LTI Systems (1A) Young Won Lim 3/21/15

Σχετικά έγγραφα
Spectrum Representation (5A) Young Won Lim 11/3/16

Sampling Basics (1B) Young Won Lim 9/21/13

Digital Signal Octave Codes (0B)

CORDIC Background (4A)

CORDIC Background (2A)

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

BandPass (4A) Young Won Lim 1/11/14

CT Correlation (2B) Young Won Lim 8/15/14

Trigonometry Functions (5B) Young Won Lim 7/24/14

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Fundamentals of Signals, Systems and Filtering

Assignment 1 Solutions Complex Sinusoids

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Second Order RLC Filters

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Επίλυση Δ.Ε. με Laplace

Ψηφιακή Επεξεργασία Φωνής

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

10.7 Performance of Second-Order System (Unit Step Response)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

D Alembert s Solution to the Wave Equation

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Second Order Partial Differential Equations

Κλασσική Θεωρία Ελέγχου

Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Note: Please use the actual date you accessed this material in your citation.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Κλασσική Θεωρία Ελέγχου

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

6.003: Signals and Systems. Modulation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

The Spiral of Theodorus, Numerical Analysis, and Special Functions

MathCity.org Merging man and maths

Probability and Random Processes (Part II)

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

derivation of the Laplacian from rectangular to spherical coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Homework 8 Model Solution Section

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chapter 6 BLM Answers

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

Section 9.2 Polar Equations and Graphs

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solutions - Chapter 4

Inverse trigonometric functions & General Solution of Trigonometric Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης

ΜΜ803 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Nachrichtentechnik I WS 2005/2006

2 Composition. Invertible Mappings

Parametrized Surfaces

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

LECTURE 2 : MODELS AND METHODS. Time-Series Models: Feedback Form and Transfer-Function Form

Matrices and Determinants

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Finite difference method for 2-D heat equation

PARTIAL NOTES for 6.1 Trigonometric Identities

w o = R 1 p. (1) R = p =. = 1

CRASH COURSE IN PRECALCULUS

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

Forced Pendulum Numerical approach

Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

Graded Refractive-Index

If we restrict the domain of y = sin x to [ π 2, π 2

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 7.6 Double and Half Angle Formulas

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Differential equations

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Transcript:

LTI Systems (1A)

Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

An Improper Integration F (s) = f (t)e s t dt Complex Number Real Number Real Number s = σ + i ω t Integration Variable R{s} real part I {s} imag part The improper integral converges if the limit defining it exists. LTI Systems (1A) 3

An Integration Function For a given function f(t) F (s) = f (t)e st dt Complex Number Real Number s = σ + i ω t Real Number Integration Variable s 1 s 2 s 3 F (s 1 ) = F (s 2 ) = F (s 3 ) = f (t )e s 1t f (t )e s 2 t f (t)e s 3 t dt dt dt F (s 1 ) F (s 2 ) F (s 3 ) Complex Numbers Complex Numbers LTI Systems (1A) 4

Complex Function Plot I F I R{F (s 1 )} F (s 1 ) R R I s 1 = σ 1 + iω 1 F (s 1 ) = R{F (s 1 )} + i I{F (s 1 )} R s 1 I F I I{F (s 1 )} arg {F (s 1 )} R R I s 1 s 1 = σ 1 + iω 1 F (s 1 ) = R{F (s 1 )} + i I{F (s 1 )} R LTI Systems (1A) 5

Two Functions: f(t) & F(s) For a given function f(t) there exits a unique F(s) s-domain function F(s) R{F (s 1 )} F (s 1 ) f (t) F (s) s 1 I{s} R{s} I{F (s 1 )} arg {F (s 1 )} t-domain function f(t) f (t) I{s} t R{s} s 1 Real number domain function f(t) Complex number domain function F(s) LTI Systems (1A) 6

