAEDAADEA EADEADDAD EDDDADAEAAFAAEAAA EAADDDAEDAEAAD AAADDEDADAEDDDA DAEEDDADADAED DD

ADFDDFAFFFAD AAADEDAADAD AAAEEAADEDAEEAD FEEEDAEFAEFA DDDDAEA ADADDDDADDEDAA DDADDAAEDAA EDAEDAA DDAEDDEDA DDD A DDADEDADED ADEADAAEAAADDE ADAAAEADDDAAAE AEDEEEADDEAADAAA DADAAEEDDAAEADD EADADAAADDADEAAE DAEADAAAAEED DADDEDAEEADDEAD DDADDDADADADAE

ADFDDFAFFFAD DDDDAEAAADEADEAD DDEDADADDEAAEADEDA x y ( θ, ρ) EEADAEEEEA tx = ty = ρ ρ DEADADADADEEEAD A EEADADAADAEA yf If sinθ If Hfxi = If = = hfxi π πρ θ tx πρ ( x xf ) yf ( txi cos ) i xf cosθ If If Hfyi = If = = hfy π θ ty πρ πρ ( ) ( tyi sin ) xf y i i yf If DADDDA AEEDE πρ i DADADEADD ADADA,DADEADDEDA DADDAAAADEA Kx Hmx = Hmx = Kx Kx Hmx DAAAEADD A ED = Hmx = Kx AEADDADADAA D EADAEADAEEDD ADDEAD Hmxi = Hfxi Hsx i A EEADAEDADADAED EADFAA DDEEDAD AA : y y l Hsx = Ky l Hsx = A Ky avec : A = j j j i j j i, j j π xi y j π xi y j

ADFDDFAFFFAD AEADEDAA Kx Hfx A Ky = A Kx = Hfx A Ky D E ADDEADDDADAE AEADEEDDEAADA DEDDAD Ky A = Hfy A Kx D E DEDAAEDA DAAADEA A ij = π Kx = ( I A )..( Hfx. A. Hfy) Ky = ( I A )..( Hfy. A. Hfx) x DDAEEDAE EAADDAAEDEAD EDA EDEDAAAEADAAAE DEEAAAA ρ If E DADADEDDEEAD DADAEDDAAADDDAAEADED DADEADAADA AAEAAAEAADA EDDEADDEA DDADEDDA EDA DDDDEEAAAAEAD AEAAEDADEDA AAAAEDDAAEDAAAAAA D I h Kx = Hfx Ky = Hfy D K ( x) = = Hx π x h AEEAEDAEADAEDAEDA DD DDEDAEAADDDE DAEAAEDDADADDDD

ADFDDFAFFFAD DEDDADDDDAAAEA A EAAEADADEDDADA AEAAADEADDADAEDAD DDADEADDDAEEDEAEEDEAEDA DDAAEDDAAD AADADDADAAADAEEAADA DEEADDAAAEAEAEDD DEDAAAADAAADEDDA AEDAADDAEDAE AEEAAD DDDDDAADADAA DADEEAAEEAADEADD ADEAEDAAEADE DDADAAAEDDADD DAADEDEADEAAEDDA EDADDAEEDAA EEAAAA DEAADAEEDAEAAAEAE DAAADAEADEDEAAEDE EEADEDAAEEDEADEAD AADDEAAAA AAEDAAFD DDDADEAEDE

ADFDDFAFFFAD 4 3 AED Kx i Ky i.. 3 4 5 6.. 3 L ADDDAA i D AEEADADEAADA DDAAEDDDADDE EADEEADAA DEEADDAADE EDAEADADA D. AEDADADAADEDDD DDA AAEAEDEAADA AEAEDDEEAAADD DAEDADDADE A DADAEDEADDADD AEADADEDADEADD AEAADADAAAEADAEAADA AADEDEAEDEADADAD ADAAEDDAEDDADDA

ADFDDFAFFFAD EAAE AA EAAE AA A EAAE AA y F A A D EAAE AA EAAE AA DADDA EAAE AA A EDADAAEE EAA EAD DA D D DD E DDAEDEEEADAAE DDDDAADAEDADD AED 3.. 3 Densité de couant su le côté hoizontal Kx_FLUXD Kx_PEE AED 3.. 3 Densité de couant su le côté vetical Ky_FLUXD Ky_PEE 4 5 3.. ADDDAA 4 5 3.. ADDDAA A DEEDAD EADEDDAEDADAADDAE AEAEDDDEDEEADD DADDEDEEEADEAAE

ADFDDFAFFFAD AADDDAAEAADAE DAEDEAEDEAEDADE DAAAADDE ADAADDAEDDE DDDE DEDAEADAEDAEAD EDEAEEDDAA ty Kx(. tx) Hfx( tx) Ky(. ty) dty ρ = ρ π tx ty tx Ky(. ty) Hfy( ty) ρ = π tx ty Kx( ρ. tx) dtx DEDDDDAD ty tx A Kx( ρ tx) Kx ( ρ tx) dtx dty =... π tx ty tx ty D π E ty A... = Hfx( tx) Hfy ( ty) dty D π tx ty E tx ty A Ky ( ty) Ky ( ρ ty) dty dtx =... π tx ty tx ty D π E tx A... = Hfy ( ty) Hfx ( tx) dtx D π tx ty E EDEADADDD DDA.If ADEEEAE πρ. If ADEAEADA Kx( ρ. tx) = kx( tx) EDAE πρ ADAA ty tx A kx ( tx) kx ( tx) dtx dty =... π tx ty π tx ty D E ty... hfx( tx) hfy ( ty) dty π tx ty

ADFDDFAFFFAD tx ty A ky ( ty) ky ( ty) dty dtx =... π tx ty D π tx ty E tx... hfy ( ty) hfx ( tx) dtx π tx ty A ρ DEEEAEDAA EEEDDEADDDDD AADD DAAD EEEEE AAEADDDEAADAAEEEDA DDADADE DAAADADEADADAA DDE ρ DDDEEEDE AAAAADEAEDAEAEADAAD EEAAEEADDAEEDEAE DDAADEEEADDAEE EADD ty Kx( ρ tx) = Ky ( ty) dty ρ π tx ty FA ty Kx tx Ky ty dty π tx ty ( ρ ) = ( ρ ) p ADAA Kx(ρtx) = tx AAA DAAAAADAADAEA E ty ty tx tx tya dty = tx d p tx ty ty tx ty p tx A A D E tx tx tx D E D E p ty p u π p du p tx u tx = = π A sin p D E

