Φυσική για Μηχανικούς

Σχετικά έγγραφα
Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

1 η Ενότητα Κλασική Μηχανική

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Συστήματα συντεταγμένων

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

1 η Ενότητα Κλασική Μηχανική

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Φυσική για Μηχανικούς

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

2 ο Μάθημα Κίνηση στο επίπεδο

Κεφάλαιο M3. Διανύσµατα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

Κεφάλαιο 3. Κίνηση σε δύο ή τρεις διαστάσεις

ΣΥΝΟΨΗ 1 ου Μαθήματος

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T.

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)

Κεφάλαιο 1. Κίνηση σε μία διάσταση

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις

Θέση-Μετατόπιση -ταχύτητα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

dx cos x = ln 1 + sin x 1 sin x.

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

ΦΥΣΙΚΗ. Ενότητα 2: Ταχύτητα - Επιτάχυνση

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.

Σημειώσεις Μαθηματικών 1

είναι τα διανύσματα θέσης της τελικής και της αρχικής του θέσης αντίστοιχα. Η αλγεβρική τιμή της μετατόπισης είναι Δx xτελ xαρχ

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση

1. Εισαγωγή στην Κινητική

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

1.2 Συντεταγμένες στο Επίπεδο


ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

13 Γενική Μηχανική 1 Γενικότητες Κινηματική του Υλικού Σημείου 15/9/2014

Κίνηση σε μια διάσταση

Η ΚΙΝΗΣΗ ΣΩΜΑΤΙΟ Ή ΥΛΙΚΟ ΣΗΜΕΙΟ Ή ΣΗΜΕΙΑΚΟ ΑΝΤΙΚΕΙΜΕΝΟ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης.

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών

Μαθηματικά Προσανατολισμού Β Λυκείου

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,

Φυσική για Μηχανικούς

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα

Κλασσική Μηχανική. Κλασσική Μηχανική: η αρχαιότερη από τις φυσικές επιστήμες. Αντικείμενο: η μελέτη της κινήσεως των αντικειμένων.


ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Φυσική για Μηχανικούς

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc.

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Transcript:

Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του να το προσγειώσει με ασφάλεια. Ποσότητες που ορίζονται τόσο από το μέτρο τους όσο και από την κατεύθυνσή τους (όπως η ταχύτητα) λέγονται διανυσματικές ποσότητες. (Mark Wagner/Getty Images) Διανύσματα

Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του να το προσγειώσει με ασφάλεια. Ποσότητες που ορίζονται τόσο από το μέτρο τους όσο και από την κατεύθυνσή τους (όπως η ταχύτητα) λέγονται διανυσματικές ποσότητες. (Mark Wagner/Getty Images) Διανύσματα

Μετά τη μονοδιάστατη κίνηση, θα ήταν καλό να μεταβούμε σιγά σιγά στη δισδιάστατη κίνηση Κίνηση στο επίπεδο Στην κίνηση αυτή, τα διανύσματα είναι μερικώς απαραίτητα! Διάνυσμα ΟΑ: προσανατολισμένο ευθύγραμμο τμήμα Μέτρο Διεύθυνση Φορά Καρτεσιανές συντεταγμένες x τετμημένη y τεταγμένη Συμβολισμός: OA = (x, y)

Πολικές συντεταγμένες x = rcos θ, y = rsin θ όπου r = x 2 + y 2 θ = tan 1 y x (1,1) cos θ = x r sin θ = y r Χρειάζεται προσοχή! Παράδειγμα: (-1,-1) Βρείτε την πολική μορφή του διανύσματος με συντεταγμένες x, y = (1,1) και ύστερα αυτού με συντεταγμένες x, y = ( 1, 1).

Ιδιότητες διανυσμάτων Ισότητα διανυσμάτων Ίδιο μέτρο και κατεύθυνση Πρόσθεση διανυσμάτων Β D Α + Β C Β Α + Β Β Α Α Α

Ιδιότητες Αντιμεταθετικότητα Α + Β = Β + Α Προσεταιριστικότητα A + B + C = A + B + C B + C A + B B B Α Α

Αρνητικό διάνυσμα ενός διανύσματος Α Ορίζεται ως το διάνυσμα εκείνο που όταν προστεθεί στο Α, μας δίνει το μηδενικό διάνυσμα, δηλ. Α + Α = 0 Παράδειγμα: Πρόσθεση Α B = Α + B Ψάχνουμε ένα διάνυσμα που αν προστεθεί στο Β θα μας δώσει το Α Α Β Β A Β A Β Β Α

Πολλαπλασιασμός διανύσματος με αριθμό Το διάνυσμα διατηρεί τη διεύθυνση, αλλά αλλάζει (πιθανώς) η φορά, και το μέτρο του B = m A, m R B = m A B A, αν m > 0 B A, αν m < 0 Α 2Α 1 2 Α

Η γραφική μέθοδος είναι βολική για απλά ή διαισθητικά προβλήματα Για μεγαλύτερη ακρίβεια, προτιμούμε την ανάλυση σε συνιστώσες (μια κάθετη και μια παράλληλη στον x- άξονα)

Πολική μορφή A x = Acos θ, A y = Asin θ Α = A x 2 + A y 2, θ = tan 1 A y A x Προσοχή στον υπολογισμό της γωνίας θ!