Laplace Transform f a (x) L F A (s) 1 f 1 (t)e st dt = F 1 (s) 1 s f b (t ) L F B (s) e a t f 2 (t)e st dt = F 2 (s) 1 s+a f c (t) L F C (s) cos(k t) f 3 (t)e st dt = F 3 (s) s s 2 +k 2 f a (x) Real-valued Function F A (s) Complex Function f (t) I I t 1 s 1 = σ 1 + iω 1 f (t 1 ) ω 1 R{F (s 1 )} t 1 t σ 1 R R I{F (s 1 )} f (t 1 ) F (s 1 ) = R{F (s 1 )} + i I{F (s 1 )} LTI Systems (1A) 7

Some Laplace Transform Pairs 1 1 s e at 1 s+a t 1 s 2 sin(ωt) ω s 2 +ω 2 t 2 2 s 3 t 3 6 s 4 t n n! s n+1 cos(ωt ) sinh(ω t) cosh(ω t) s s 2 +ω 2 ω s 2 ω 2 s s 2 ω 2 LTI Systems (1A) 8

Partial Fraction Methods 1 (a x+b) + A (a x+b) + 1 (a x+b) k + A 1 (a x+b) + A 2 (a x+b) 2 + + A k (a x+b) k + 1 (a x 2 +b x+c) + A x+b (a x 2 +b x+c) + 1 (a x 2 +b x+c) k + A 1 x+ B 1 (a x 2 +b x+c) + A 2 x+b 2 (a x 2 +b x+c) 2 + + A k x+b k (a x 2 +b x+c) k + LTI Systems (1A) 9

Cover-up Method (1) 2s 1 (s+3)(s 2) = A (s+3) + B (s 2) 2s 1 (s+3)(s 2) (s+3) A = 2 s 1 (s 2) s= 3 = 6 1 3 2 = + 7 5 2s 1 (s+3)(s 2) (s 2) B = 2 s 1 (s+3) s=2 = 4 1 2+3 = +3 5 LTI Systems (1A) 1

Examples 2 s+5 (s 3) 2 = A 1 (s 3) + A 2 (s 3) 2 2 s+5 (s 3) 2 (s 3)2 = A 1 (s 3) (s 3)2 + A 2 (s 3) 2 (s 3)2 = A 1 (s 3) + A 2 2 s+5 (s 3) 2 (s 3)2 = (2s+5) s=3 = 11 = A 2 s=3 d ( 2s+5 (s 3)2) = d ds (s 3) 2 ds (A (s 3) + A ) = A 1 2 1 d ( 2 s+5 (s 3)2) ds (s 3) 2 s=3 = 2 = A 1 LTI Systems (1A) 11

Examples X (s) = P(s) (s+ p)(s+r) k = K (s+ p) + A (s+r) k + A 1 (s+r) k 1 + + A k 1 (s+r) 1 A = X (s)(s+r) k s= r A 1 = d ds [ X (s)(s+r)k ] s= r A 2 = 1 2! d 2 ds 2 [ X (s)(s+r)k ] s= r A m = 1 m! d m ds m [ X (s)(s+r)k ] s= r LTI Systems (1A) 12

Differentiation in the s-domain f (t) F (s) F(s) = f (t) e s t dt t f (t) F '(s) d d s F (s) = [ s f ] (t) e st dt = ( t) f (t) e st dt +t 2 f (t ) F ' '(s) d 2 d s 2 F (s) = 2 [f (t) e s t ] dt = s 2 ( t) 2 f (t) e s t dt t 3 f (t ) F (3) (s) d 3 d s 3 F (s) = 3 [f (t ) e s t ] dt = s 3 ( t ) 3 f (t) e st dt t n f (t) ( 1) n d n ds n F (s) LTI Systems (1A) 13

Differentiation in the t-domain (1) f (t) F (s) F(s) = f (t) e s t dt f '(t) s F (s) f () f ' (t) e s t dt = [f (t) e s t ] = f () + s ( s) f (t) e st dt f (t) e s t dt = s F (s) f () f ' '(t ) s(s F (s) f ()) f '() f (3) (t ) s(s(s F (s) f ()) f '()) f ' ' () LTI Systems (1A) 14