ADFDDFAFFFAD DEADAAAEEDDE AA EAAAA π π A p = sin p p tx π tx π = A sin p D E D E DAA EAEDEAAA / 3 5/ 3 EADAEAE Kx( ρtx) = tx Kx( ρtx) = tx ADAAEDAEEAA DAE AEE. A p = acsin = acsin π D E π D A E DAE AEDEEDD DDDADDAAD EDDDEDDDDDAEAD EAAA DADEDAADA AEDAADDAEEADD A ρdaadaaeee ED If xa Kx( x) = M πρ D ρe A acsin π D E AAAAAA EDAAEE ADEEAED If ρ t t t ( ) = p K t p DDDDADDAAD DDDAADDAAEADDEDA D DDAADADAEDDDA EAEDDAEEDEDADEA DADAEEDADDAAAADE DADEDDDDD

ADFDDFAFFFAD u ua S t k ( t) α ln k ( u) du = α.. u t t t D E A t t A t 4 t D E t D E A A S π A. t ln( t) ln t θ S π t t t D E D E D E EAFE DEDDADEDA EDADADDDEADA DAAEDAEDAEAAADEDA EEDDAAEADAAAEDA DDAADDADAEADA ADAEEDDAEDDADDA DDEEAEAAAD EDDDDADDDDADDD AADDAEDAAED DDDADADDADAA DDAEDADEEEDADAE DAEAADAEADE ADADAAAD D E A E DDA DA DA D A AEDDEDADADAE DADEEADDAD EDADEDAAEA AAAEDEAADDDAA DDADDAADADADADAA EAAADAAEDDADADAEDAAD EAEDADDDAADAAA EDDDDE EDDDEDAEAAA AAEADADAAE AEDAADAAADDADADA DEEAAEAADEADDDAAEDAAD DADAAAEAAADAAD EAAADDDDEAAEDD DEDAEAEAEDAEDDAD AEDADA

ADFDDFAFFFAD DADDAEDDAAED DAEEAEADDDAEA EDADAFAADAEDAAAEAEDD DEDDEDADA DADADADADEDDD EDDAEADAEDDEADDDADAA AEAADDADAEDEA DDDEAEDADA DDAADDDADADAEEDED DADADAAEDEDAD

ADFDDFAFFFAD

D

ADADAFAFDAF FEAFE EDADDDAEDA DADEDAADDADEE DAAAEAAADEDAD AEAEDDADAEAADEAED DADDEADDAEA DADDEDDDADDAEDADDA AAAEDAA. DDDDEADEDA DDAAEDAAAAEDADAEA EEAAADDADDAAEAE AADAAAAAEAAADEDDAD EDEEDDADAEDDEADA DADEDAADDADA DDDEDADADED AAADADAEAADDDAAE AEDADADD AAEADDDDDADD DADADADAEEDEDEDDEDA EDDAEDADE DEDEAAAADDEDADEDADA EEA. ADADDAEEDEAADAE DADAEAEE. DAADD EEEAAEDADDADAEAD EEAAEDDADDAEAA EA DFFE DAEAAAD DDADADDAEEAAEDDAD DAAAAEDAADA ADDD F EDDDAADDEEDEAAD DEAADEDDAADEAEDDD DEDDA

ADADAFAFDAF D E DDA D AA AAA DDDADADAAAEDDAEAD DDDAADDEDEAADAEA DDDAEDDAED DAEEDD D F DDDDADDA EAADADAAEDADDDEADAA AEAAAADEAAADA FD DEDADEEDADAAAADA AAAAAADADA AADADADADEA DADDAEAAEAEADD DAAADEEDDADADA EADAEAEDDAAAAADDAE EAADEAADADEAEAADA DDDDDAEADAE DADDAEDDD DEEDDAAADEDDE

ADADAFAFDAF DDADAAEDDDA ADDAADEEE DDADDA DD DAADAADEADEAAAD DDADAAEEEAAEE DDEEADDA DDEADAADDEAAAED DADEA DAAD D DADAADEEAAD AAEDAEDDDDAEDD DDAEDD ADDADDAAEDAAE D P H dl = P Htdl = N i= dli D Ti Ti A Htdl dl = i E N Ti i= Ti Htdl DEADAAEEDADE EAADADEAADDADAAAADEA DDDEDDDAEAAEE DDADAADFAD DAAE

ADADAFAFDAF D DADA D D D D E ADA DA DDADDDDDADD DDDADADEAADAADAAEDA AD AADAADEDDAD EDDDAAADDDAED D D E ADA E ADA DA E DA EDDEDEDADAEA ED Htdl = Hftdl Hstdl Ht = K P P P DADAEDADEDAD DAEDADDDDEDAEA,D AADADAEEFDE EDEDDDADDAAADE DEDDAADADAD F DAADDDEAAAD ADAEEDD I DDDDADA s DADEAADDAAA ADAE I Is = I f I s = ( ) I f s DDDAA D

ADADAFAFDAF F DDDEDEE AAADADADADAAEADEDA DADAADADAAEEDA ADDEAADE ADADAEDADAAD AADEDEAADEAADAAA AAADDADAAEDAAAEDD ADDAE ADEDEDDE ADA DA E E DA D DADAAAADDAADADDD EAADADDDDEEAED DAADDDADADA DDEDDADA EDEADADAEDAED EAAFEA AEF DEDDAEDADDAAD DADEDAAEAAD DAAAEDEEADDD DDAAEDADAAA

ADADAFAFDAF EDA DA D ED DA D AD E EAADADDDDDEAED AA DEDADADAEDDAE EADDAEDEA DADDDADEDDDA AEDDAAAED D ADAEADEAA DEADAEDDAA DEADADAE ADEAA EAAEDEDDDAA EDADADAADDEADD AAEDDAAAEDDEAEDAAAADAE ADDDADAEADDE ADEAEDEAEDAA EDAEE ADAADAEDDEAED ADDEDADADE EE A ED

ADADAFAFDAF DAEEDAEAD AD DAADADADEEAE D ADADD AEEDADE D EADA DAEDEADAADDD Htx i J j yi y j = π ( x x ) ( y y ) i j i j EEADEADAADDED DD DEAED ADD Htx L j J j x j = i L j π x j ( x x ) ( y y ) i y y j i j i j dx j AD ADDDAAE EDD J j c dea Htxi = actan π D d E c dea actan D d E L c = x i x j d = y i y j j de = d = L i

ADADAFAFDAF AAAA AADADED AEAAAAADAEDD DAEADADD J c dea c dea j j lim actan actan.de = de d d π π D E D E J c d d DDDEDD DDEAE ADADD J Hty = i x x j i j π i j i j ( x x ) ( y y ) DADAED DDEAED AAAAED Hty L j J j x j = i L j π x j ( x x ) ( y y ) i j x x J j ( c de) d Htyi = ln 4π ( c de) d i j i j dx j ADDEEDAEAD EEADAEAE Htx L j J j y j = i L j π y j ( x x ) ( y y ) i j y y i j i j dy j J j ( d de) = ln 4π ( d de) c c Hty Lj J j y j = i Lj π y j ( x x ) ( y y ) i j x x i j i j dy j J j d dea = actan π D c E d dea actan D c E