Πολλές φορές εκφράζουμε σύνθετα διανύσματα με όρους μοναδιαίων διανυσμάτων Μοναδιαία διανύσματα ι, j, k Έχουν μέτρο 1 (μονάδα) Καθένα βρίσκεται επάνω σε έναν άξονα i x, j y, k z Κάθετα μεταξύ τους i j, j k, i k

Το διάνυσμα Α μπορεί να γραφεί ως Α = Α x i + A y j με χρήση των μοναδιαίων διανυσμάτων Διάνυσμα θέσης r = OA A Σημείο A(x, y) r = x i + y j Οι συνιστώσες του r είναι οι x i, y j.

R = Α + Β R = A x i + A y j + B x i + B y j R = A x + B x i + A y + B y j με R x = A x + B x R y = A y + B y Πρόσθεση όλων των x-συνιστωσών και όλων των y- συνιστωσών R = R x 2 + R y 2 = A x + B x 2 + (A y + B y ) 2 tan θ = R y R x = A y+b y A x +B x

Προσθήκη περισσότερων διαστάσεων Α = Α x i + A y j + Α z k Όμοια ακριβώς συλλογιστική!

Παράδειγμα: Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του (Δείτε το σχήμα). A. Αναλύστε τις συνιστώσες του ρομπότ για κάθε κίνησή του. B. Ορίστε τις συνιστώσες της συνολικής μετατόπισης R του ρομπότ. Βρείτε μια έκφραση για το R με όρους μοναδιαίων διανυσμάτων. C. Τι θα συνέβαινε αν το ρομπότ έπρεπε να επιστρέψει στο σημείο αφετηρίας του, μετά την επαφή του με τον πύργο ελέγχου του; Ποιες συνιστώσες θα περιέγραφαν την πορεία του; Ποια θα ήταν η κατεύθυνση του ρομπότ;

Παράδειγμα - Λύση Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) A. Αναλύστε τις συνιστώσες του ρομπότ για κάθε κίνησή του. A y j B y j A x i B x i

Παράδειγμα - Λύση Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) B. Ορίστε τις συνιστώσες της συνολικής μετατόπισης R του ρομπότ. Βρείτε μια έκφραση για το R με όρους μοναδιαίων διανυσμάτων.

Παράδειγμα - Λύση Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) C. Τι θα συνέβαινε αν το ρομπότ έπρεπε να επιστρέψει στο σημείο αφετηρίας του, μετά την επαφή του με τον πύργο ελέγχου του; Ποιες συνιστώσες θα περιέγραφαν την πορεία του; Ποια θα ήταν η κατεύθυνση του ρομπότ; φ R

Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί τρείς) διαστάσεις. Κίνηση σε Δυο Διαστάσεις

Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί τρείς) διαστάσεις. Κίνηση σε Δυο Διαστάσεις

Κίνηση σε Δυο Διαστάσεις Είδαμε σε προηγούμενη διάλεξη την κίνηση σε μια διάσταση (οριζόντιος άξονας x) Θυμηθήκαμε τα διανύσματα και τις ιδιότητές τους Ας επεκτείνουμε τις ιδέες μας στο χώρο x-y Χώρος επιπέδου Θα κάνουμε εκτεταμένη χρήση διανυσμάτων αλλά και ανάλυσης σε συνιστώσες

Κίνηση σε Δυο Διαστάσεις Στη μια διάσταση, μας αρκούσε ένα μονόμετρο μέγεθος (αριθμ. τιμή) για να ορίσουμε τη θέση ενός σωματιδίου με το πρόσημο να παίζει το ρόλο της διανυσματικής φοράς Στις δυο διαστάσεις, χρειαζόμαστε το διάνυσμα θέσης r Ξεκινά από το (0,0) και φτάνει ως τη θέση του σωματιδίου στο επίπεδο xy Mετατόπιση Δ r Διαφορά μεταξύ αρχικής και τελικής θέσης Δ r = r f r i

Κίνηση σε Δυο Διαστάσεις Ορίζουμε τη Μέση Ταχύτητα σε ένα χρονικό διάστημα Δt: v avg = Δ r Δt Διάνυσμα με ίδια διεύθυνση και φορά με το Δ r Θυμηθείτε από την κίνηση σε μια διάσταση: u avg Δ x Δt Διάνυσμα ανεξάρτητο της διαδρομής!! Γιατί; Εξαρτάται μόνο από το Δ r Που εξαρτάται μόνο από την αρχική και την τελική θέση του σωματιδίου

Κίνηση σε Δυο Διαστάσεις Ας θεωρήσουμε ένα σωματίδιο που κινείται ανάμεσα σε 2 σημεία, Α και Β. Παρατηρούμε το σωματίδιο σε όλο και μικρότερα χρονικά διαστήματα (Β, Β, Β ) Η κατεύθυνση του Δ r πλησιάζει αυτήν της εφαπτομένης της καμπύλης στο σημείο Α.

Κίνηση σε Δυο Διαστάσεις Στιγμιαία Ταχύτητα v Η κατεύθυνση της σε οποιοδήποτε σημείο βρίσκεται στην εφαπτομένη της καμπύλης στο εκάστοτε σημείο Ταχύτητα u = v Θυμηθείτε: Δx u x lim = dx Δt 0 Δt dt Δr v = lim Δt 0 Δt = dr dt

Τέλος Διάλεξης