Differentiation in the t-domain (2) f (t ) F (s) f '(t) s F (s) f () f ' '(t ) s 2 F (s) s f () f '() f (3) (t ) s 3 F (s) s 2 f () s f '() f ' ' () f (n) (t) s n F(s) s (n 1) f () s (n 2) f '() f (n 1) () LTI Systems (1A) 15

Integration in the t-domain f (t) F (s) g(t ) G(s) t f (τ)d τ F (s) s t f (τ) d τ? f (t) F (s) f (t ) = d dt { t f (τ)d τ} = d dt g (t) g '(t) sg(s) g() g(t ) = t f (τ)d τ g() = f (τ)d τ = F (s) = F(s) s LTI Systems (1A) 16

Translation in the s-domain f (t) F (s) F(s) = f (t) e s t dt e +a t f (t ) F (s a) F(s a) = f (t) e (s a )t dt = [e +a t f (t)]e s t dt e ±at f (t) F (s a) LTI Systems (1A) 17

Translation in the t-domain f (t) F (s) F(s) = f (t) e s t dt f (t a)u(t a) f (t a)u(t a) e a s F(s) e as F (s) shift right : always o.k. shift left: only when no information is lost during improper integration by the left shift a = = a = = e a s f (t a)u(t a) e st dt f (t a)u(t a) e s t dt + a f (t a)u(t a) e s t dt f (t a) e s t dt ν = t a d ν = d t f (ν) e s (ν+a) d ν = e a s F (s) f (ν) e s ν d ν = a a LTI Systems (1A) 18

Initial Value Theorem lim t + f (t ) = lim s s F (s) F (s) = s F (s) f ( ) = f (t ) e s t dt f ' (t) e s t dt lim s s F(s) = f ( ) + lim s f ' (t ) e s t dt = f ( ) + f ( + ) f ( ) = f ( + ) LTI Systems (1A) 19

Final Value Theorem lim s lim t f (t ) = lim s F (s) = s F (s) f ( ) = lim s [ s F (s) f ( )] = lim s s F (s) s F (s) = f ( ) + lim s = f ( ) + f () f ( ) = f () f (t ) e s t dt f ' (t) e s t dt f ' (t ) e st dt f ' (t ) e st dt LTI Systems (1A) 2

Laplace Transform and ODE's y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 y (x) y ' (x) y ' '(x) Y (s) sy (s) y() s 2 Y (s) s y () y ' () e 3 x 1 (s+3) [ s 2 Y (s) s y() y ' ()] + 3 [s Y (s) y() ] + 2 [Y (s)] = 1 s+3 (s 2 + 3s + 2)Y (s) = k 1 s+k 2 +3 k 1 + 1 s+3 LTI Systems (1A) 21

Partitioning y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 [ s 2 Y (s) s y() y ' ()] + 3 [s Y (s) y() ] + 2 [Y (s)] = 1 s+3 (s 2 + 3 s + 2)Y (s) = (k 1 s+k 2 +3 k 1 ) + 1 s+3 depends only on initial conditions k 1, k 2 depends only on input e -3x LTI Systems (1A) 22

Decomposed Y(s) output input (s 2 + 3 s + 2)Y zi (s) = (k 1 s+k 2 +3 k 1 ) depends only on initial conditions k 1, k 2 No Input output input (s 2 + 3 s + 2)Y zs (s) = 1 s+3 depends only on input e -3x No State output input (s 2 + 3 s + 2)Y (s) = (k 1 s+k 2 +3 k 1 ) + 1 s+3 depends only on initial conditions k 1, k 2 depends only on input e -3x LTI Systems (1A) 23