ADADAFAFDAF D DADADAAEDADEA DDEDDEADAD ADAAE DADADAADEADEDA DEDEADAEDD DADDEADAD DEDDAAEDADA DADADDAEEEEAA AEEAEAAAA AEDDEDAAAD AAD D DAADADADADDDD EAED ADADDADE EAAAA D

ADADAFAFDAF DDEAAAEDDA A AD i d x d x j i j i j i dx d de x x d de x x J d Htx i i E A D E A D = actan actan π AAAAADDEDAD EAE E A D E A D E A D E A D E A D E A D = d s s d d q q d p p d s d d p d q d d J Htx j i actan..actan.actan.actan.ln. 8 π d de c p = d de c q = d de c = d de c s = AADADAAEADEDDE EAADADE ADAA E A D E A D = F F F F E A D E A D E A D E A D E A D E A D d de c d de c J d s s d d q q d p p d s d d p d q d d J j j d actan actan.actan.actan.actan.actan.ln. 8 lim π π DADADAD ADA A A A A DAEDDA

ADADAFAFDAF [ ] [ ] { } i d y d y j i j i j i dy y y de c y y de c J d Hty i i = ) ( ) ln ( ) ( ) ln ( 4 π ADDDADDEDADAED EADAEDAD E A D E A D E A D E A D E A D E A D E A D E A D = s q q q s p p p s q s p s q p d J Hty j i actan actan actan actan.ln.ln. 8 π DD de c p = de c q = d d = d d s = DD DAADAEADAADAA EEEAAE DEADADAD AD ADADEAAD E A D E A D E A D E A D E A D E A D E A D E A D = s q q q s p p p s q s p s q p d J Htx j i actan actan actan actan.ln.ln. 8 π de d p = de d q = d c = d c s = A A A A E A D E A D E A D E A D E A D E A D = c s s c c q q c p p c s c c p c q c d J Hty j i actan..actan.actan.actan.ln. 8 π d de d p = d de d q = d de d = d de d s =

ADADAFAFDAF A A A A D AEDAADAEDADA DAEDDDF ED DA AEADDEDDADDEA ADD D A A A A I A A f xi x f d xi x f d Hfx i = actan actan 4πd D yi y f E D yi y f E F A A A A Hfy i I f y = actan 4πd D i y f da y actan x i x f E D i y f da xi x f E F DAAEADED DDD ADEEAFDDE ADDDE

ADADAFAFDAF ADA A( x, y) = J 4π x j de j x j de ln [( x x j ) ( y y j ) ] dx j ADA ( p de) ( p de).[ ln{ [( p de) q ]. [( p de) q ]} 4] A q p dea p dea A( x, y) = J j p.ln de q. actan actan 4π q D D q E D q EE p = x j x q = y y j ADAAEADD j p = y y q x x = AADDADDAD DAEEDADAADDDDA F E A AFE AEFFFE AEAAAEDADD DDEEDADADDADDA AA DA E DD D DA AEAA AEADEDDEDADEDED A j AEAAADDDAA EA F AAAAEDEEDDA DDDAEAAE DEAAEAAEAEA DAAADDAEDDADDAAAAED DADADEE

ADADAFAFDAF Atot, mu Atot, mu ADAEDDADADA DEDDAADEADEAEDAA AEADAE DEAEDAADADDED A DDEDEDAADDD DADAD DAE DDDEAADADDAEDADA DAEAADAAEEDDADDAE DADADAAEE DADDDADEDDADADADAD DADAEEDDDA D DDDEDDAAEA EDDADEAED ADDDDDAEDEA AADDADDAADAEAE DA

ADADAFAFDAF A A A AEDEDADADDE DDEDEADAEDEDDEAADAED DAADDEAEDDED DADDAADDA DEAEAEDDE A AED 3 4 4 4 Densité de couant supeficiel tacée su le pacous D-A---D K ponctuelle K unifome K FLUXD DDA 5 5 Ecat elatif PEE unifome - FLUXD Ecat elatif %.4.8..6..4 ED AA.4.8..6..4 ED AF AEAADEDDAA DDADDAEDD DAADAEEDDAADAE DDEDDAEDDEAE DEAEDEDEAADA EADEDADDEEDDD EAAEADEAEDADEDD DAEEAEDAEADAEEED DDAAAEDEADEAEDDDDEAE ED

ADADAFAFDAF D DDADDAEADAEE DADEDEAEA DAEEAADDA AE F DD DAEDEAEADAE DAEEADADD DAEDDAEDDDDEDD AEEAADAEDD DADDAEADD DEDDAEDD DADAAEDADAA DEAAEDDADAEADDDA D.5 3 omposante x x PEE ponctuelle x PEE unifome x FLUXD. y PEE ponctuelle y PEE unifome y FLUXD omposante y 4 4. EA 7 4.8 3 EA.9 3. 4 3.6.4...4.6..6.4...4.6 AE AE

ADADAFAFDAF AADEA DDDDAEEEAEADAE DADDADAAAD EEAADADEDFDAD DDDEEADDDAD E 6 Ecat elatif de ente PEE unifome et FLUXD E% 3 éléments E% 8 éléments 3 Ecat elatif de ente PEE unifome et FLUXD E% 3 éléments E% 8 éléments.5 DDA 8 DDA.5 4.75.6.4...4.6 AE AA.6.4...4.6 AE AA DA DDDADADDA EDAAEDAEE DEDDDADDDAE EAADAAAADEAADA DDAEAADA AADDAEAED EAEDAAEDDEDDAEAEEA EAEDEAEDADAAEADEDDEA EADEAEDAEEAAEADED EDAEEA

ADADAFAFDAF A D DADEAEDAADEADE DDEADADDEADDDDA EADEADDFEDD EDEAADAEADAE EDDADADADEAADA DADDDADDDDDAAADAD EAAA AED 4 4 3 4 4 4 K PEE unifome de 3 éléments K PEE unifome de 8 éléments AED 5 4 4 4 3 4 4 4 K PEE unifome de 3 éléments K PEE unifome de 8 éléments.36.37.38.39.4 ADEDDEA 4 9.5 4.95 3.975 3 4 3 ADEDDEA AEDDADDADA ADAEAADAEDD ADAEDEDEAD EAAEDADEDAAAEDAAE AA

ADADAFAFDAF DAAADAEDDEEAA EDAEDAADADADAA DDDF DEEEDADED DADAEEAADAAADD DF ADDAEDEDD D AAADDDEDA DAEDEDDAEEA EDDAAEDE ADAAEAEDEAAE ADDAEDDADDADADAEAED EDAEDAEAA

ADADAFAFDAF Atot, mu Atot, mu D DDAAAAAAEAD DAEAEAAEDADAEDEAEDDAAA EDAAADADDAAEDD AADDAAAEDDA A DDDADAEDEDEAEA ADADEAAEDAD DA D DD