ZIR & ZSR y zi (x) Y zi (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) Zero Input Response y zs (x) Y zs (s) = 1 (s+1)(s+2)(s+3) Zero State Response y (x) Y (s) = k 1s+k 2 +3 k 1 (s+1)(s+2) + 1 (s+1)(s+2)(s+3) y (x) Y (s) = Y zi (s) + Y zs (s) LTI Systems (1A) 24

Laplace Transform and IVP's y ' ' + 3 y ' + 2 y = y() = k 1, y ' () = k 2 ZIR IVP y zi (x) Y zi (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) y ' ' + 3 y ' + 2 y = e 3 x y() =, y ' () = ZSR IVP y zs (x) Y zs (s) = 1 (s+1)(s+2)(s+3) y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 LTI Systems (1A) 25

To include impulse inputs y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 y (x) y ' (x) y ' '(x) Y (s) sy (s) y( ) s 2 Y (s) s y ( ) y '( ) e 3 x 1 (s+3) [ s 2 Y (s) s y( ) y ' ( )] + 3 [s Y (s) y( )] + 2 [Y (s) ] = 1 s+3 LTI Systems (1A) 26

ODEs with an input g(x) y ' ' + 3 y ' + 2 y = e 3 x y() = k 1, y ' () = k 2 usually known i.c. y( ) = k 1, y ' ( ) = k 2 i.c. to be calculated y( + ) = m 1, y ' ( + ) = m 2 solution to be found y(t) (t > ) LTI Systems (1A) 27

ZIR & ZSR y ' ' + 3 y ' + 2 y = x (t ) y () = k 1, y ' () = k 2 (s 2 + 3 s + 2)Y (s) = k 1 s+k 2 +3 k 1 + X (s) s 2 Y (s) s y() y ' ()+3(s Y (s) y())+2 Y (s)=x (s) Y (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) + X (s) (s+1)(s+2) Zero Input Response x (t) = Zero State Response y () =, y ' () = Y (s) = s+5 (s+1)(s+2) Y (s) = X (s) (s+1)(s+2) x (t) = e + t 1 = +4 (s+1) 3 1 (s+2) = + 1 3 1 (s+2) 1 2 1 (s+1) + 1 6 1 (s 1) y = 4 e t 3 e 2t y = 1 2 e t + 1 3 e 2 t + 1 6 e+t LTI Systems (1A) 28

Transfer Function y ' ' + 3 y ' + 2 y = x (t ) y () = k 1, y ' () = k 2 (s 2 + 3 s + 2)Y (s) = k 1 s+k 2 +3 k 1 + X (s) s 2 Y (s) s y() y ' ()+3(s Y (s) y())+2 Y (s)=x (s) Y (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) + X (s) (s+1)(s+2) Zero State Response y () =, y ' () = Y (s) = X (s) (s+1)(s+2) Y (s) X (s) = 1 (s+1)(s+2) Transfer Function LTI Systems (1A) 29

Transfer Function & Impulse Response y ' ' + 3 y ' + 2 y = x (t ) y () = k 1, y ' () = k 2 (s 2 + 3 s + 2)Y (s) = k 1 s+k 2 +3 k 1 + X (s) s 2 Y (s) s y() y ' ()+3(s Y (s) y())+2 Y (s)=x (s) Y (s) = k 1 s+k 2 +3 k 1 (s+1)(s+2) + X (s) (s+1)(s+2) Transfer Function Y (s) X (s) = H (s) Zero State Response y () =, y ' () = Y (s) = H (s) X (s) y (t) = h(t) x (t) Y (s) = X (s) (s+1)(s+2) H (s) Transfer Function h(t) Impulse Response Y (s) X (s) = 1 (s+1)(s+2) Transfer Function LTI Systems (1A) 3

Everlasting & Causal Exponential Function exponential function e st = e σ t + i ω t s = σ + i ω sinusoid function e st = e i ω t s = i ω everlasting exponential function everlasting sinusoid function applied at t = applied at t = e st e i ωt causal exponential function causal sinusoid function applied at t = applied at t = e st u(t) e i ωt u(t) LTI Systems (1A) 31

Sinusoidal Functions and Initial Conditions everlasting sinusoid function causal sinusoid function applied at t = applied at t = e i ωt u(t) zero state (no initial conditions) non-zero state at t = + sin(ω t) sin(ω t)u (t) cos(ωt ) cos(ωt )u(t) creates zero conditions at time t = non-zero conditions at time t = + LTI Systems (1A) 32

ZSR to an everlasting exponential input input applied at t = - δ(t ) e s t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H (s)e s t y (t) = h(t ) e s t + = h(τ)e s(t τ) d τ + = e s t h(τ)e s τ d τ h(t ) = (t < ) = e s t H (s) + H (s) = h(τ)e s τ d τ LTI Systems (1A) 33

Forced Response to a causal exponential input input applied at t = δ(t) e ζ t u(t) (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) y y (1) y (N 1) ZIR i i natural ZSR c i e λ i t + h(t) K i e λ i t + βe ζ t forced initial conditions initial conditions at time t = at time t = + y n (t ) = y n (t ) + y p (t ) K 1 e λ 1 t + K 2 e λ 2t + K N e λ N t + {y ( N 1) ( + ),, y (1) ( + ), y( + )} = i K i K i e λ i t LTI Systems (1A) 34

Everlasting Exponential Total Response input applied at t = - δ(t ) e s t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H (s)e s t ZSR Laplace Transform of h(t) + H (s) = h(τ)e s τ d τ Polynomials of Differential Equation for a given s = ζ ZSR y (t) = H (ζ)e ζ t < t < + H (s) = P(s) Q(s) Transfer function (t-domain) H (s) = [ y (t ) x(t ) ]x(t )=e st y (t) = H (ζ)x (t) Y (s) = H (s) X (s) x(t ) = e ζ t Transfer function (s-domain) H (s) = Y (s) X (s) LTI Systems (1A) 35

Transfer Function & Frequency Response input applied at t = - δ(t ) e s t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H (s)e s t input applied at t = - δ(t ) e j ω t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H ( j ω)e j ω t y (t) = h(t ) e s t s = σ+ j ω y (t) = h(t ) e j ω t s = j ω + = h(τ)e s(t τ) d τ + = h(τ)e j ω(t τ) d τ + = e s t h(τ)e s τ d τ h(t ) = (t < ) + = e j ω t h(τ)e j ω τ d τ h(t ) = (t < ) = e s t H (s) = e j ω t H ( j ω) + H (s) = h(τ)e s τ d τ Transfer function + H ( j ω) = h(τ)e j ω τ d τ Frequency response LTI Systems (1A) 36

Frequency Response Laplace Transform of h(t) Fourier Transform of h(t) + H (s) = h(τ)e s τ d τ s = σ+ j ω + H ( j ω) = h(τ)e j ω τ d τ s = j ω Polynomials of Differential Equation Polynomials of Differential Equation H (s) = P(s) Q(s) s = σ+ j ω H ( j ω) = P( j ω) Q( j ω) s = j ω Transfer function (t-domain) Frequency response (t-domain) H (s) = [ y (t ) x(t ) ]x(t )=e st s = σ+ j ω H ( j ω) = [ y (t ) x(t ) ]x (t )=e jω t s = j ω Transfer function (s-domain) Frequency response (ω-domain) H (s) = Y (s) X (s) s = σ+ j ω H ( j ω) = Y ( j ω) X ( j ω) s = j ω LTI Systems (1A) 37

ZSR to everlasting sinusoidal inputs e + j ω t h(t ) H (+ j ω)e + j ω t = H (+ j ω) e + j arg{h (+ j ω)} e + j ω t e j ω t h(t ) H ( j ω)e j ω t = H ( j ω) e + j arg{h ( j ω)} e j ω t e + j ω t + e j ω t h(t ) H (+ j ω) e [+ j ω t +arg{h (+ j ω)}] [ j ω t+arg{h ( j ω)}] + H ( j ω) e = H (+ j ω) {e [+ j ω t +arg {H (+ j ω)}] + e [ j ω t arg{h (+ j ω)}] } 2 cos(ω t) h(t ) H ( j ω) 2cos(ω t+arg {H ( j ω)}) A cos(ωt +α) h(t ) A H ( j ω) cos(ωt +α+arg{h ( j ω)}) A sin (ω t+α) h(t ) A H ( j ω) sin (ω t+α+arg {H ( j ω)}) LTI Systems (1A) 38