ADADAFAFDAF DAEDEAEADAE DAEEEEADAADDDA EDDAEDDDDDAEEA DDADEDDA AD 3 omposante x x PEE unifome x FLUXD. y PEE unifome y FLUXD omposante y 5 4. EA 3 EA.5 3. 4 3....3.4.5.6.7.8.9 AE.....3.4.5.6.7.8.9 AE DEDDADDAE EADAEDEDEEAADADAD A.4 Ecat elatif de ente PEE unifome et FLUXD E% 5 éléments E% éléments DDA.3......3.4.5.6.7.8.9 AE DA

ADADAFAFDAF DDDAAADA ADDADADDEDDEDEDAD DA AD A D EAA D EAADADDEDDAAEADAED AAEDEEDAADDEDDA AADDADAEEE AEDDA D ADAEDEDDAAAEAD EADADDADEADAEAAEDA EDEDDEDDD EADDAEAEADADDAEA DDAEDDAD ADEEEADAADDA EAADEEAADAEAEDADEAE EADADADEDDAEDDAEA DA DA AED E D E DAD DAAADDDE DEAADDDAED DAEADAADEDADADDAD DADAADAEDEAEDEDEEAADA DADAADAEADA A A A

ADADAFAFDAF FEFEEFAE AEDADAAEDEAEDAADD DEDDADADAED EDEEEEAADAADADAAA DAAAADAEEADAEDADA EDDDDEDADEDDAE DADEDAAAE DADDDAEADA AADDAAEDEAEDDA DAAADA AEDEAEEEAADADDEAE DADAEDEAEDDAEAEAEDD EADEAEDADEEADAD 3 K( x) = x DDADADAEAA DADDDEAEDAEDEDAD DEDADDADAEEAEDDAA ADEDEAADADEAAEA DDAAEAAEEAADAAE E DDEDDDAEDEAADDAEA ADEAAD DAEAADAAEADEDE DED

ADADAFAFDAF 5 4.5 Densité de couant (A/m) 4 3.5 3.5.5.5 3 4 5 oodonnées des extémités des éléments (m) K éféence : K(x)= x^-/3 K PEE unifome AEDADEAADAAAEDAAE EAA A DA E D D DA ADAEAADA

ADADAFAFDAF 5 4.5 4 Densité de couant (A/m) 3.5 3.5.5.5 3 4 oodonnées des extémités des éléments (m) K éféence K PEE unifome en affinant le e élément patant de l'angle ADDDDEAADA AAADDEDADADAE DEAADA.8.8.6.6 Écat elatif (%).4. Écat elatif (%).4....4.4.6 3 4.6 3 4 oodonnées des extémités des éléments (m) Ecat elatif ente K éf et K PEE unifome non affinement A oodonnées des extémités des éléments (m) Ecat elatif ente K éf et K PEE unifome avec affinement A D

ADADAFAFDAF DADAAEDAAEE EAADEAEEADAEAADADD AEADADAADAED EADE AAEADADEEEAEAA ADDEDAFADE A A DEAAAD ADAEDDEEDA K x x x x i i Lagange( x) = K L( xi ) KL ( xi ) xi xi xi xi A A EDEDA DD DDE A A A E FDD DAADEAEED A A DD K moy ( xi ) = ( K L ( xi ) K L ( xi ) ) AEDEEAADAEDDE DADEAEDEDDEDEA DAADADDEDA DD A

ADADAFAFDAF K L ( xi ) = K( x Ne) EEDDDEED D DE D D D EEADADDE DD DDAE A K x ) K ( x ) K ( x ) DDF L ( i = moy i L i DADDADADADADAEDD DDADADDAED DDAE DDA 5 5 4.5 4.5 4 4 Densité de couant (A/m) 3.5 3.5.5 Densité de couant (A/m) 3.5 3.5.5.5.5 3 4 5 3 4 5 oodonnées des extémités des éléments (m) K éféence K maches d'escalie K segments de doites oodonnées des extémités des éléments (m) K éféence K maches d'escalie K segments de doites A A D D DADADDDADAEEAED DDADDA ADADA A DDA D E EA ADA D AA E DADADDADDA EEDDADADDEA EDADDAEDEAE DDADADEEADAD EAEDEDEEDADADAAE DEEDDAEAAAAEDDE DADADEDAEEA

ADADAFAFDAF..8.75.6 Écat elatif (%).5.5 Écat elatif (%).4...4.5.6.8.5 3 4. 3 4 sion oodonnées des extémités des éléments (m) Ecat elatif ente K éf et K segm de doites non affinement oodonnées des extémités des éléments (m) Ecat elatif ente K éf et K segm de doites avec affinement A A AEAAEDADEDDAED EAEDAADDDDEDADDDAE ADDDDEDEAEDEDD AAAAEDAEDD DAAEEAEDA EAADA DADAEDEAEDDEEAAD ADAAEAADEDDE AEADA DD DAAAE EDADDAEDDA DDDDAAEDEAA EDDAAADAADAEDEDDDA ADDDEAEEAAE DDAAEDEAEDAEDAE DEDADDDADADAAEA DDAAEEAAAEEAED DADADEDADEDEAE DDADEDAEEADDAE DDDDDEDADADD ADADAADEAEDE

ADADAFAFDAF EADDDEDEDA EEAD EFFEEE F EDAAEDDDDA DDDADADAEDDEED DAEDAAEAE DEDADAEAEDDDAAE EDDEDDADDAEAEDDDDDA DDEDAA DDEAEDAAADAE EEDAADAADDDA DDADADDA DADDDA EDADAEDDDA DDAAEDAEDDADDADE DDADDADADA ADDADADAEEADAEA AAAEDDDDDADAEAE DDAEADDADEAAAEAAA ADADEEAADADDE DADDAADADDEDDDADD DAADEDDADEADDAD DEDDDDDEAE

ADADAFAFDAF DDEDEAAEDEA DDDDAAEDDAAADDADDA DEADD EDDAADA DADAADEDAEADAAAEEADED AAEAAEADADA DEDDAAAAADDDAD AADDEDADDAEEAA DDDDDADA EAADADDEDAEDDE EDDDDAEDD DAAE EAFE AAAADEADADA AEADAEEADDAEDE EAAADEDA DAEDAAEAADDDAEDADA

ADADAFAFDAF EADEEEADADEA AEAEDADDE EADADDADEDADAAA ADADAEEADEDAADEDD ADEAE AADA DDADDAAEADDEAADA EDDADADAEEAAAEAEAD DADEEDA DDDEAEDAAEED AEAAADADADDDDD AAADADADDAEED EAADADDADDDAAAD AEADAAEEAAADAD AA AAEAEDDEDDEDADAD EDEDAEDEAEDDAEA EADDAEDAEADADDAED EAEDAADDDAAAED DAEDEDAAADEAED AAED DADDDAADDAEDD EDAEDDAAEDDA ADEDAEEAAAEAA ADADDDDAADEDAEADAE D