Sinusoidal Steady State Response (1) input applied at t = ZIR ZSR δ(t) e ζ t (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) y y (1) y (N 1) i i natural c i e λ i t + h(t) K i e λ i t + βe ζt forced input applied at t = - δ(t ) e s t zero initial conditions (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) h(t ) H (s)e s t total response steady state response natural forced forced y (t) = i K i e λ i t + H (ζ)e ζ t t y ss (t) = H (ζ)e ζ t t y (t) = i K i e λ i t + H (ζ)x(t) x(t) = e ζ t y ss (t) = H (ζ) x(t ) x (t) = e ζ t Y (s) = [ i K i (s λ i ) + H (s) ] X (s) Y ss (s) = H (s) X (s) LTI Systems (1A) 39

Sinusoidal Steady State Response (2) input applied at t = ZIR ZSR δ(t) e ζ t (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) y y (1) y (N 1) i i natural c i e λ i t + h(t) K i e λ i t + βe ζt forced steady state response x(t) = A h(t ) y ss (t ) = H () A e t (N 1) y ξ = = A H () y y (1) x(t) = A e j ωt ξ = j ω h(t ) y y (1) y (N 1) y ss (t ) = H ( j ω) A e jωt = A H ( j ω) e jω x(t) = A cos(ωt ) h(t ) y y (1) y ss (t ) = H ( j ω) A cos(ωt ) (N 1) ξ = j ω y = A H ( j ω) cos(ω t) LTI Systems (1A) 4

Sinusoidal Steady State Response (3) y ss (t ) = H () A e t = A H () x(t) = A ξ = input applied at t = ZIR ZSR δ(t) e ζ t (1, a 1,, a N 1, a N ) h(t ) (b, b 1,, b N 1, b N ) y y (1) y (N 1) i i natural c i e λ i t + h(t) K i e λ i t + βe ζ t forced steady state response steady state response Forced response Forced response steady state response y ss (t ) = H ( j ω) A cos(ωt ) x(t) = A cos(ωt ) = A H ( j ω) cos(ω t) ξ = j ω LTI Systems (1A) 41

Frequency Response y ss (t ) = H ( j ω) A cos(ωt ) x(t) = A cos(ωt ) = A H ( j ω) cos(ω t) ξ = j ω ω 1 ω 1 ω 2 ω 3 ω 1 ω 2 ω 2 ω 3 ω 3 http://en.wikipedia.org/wiki/file:bode_low-pass.png LTI Systems (1A) 42

Transient Response y ss (t ) = H () A e t = A H () x(t) = A ξ = Natural + Forced response transient response http://en.wikipedia.org/wiki/file:high_accuracy_settling_time_measurements_figure_1.png http://en.wikipedia.org/wiki/file:step_response_for_two-pole_feedback_amplifier.png LTI Systems (1A) 43

Frequency Response in Control Theory (1) A 2 +B 2 cos(ωt θ) G(s) ( ) G( j ω) A 2 +B 2 cos(ω t θ+arg {G( j ω)}) A cos(ωt)+b sin(ωt ) A cos(ωt)+b sin(ωt ) = A 2 +B 2 [ A cos(ωt )+ B sin(ω A 2 + B 2 A 2 + B t)] 2 = A 2 +B 2 [cos(θ)cos(ωt)+sin(θ)sin(ωt )] = A 2 +B 2 cos(θ ωt ) = A 2 +B 2 cos(ωt θ) = A 2 + B 2 cos(ωt θ) cos(θ) = sin(θ) = A A 2 +B 2 B A 2 +B 2 LTI Systems (1A) 44