ADADAFAFDAF

ADADDAFADDAFAF FEAFE EDADEDADAEDDA D DA D ED DA EAA DADADAAAADD DAEAADDAEDDE ADAEDAADDADA EDAAAA AEDDAADEA EA E ADAD D DDA E D A EA D AAEDAAADAADEDA DADADAAEDEDAA DEAAEAEAEAAAAAED DDEADADAED AADEDAAADDEAAAAEA EDEDDAEAADAADAAA AAAADEAAAEAADDAA EDADADAAD FFEDAF AEDA ADAEAEAAEDAD EA AADAE DEEAEDAA DEDEDAA AEAEAEAEDAA ADAED D

ADADDAFADDAFAF ADADAADDEEAEA ADDEDDDA AEADA AEAEEAAAADADDDDA AADAAEE EAAADDAEAA EAAAEDEDAAEADD E AA DA D A DA E E DDDDEDDDDDDEEA EEAAE AE AADAEAAAEDEAAD EDDAAADEEDDEA AEAAADDAAEDDDEAADE AEEEADDDDDAAAADA DEEAA EAADEAE DEADD h A, h h D l E h A l ll, h DDAA D E c h DEADEEAAEAADEAED D EADD A l c ha DDAADEDA D E E, h l lc, D EEDDDDDEEAA DAAADADDDDEDDAAED

ADADDAFADDAFAF AEAEADEDDDEDAAE DEAADAAADA DDDAAEDEADDEAADA DDDAA AAADEAAA EADDAADDADEEADDA AEADEAAAAEAEDE EADA EEAEED AADAAADAADDAADAD DAAAAEEAAAAAA AADAEAAEAA EDADDAEAFADDED DAEDDADADD E E A AA D AEADAAEEE ADEDDAAEEEAAA DDEDDAE ADDDAAEDAA A D DAAAEDEADAE ADEADDDAADEDEDD AD

ADADDAFADDAFAF ( ) ( ) = c l c h b h b l l l l l l h h h h h h SegH AD ( ) ( ) ( ) ( ) = h b h b h b h b c h h h h h h h h h h h h l l l SegV DEDDDEDE DDEFF DAAEEDAEEAE EAAAAEDAEE AAAEAAE DAAAAEDDEDAA EAADDEDD AE DADAAAADEE DAA ADAEAA DAEDDEDAAFADDEA EAADAAEAADAED EAADA D E D D A A D A DDAEADDDDADA ADADEEAADDAAED

ADADDAFADDAFAF DEAEDAAADD AAA EDDDDAD DEAADAAADDAAEAED DA DD DADDEAEDAAAEDD DAAEADAEEADDA DAEDDADAADEAD DDD E DA AED AA E EAAA EEA EA ADEDAEDDDAEDA DDDADDAAEADDADAEDE AEDDADAAEADAE DAADDAADDDAE EAEED DAEAEDEEAEADADEADA ADEADDADAAEAAD DADADAEDADAAAAEADA ADAEADED FFEDAF DDD D AAAAEDD AEAAEDAAAAA ADADDAAAADDA DDAA

ADADDAFADDAFAF EADEDEDDA ADEDDDAE AEADADEDDDEAADADD

ADADDAFADDAFAF AADAAADEADAE DDEDEAEADADEAA EDEAAADDAD DDDAAEAAAAAAEEAAE DDADADEDEDDEDAD EA AEDEAEDDAEDD EAAAEDDAEDDD F F DADDEDA DEAAADEAAED

ADADDAFADDAFAF DDADDDEDDDA EAAEEDADAAAADAED DEDADAADAADEDDAEDADA FAAEEAAEDA ADDADEDDAAAEAEEAD DDDE F DEEAADAAEAAAEA AADDEDADEAAEEDD EDAAAAAD AADADA ADDDEEAADAAD AAEAAEEDDDADDDADAE AEDAAEAAEEDDEDEDEAADA DAA AA AAEDADAADEDAE AEADADAADED DDDAADDEDEDEDEA DEDDAED EEAEDEDEDDD

ADADDAFADDAFAF DDD F D D F DDADDDEEAEDEDDAE DDDEDDAADADA DDDDDED ADAEDAADAEADD EAEEAADDE DDADDEDEEAAEA AADEAEDE AAEDADEDDAEAE AAEDEDDE EDAEDDE EDAAEDADEDAE AEAEAADAEDE DDADAEEDEDAADEDA

ADADDAFADDAFAF DAAADAEDDEDADAEDADA DDDAEDAAAEEDADD EADDDDAEAA AA AADEAEAAEED ADADEDEAADED DD DD F D F DDDADD DDAEEAEDDADEDDD EDAEDAEAA DDD EDAEDEAE DEDAEADEDDDE DDAAAAAEAAADAAAD DDAAEDADAEAAEDAADA EEDAEDEDDAAE EAEDDADDAAADAD AEEDDAAEDDAEDADDADAA

ADADDAFADDAFAF EDADAAE DAADDDDED DDEDDADDEDDDA EDDD DDD EDE D D D E DAA E DAD DAADDADAEDEAAA DDDDEDDD DAADAEDADAAEAADDAD ADEDAADADED DEDEAAADAEAD DDEEAADAAAADD AADDDDDDAEE EADDADAEAEDAEDAAEEEDD AAAEAEDEDDDD EDEDDDADEDDD AAADDAEDE DDAEDEDDEEA EDAEADDA EDDADDAEDAEEE

ADADDAFADDAFAF AA E AA E AA E D DDADAEAEDAAEAA AEDDADDAADDEAEAD DDADDEADEADDD DDADAADEAAAEAED DAEDADEDAD EAAEEDADAAEDA AEA

ADADDAFADDAFAF AAE AAE

ADADDAFADDAFAF AAE DDDDDAEDDDDA EDEEAEDED D D D AAE AAE

ADADDAFADDAFAF AAE DAEDDAAEDE AEAEAEDDDE DEAEDDADDAADDEADEDD DDDDDAAEAD DEEEADAEAEDA DADAEEDAEEEEDD DDEAEE ADDEAD DEDDDDDADAEAED AEDEDAAEDEDDD DDAEDEDDED AEDAEDDAEDDE AEAEAADADAEAEDED ADEDDAD FADADEADDEDAE DAEDDAEAD DDEAAAADDDDDE DDADDEDADDADED DEDDADAAAADDEE DADAADDAAEAADADED DDAADEEEDEDAADDAAE DADDADDADEDDEAE EEDAEDADADEDDDD AADADDEEEE DADEEDDE AEAAEDDAEDDADDAEAA DDEEAAADAEA DDDDDAE EDDEADEAE EDDAAEDAEDADEDAEA DAEDEAEEADADE ADAAEDDDEDADDEEDD ADADAAEADEEDAED AAADAADDE

ADADDAFADDAFAF ADAAAADDEAEEAAAAD DAEADEADAEDD AADDEDDD DEEDADDADDED AEDEDEDDDDED EADEDEAAEDDA DDDE AADA EDA DDADD EDA DEDDEAAAE AEAEADEDDAAEDDA ADE DDDAE EDDAFAD DEEDDE

ADADDAFADDAFAF D DDADDADE EDDEDDDADEAAEA EEEAEDDAD EDEAAADDAE

ADADDAFADDAFAF EEEADDE EEEA A DDEDDDAEDAEDEAE AEDADADEADA AEDDDEDADDEEDDA EEDEAEDDEEAEAED DDDAEDEAEADAEAE EDDADEAAAEADDE DDDDDDDEDEAADD DDEADADAEDAAADE EDAEADADDDDDA AEDAEDDDD D DDADADAEAADAAEAD DEDADEDADDADDAA DDDEDEADDADDADAAD DAADADADDADE ADD EAAEAE ED DAADADADDADEDA DE DEDDEAEDAADE DAEEDDD D

ADADDAFADDAFAF DDDAE EDDEEAEAAD EDDA DEDEADAEAADE DEEDAEDDDEDA

ADADDAFADDAFAF AEDEADAAAEADEEAD EAADEEDDAAADDD AAAEEAEDEDAEE DADEDADAA DDDE AAD DADDAEDDADED ADEAADEADDAAD DE AEADEDAED EDEEEDEADE EAAEAEAAEDDDE ADDE EED DDEDDDADEDADAEEDD EDADEDDADEA EEEDEADDAEDDDA E DA D EADAEADEAEAEDAA DAAEDEAEDDADAEA DADEDAAEADDAD AEDDADAEDDAADDDED DAAEAADEDAADEDA DDAADDDDDAEAEAE AADADA

ADADDAFADDAFAF DAEADADEDAAAEAA DAEDDDEDDAEDADDDDEAA DAADAAADAEAEDAAEDD EDDDEDEAADAE DDADEEDADEADAEDDDAEDAD EAEDEAEAADADEADE D

ADADDAFADDAFAF EAFE EDADEAADDADA DEEDADAADA DAEAADEAAEDDDEAA DAEADADADEAADDA D DDDEDEEAAEDDE AEDEEAEDAAEAEDEDEAA ADDDAEDDDAEAA EDADAEEEDEA DADAADAAA EAAAADDEDDA AADAAEADAAADADA EDEDEDAA DEEDEAD DDAEDADDAADEDADAAEA DDAEDADAADAEEAAA DEDAEAAADADADA DAAEDAAAAEDED DDDAEEAAEAAA EADADDDEDAADEDDAEAD DAEAAADDDAD

FFADA AEDAEAEAADAEDDE DDDADDADEDEDDADA ADAEEAEDDDEAADAA EDEDEDAEAEAD AEDAAAEEDDAADE EADAEDDEA DADADEDDAD DEDEAEAADADAEDAD DAADDDDAAEDE DAEDADDAADA EEDDAEEDA ADADDEAAADDA EAA DDADEEDEAAADA DEADA DDEDDEAAAEDED DDDADADDEA AAEAA DAEDEEDAD DADAEDEDDAAE DAAEDDADDEDDAADDAE EDDDADDEDED EEDAEDDADEADAD AAAAADDAADAEDEAED ADAEDAEDAEEEAAEDDA AEA DADEAAEAED DAEEAADAADADADAEADED DDADAEAEDAEDEEEE AAEEDADDDE DDAEDAEDDEADD ADAAAADEDDDA EEDADDAAEADADED AA DDAEEDADEADAAED AEAEDADDAEDDEDEA DDADDDDEDADADEDADA EAADAADEDDDA

FFADA EEDADADADD DDADAAADADDDA DAAADADDDAEAEDEDD DADDDEDAADEDDAEADDAE EEAAADDDAD DADA DA DA D AAA D EAADA DDAD E D DDA D DA A AA DAAADAA EDADAAADDADAAADEA DADDDAADDADADDA EDEADADADADAAED DADADDDDAADEAAEDE DADEDEAAAD DDAADEEEADAE EAAADAAEDDDDDA DADEDEADEEDAAD DADDEAAEDAEADADADEDA EAADADADEADADA DADDAEAAAADD DEDEDADDAA DA DA AD E A E D DA ADADA E D DAAADDAAAAEDADAADAD DEDAAADDADD ADDDDAEDAAADED DADAADAEDA EAEDAAAADADAADADDED DEDEADADEDAEDEAED DEAADAEAAADADD DAEDDADEAADDAAD EAAAADA AADDADEEDDAE DDADDEDDEADEAA AAEADEEDEAADAD DAAEEAEDAEAADDE DEADADD DADEADDAEE AEAEDEADADA DEEDDADDA

FFADA DAAAEE u p v q ( ) ln u v ( ) u q p INT( u, v, p, q) := sin q π A ( q ) ( q p ) D E ln u v cos q π A atan v AA E... D D E D u E v q p sin p π A E ln( u v ) cos p π A E ( p ) ( q p ) D D atan u AA D v... D EE u p v q ln( u v ) A... ( p ) ( q ) D p q E u p q sin( q k) π v k u q k v p q q q p sin( p k) π u k v p k k p k k = k = EAAAAEAAD AAAEDDDEAEDEAAA AEDDAADEEAA EAADEDAAA DEADEEAEAD DAEDEAEDEDAAA DA DAADAAEAEAEDADDAEDD E E A AD EAA EDDDAEDAEAE DAEEAAADEEAAADA AEADEEEDADDA

FFADA

DFD F AADFDE AA AAEADEA D AAA ED AAFDDAAAAA A DAD FA DA DAAA AAAAA AEAAEDA DAAAAE DADDA A A EA FDEDEAAA DEAE AA AA A DAD AE AA E AAEA DADFAFAEA DD

DFD A AADDDAD DFDEDEAADEDA DEDDDA AAAAA EADADAFAFDD DDED DE A EDADADA DAADAAA DADA DAAD A A DDA DAD DA EF AAAA AEAAE AAADAAAEAA EAA AAAAAAA DEDDAEAEEF D AAA D DEDA AA

DFD AAAAA AAA DADAE DAA AE DDEFDAA AAAAAAE ADEAD F F DDEDAAAAA ADDA EADAAA ADAAAAA ADDADA F AAA DDDEF AAAAA DDAADDEA D A DDADA F A DDADADD F AA DDADAF F F FAAAA A A DAD AE FDAAA

DFD AAADAADAEAAE DDAEAE FDADAEA DEDDAAAA ADD FAAAA AAAA AE EDAEDFD D ED DAAEDAED FDD ED DDE A EAA D AA DE EDADAFDAEF DDE D D FDAA DE AADA ADEFAFE FF D