Frequency Response in Control Theory (2) A 2 +B 2 cos(ωt θ) G(s) G( j ω) A 2 +B 2 cos(ω( t θ+arg {G( j ω)}) ) A cos(ωt)+b sin(ωt ) = A 2 +B 2 cos(ωt θ) A s s 2 +ω + B ω 2 s 2 +ω 2 = A s+b ω s 2 +ω 2 Y (s) = A s+b ω s 2 +ω 2 G(s) = A s+b ω (s+ j ω)(s j ω) G(s) = K 1 s+ j ω + K 2 s j ω + F( s) Partial Fraction [ K 1 = A s+b ω [ (s+ j = A s+b ω s 2 +ω 2 (s j ω) ω)g(s)]s= j G(s) = ω ]s= j ω A jω+b ω 2 jω G ( j ω) = 1 ( A+ j B)G( j ω) 2 [ K 2 = A s+b ω [ (s j = A s+b ω s 2 +ω 2 (s+ j ω) ω)g(s)]s=+ G(s) = A j ω+b ω j ω ]s=+ j ω +2 j ω G(+ j ω) = 1 ( A j B)G(+ j ω) 2 LTI Systems (1A) 45

Frequency Response in Control Theory (3) A 2 +B 2 cos(ωt θ) G(s) G( j ω) A 2 +B 2 cos(ω( t θ+arg {G( j ω)}) ) Y (s) = K 1 s+ j ω + K 2 s j ω + F( s) K 1 = 1 2 ( A+ j B)G( j ω) K 2 = 1 ( A j B)G(+ j ω) 2 A± j B = A 2 + B 2[ A A 2 +B 2 ± j = A 2 +B 2 [cos θ ± j sin θ ] = A 2 + B 2 e ± j θ B ] A 2 +B 2 Stable System e p i e σ i lim t f (t ) = lim s system modes p i <, σ i < s F (s) = Ignore F (s) Y ss (s) = K 1 s+ j ω + K 2 s j ω K 1 = 1 2 A2 +B 2 e + jθ G( j ω) K 2 = 1 2 A 2 +B 2 e j θ G ( j ω) LTI Systems (1A) 46

Frequency Response in Control Theory (4) A 2 +B 2 cos(ωt θ) G(s) G( j ω) A 2 +B 2 cos(ω( t θ+arg {G( j ω)}) ) Y ss (s) = K 1 s+ j ω + K 2 s j ω = 1 2 ( A + j B)G( j ω) 1 s+ j ω + 1 2 ( A j B)G(+ j ω) 1 s j ω = 1 2 A 2 +B 2 e + jθ G( j ω) 1 s+ j ω + 1 A 2 +B 2 e jθ 1 G(+ j ω) 2 s j ω A 2 +B 2 y ss (t ) = [G( j ω)e jωt e + jθ 2 + G(+ j ω)e + jωt e jθ ] A 2 +B 2 = [G(+ j ω)e j(ωt θ) 2 + G(+ j ω)e + j( ωt θ) ] = A 2 +B 2 R{G(+ j ω) e + j(ωt θ) } = A 2 +B 2 G(+ j ω) cos(ωt θ+arg{g(+ j ω)}) LTI Systems (1A) 47

Impulse Response h(t) http://en.wikipedia.org/wiki/ LTI Systems (1A) 48

Impulse Response h(t) http://en.wikipedia.org/wiki/ LTI Systems (1A) 49

Impulse Response h(t) http://en.wikipedia.org/wiki/ LTI Systems (1A) 5

Impulse Response h(t) LTI Systems (1A) 51

References [1] http://en.wikipedia.org/ [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 23 [3] M. J. Roberts, Fundamentals of Signals and Systems [4] S. J. Orfanidis, Introduction to Signal Processing [5] B. P. Lathi, Signals and Systems