EE A A EFA AE F FFEAAEFEFEEFA EE A A EFA A F FFEAAEEFA EEAAEAFF EE A A EFA AE F FFEAAEFAEFAFFEFEF EE A A EFA AE F FFEAAEFEAEFAFEFEF EEE

FFFAAADDFDAFDFFDFFA AEFAEFA E F D D D E D E DAD DA D D E ED AD DADAEDDADADAAEAAEAA DADAAADAAAA DAEEDAAEAAAADEAE D A = J DAEEAADDADEAED AEAEA,φ,zDAA A A A = J φ DA D A DA E E DA EAA ADA EEDEEDADDADEDAADDD ADEDADEADAAEDAD EDDAEADA ADDDAEDD

FFFAAADDFDAFDFFDFFA D EDAEAADAEDEDA DEDADEDAEDD A A A = φ DDDAEDADAADAA AEAEφAEAEAAADAA A = ) e n jnφ ( d d n d d n n n e jnφ DEAEEDADAEAAAD AAEAADAADAEAAADDA A DADAD m ( ) = λ n DAEEAD ( ) m m m λ m m λ m n λ = DADADAA m = ± naaeaea EAADAAEEDADDAEE E DDAEA d d d d d da = = d d d d d = d D E ADEAEAAEEDDDDAD ka ( ) = a ln ( ) a ln ( k) = a ln D E FEADAAE DAEAEAAAAEDADAEE AADDD A EADED DDAAA EEEAADDADDADDAD AEAAAAAEDAEEDDA DDADEAAAEA

FFFAAADDFDAFDFFDFFA AEAAEDDADADADADE DAEDEDDDADDADEDDDDD DDAEAEAAEDDD D A AA A AA AED ED AED ED A FE D FE D D AA D AA Aext(, φ ) α ln( ) π n α π cos ( nφ ) β sin( nφ ) n n n = ( ) Aint(, φ ) n a cos ( nφ ) b π ( sin( nφ ) n n ) n = DDDADDEDAAE EADAAAAEDFA DDADDEDADDED DAADAAEDADE DD

FFFAAADDFDAFDFFDFFA D DAEAEAEAED A = φ A φ = EDEAEAEDDA ext(, φ ) π n = ( n ) n α sin( nφ ) β cos ( nφ ) n n ( ) α ( n ) ext(, φ ) n α cos ( nφ ) β φ π π sin( nφ ) n n n = int(, φ ) π n = n n ( ) a sin( nφ ) b cos ( nφ ) n n ( ) int(, φ ) n n a φ π cos ( nφ ) b sin( nφ ) n n n = ( ) AAEFA AE F FFE A AE FE FE EFA AEEAAADDD A, φ ) EDAEAAEAEAEDAA AA ( f f EADDAA DAEDAD DDED

FFFAAADDFDAFDFFDFFA AEDA DAAE Ai AEAADA DA A ADEEAA DDA ADDDDDEAA t DEDAAEDDDADEDAA DEDAAEDAEDADAAD DEDEAA DAAAAEAEADAEDA EDDED A(, φ ) π n = n ( a cos( nφ ) b sin( nφ ) n n )

FFFAAADDFDAFDFFDFFA DAAAEAEDDDAD AEDAEADAEDADEDA DEDAEDDEDADAADA DAAAAADADAEAA A Af 4 π ( ) I ln d f ( ) d cos φ φ f f ( f ) ( f ) f D A E cos ( φ φ f ) f EA Af(, φ ) π I f ln( f ) 4 π I ln f D f A E ( ) cos φ φ f f DEDA ln f D A E ( ) cos φ φ f f n = n A n cos n φ φ f f D E ( ) ADADAADA Af (, φ ) π I f ln( f ) n A n cos n ( φ φ f) D f E I π f n = ED Af (, φ ) a π f ln( f ) π n = n ( a cos ( n φ ) b sin( n φ ) fn fn ) a f I f I a f fn n ( f) n I f cos ( n φ f ) b sin n φ fn f n ( f) n ( ) ADAEDAAED

FFFAAADDFDAFDFFDFFA A(, φ ) π ( ( ) α ln( ) ) a ln f f π n = π n = n α cos ( nφ ) β sin( nφ ) n n ( ) n a cos ( nφ ) b sin( nφ ) fn fn ( )... D D AEADADADAAEDDADAEEA EAEAEADAEDDAAA DAA A A = Hφ = φ. (, φ ) π n = H(, φ ) φ π n n n = ( ) a sin( nφ ) b cos ( n φ ) n n n n a cos ( nφ ) b sin( nφ ) n n ( ) DAA (, φ ) π H(, φ ) φ π n = ( ) n n a sin ( nφ ) b cos ( nφ ) fn fn α n = ( n ) n ( ) n n a cos ( nφ ) b sin ( nφ ) fn fn ( ) α sin( nφ ) β cos ( nφ ) n n ( n ) n α cos ( nφ ) β sin( nφ ) n n ( ) DD ADADAAEADEAADDDED DDDEAA H( R, φ ) H( R, φ ) φ φ ( R, φ ) ( R, φ )

FFFAAADDFDAFDFFDFFA DDAEDEEA DAAD R n a cos ( nφ ) b sin( nφ ) n n ( ) ( ) ( ) R n a cos nφ ( ) b sin ( nφ ) R ( n ) α cos ( nφ ) β sin( nφ ) fn fn n n ( ) R n a sin ( nφ ) b cos ( n φ ) R n a sin ( nφ ) b cos ( nφ ) R ( n ) n n fn fn ( ) ( ) α sin( nφ ) β cos ( nφ ) n n DD sin( nφ ) cos ( nφ )ADA AAD AD ED R n a A D n E R n a R ( n ) α fn n R n a R n a R ( n ) α n fn n R n b A R n b R ( n ) β D n E fn n R n b R n b R ( n ) β n fn n AADAAEADDDEDDDDE AADDDADAEADD A( R, φ ) A( R, φ ) R n a cos ( nφ ) b sin( nφ ) π ( n n ) a ln π f ( f ) R n π ( a cos ( nφ ) b sin( nφ ) fn fn )... n = n = R n α cos ( nφ ) β sin( nφ ) π ( n n ) n = DAEEDAAAAEDEDA A A( R, φ ) A( R, φ ) π a f ln( f ) ADAAEDDDEDDDDEAAA AEDDEEDEDDAAED AA

FFFAAADDFDAFDFFDFFA A(, φ ) A(, φ ) n a cos ( nφ ) b π ( sin( nφ ) n n ) n = n a cos ( nφ ) b π ( sin( nφ ) fn fn ) n = n α π cos ( nφ ) β sin( nφ ) n n n = ( ) AA a n α n EADAE EEDAEDADEDADA DEAAD ED a n I f n ( f) n α R n n I f cos ( n φ f ) t I f n ( f) n cos ( n φ f ) n ( f) n cos ( n φ f ) I f n ( ) n cos ( n φ f ) t R f DAA b n β n I f b t sin n φ n f β n n ( f) n I f n ( ) n ( ) ( ) sin n φ f DAAD DEEDAE AD cos ( n φ ) cos ( n φf ) sin( n φ ) sin( n φf ) cos[ n ( φ φf )] AAEAEDEAA

FFFAAADDFDAFDFFDFFA A(, φ ) n π I t A f n cos n φ φ ( f) n = D f E A(, φ ) π I f n = n A n cos n φ φ f f D E ( ) π I f n = n A cos n φ φ n f D E ( ) DEDDAE n = n = n A n E cos n ( φ φ ) f D f n A E cos n φ φ n D ( f) ln f ( ) f ( ) f ( ) cos φ φ f ln ( ) cos φ φ ( f ) DDADAEAEDEAA A(, φ ) A(, φ ) 4π I t ln f f 4π I ln f f ( ) f ( ) f ( ) f cos ( φ φ f ) ( ) f cos ( φ φ f ) 4π I ln f cos ( φ φ f ) ( )

FFFAAADDDAFDFADFA F AEEAAEE AEAEDAEADA, φ ), φ ) AADAE D F D ( f f ( f f AAAEAADDED D F EAA DAAEDAADA D F DE DDED D

FFFAAADDDAFDFADFA DDAAAEDDD D A DAEDAEADAEDADEDA DEDAEDDEDADAA DADAAAAADADAD EDEDEDAEDDAED A(, φ ) α ln( ) π π n = π n = n a cos ( nφ ) b sin( nφ ) n n ( ) n α cos ( n φ ) β sin( n φ ) n n ( )... α I f f I α f n n ( ) n I f f cos ( n φ f ) β n n ( ) n ( ) sin n φ f DDAAEADDEDA DAEDAEDDAAEEAE A(, φ ) α ln( ) π π n = π n = n α cos( nφ ) β sin( nφ ) n n n a cos( nφ ) b sin( nφ ) n n ( ) ( )... DDAAEDDD DEE DAEDEDAADEAEDD A

FFFAAADDDAFDFADFA A3(, φ ) π ( ( ) α ln( ) 3 ) π n = a ln 3 f π n = n α cos ( nφ ) β sin( nφ ) 3n 3n ( ) n ( a cos ( n φ ) b sin( n φ ) 3n 3n )... a 3 I 3 f I a 3 f 3n n ( f) n I 3 f cos ( n φ f ) b sin n φ 3n f n ( f) n ( ) D D AEADADADAAEDDADAEEA EAEAEADAEDDAAA A = φ DA A Hφ =. (, φ ) π H(, φ ) φ π n = ( ) n n a sin ( nφ ) b cos ( n φ ) n n α n = ( n ) n ( ) n n a cos ( nφ ) b sin ( nφ ) n n ( ) α cos ( n φ ) β sin( n φ ) n n ( n ) n α cos ( nφ ) β sin( nφ ) n n ( ) DDA (, φ ) π H(, φ ) φ π n = ( ) n n a sin ( nφ ) b cos ( n φ ) n n α n = ( n ) n ( ) n n a cos ( nφ ) b sin ( nφ ) n n ( ) α cos ( n φ ) β sin( n φ ) n n ( n ) n ( α cos ( nφ ) β sin( nφ ) n n ) DDA 3(, φ ) π H3(, φ ) φ π n = ( ) n n a sin ( nφ ) b cos ( n φ ) 3n 3n α 3 3 n = ( n ) n ( ) n n a cos ( nφ ) b sin ( nφ ) 3n 3n ( ) α cos ( n φ ) β sin( n φ ) 3n 3n ( n ) n ( α cos ( nφ ) β sin( nφ ) 3n 3n )

FFFAAADDDAFDFADFA D D DDEED S R S 3 R ADADA AEADEAA DD S R H( R, φ )φ H( R, φ )φ ( R, φ ) ( R, φ ) DD S 3 R H( R, φ )φ H3( R, φ )φ ( R, φ ) 3( R, φ ) DDAEDEEA α α 3 α α 3 D α ED DD sin( nφ ) cos ( nφ )EDDADAEE DAADAAAD D A D ED ( ) n R ( ) ( n ) a R α n n ( ) n R ( ) ( n ) a R α n n ( ) n R R ( ) ( ) n ( n ) a R α R n n ( ) n ( ) ( n ) a R α n n ( ) ( n ) a R α n n ( ) n R 3 ( ) ( n ) a R α 3n 3n ( ) n R ( ) ( ) n ( n ) a R α R n n ( ) ( n ) a R α 3n 3n

FFFAAADDDAFDFADFA ( ) n R ( ) ( n ) b R β n n ( ) n R ( ) ( n ) b R β n n ( ) n R ( ) ( ) n ( n ) b R β R n n ( ) ( n ) b R β n n ( ) n R ( ) ( n ) b R β n n ( ) n R 3 ( ) ( n ) b R β 3n 3n ( ) n R ( ) ( ) n ( n ) b R β R n n ( ) ( n ) b R β 3n 3n AADAAEADDDEDF F DD AADADEDEDED D DD S R ( ) A( R, φ ) A R, φ DD S 3 R I f π ( ) ( ) ln R ( ) A3( R, φ ) A R, φ I 3 f π ln( f ) I R f ln R π 3 ( ) ln R D D A A EE ADAAEADDDED S S 3 AA EDDEDEEDEDAA EDAAA A(, φ ) A(, φ ) α ln A π R n π ( a cos ( nφ ) b sin( nφ ) n n ) D... E n = n α cos ( n φ ) β sin( n φ ) π ( n n ) n = α ln A π R E n a π ( cos ( nφ ) b sin( nφ ) n n ) D... n = n α cos ( nφ ) β sin( nφ ) π ( n n ) n =

FFFAAADDDAFDFADFA A3(, φ ) R α ln A α ln A A π R D 3 R E n a D E D π cos ( n φ ) b sin( n φ ) 3n 3n E n = n α cos ( nφ ) β sin( nφ ) π ( 3n 3n ) n = ( )... AAa n a n α n α 3n ADAE EDADADEDADEAADE AA D ED a n a n α n α 3n ( ) ( ) ( ) ( 3) A α n A 3 4 A a 3n A ( ) ( ) A ( ) ( ) ( ) A a α 3n n 3 A ( ) ( ) A ( ) ( ) ( ) ( ) α A a n 3 3n A A ( ) ( ) A ( ) ( ) ( ) ( ) ( ) ( ) ( ) a A A 3n 3 3 4 α A 3 n A ( ) ( ) A ( ) ( ) A ( R ) n A ( R ) n DAA b n b n β n β 3n