Φυσική για Μηχανικούς

Σχετικά έγγραφα
Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΚΕΦΑΛΑΙΟ 2.1 ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Φυσική για Μηχανικούς

ΙΣΧΥΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ ΕΝΕΡΓΕΙΑΣ

Περι-Φυσικής. Θέµα Α. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική. Ονοµατεπώνυµο: Βαθµολογία % (α) µόνο από το µέτρο της δύναµης.

Φυσική για Μηχανικούς

Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση

Φυσική για Μηχανικούς

υ r 1 F r 60 F r A 1

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

4 Έργο-Ενέργεια. 4.1 Έργο Δύναμης. Έργο-Ενέργεια 1. Το έργο W μίας σταθερής δύναμης F που μετατοπίζει σώμα κατά x είναι W = F x συνθ.

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Φυσική για Μηχανικούς

ΕΡΓΑΣΙΑ 8 ΚΙΝΗΣΗ ΜΕ ΔΥΝΑΜΕΙΣ ΠΟΥ ΔΕΝ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΚΑΙ ΤΡΙΒΗ

γραπτή εξέταση στο μάθημα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΗΥ112 - Φυσική 1 3 o Φροντιστήριο - Έργο και Ενέργεια. Επιμέλεια: Ηλίας Παπαβασιλείου

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Θεώρημα μεταβολής της Κινητικής ενέργειας

A Λυκείου 9 Μαρτίου 2013

Επιμέλεια : Γαβριήλ Κωνσταντίνος Καθηγητής Φυσικής

ΗΥ112 - Φυσική 1 3 o Φροντιστήριο - Έργο και Ενέργεια. Επιμέλεια: Νάντια Μανώλη Μεταπτυχιακή Φοιτητρια

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Περι - Φυσικής. Θέµα Α. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική. Ονοµατεπώνυµο: Βαθµολογία % (α) µόνο από το µέτρο της δύναµης.

Κεφάλαιο M8. Διατήρηση της ενέργειας

Έργο Δύναμης Έργο σταθερής δύναμης

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

Ευθύγραμμη ομαλή κίνηση

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Οκτωβρίου-2011

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016

A Λυκείου 9 Μαρτίου 2013

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια.

Όπου m είναι η μάζα του σώματος και υ η ταχύτητά του.

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΥ 2016

ΕΡΓΑΣΙΑ 2 ΕΡΓΟ-ΕΝΕΡΓΕΙΑ

Κεφάλαιο 8 Διατήρηση της Ενέργειας

ii) 1

Κεφάλαιο 5. Ενέργεια συστήματος

1 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

1 η Ενότητα Κλασική Μηχανική

Απάντηση: α) 16,0 Ν, β) 10,2 Ν

Φυσική για Μηχανικούς

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Φυσική Α Λυκείου. Συνδυαστικά Προβλήματα Επανάληψης. m 1

3.2. Διατήρηση της Ορμής. Ομάδα Γ.

ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017

ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017

ΘΕΜΑ Α. Στις ερωτήσεις Α 1 έως Α 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

3 ος νόμος του Νεύτωνα Δυνάμεις επαφής δυνάμεις από απόσταση

F Στεφάνου Μ. 1 Φυσικός

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

Φυσική για Μηχανικούς

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s;

Φυσική για Μηχανικούς

ΑΣΚΗΣΕΙΣ ΒΑΣΙΣΜΕΝΕΣ ΣΤΟ 8 Ο ΜΑΘΗΜΑ

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ

Λύση Ισχύει : ΔΡ 1 = Ρ 1 Ρ 1 ΔΡ 1 = m 1 υ 1 m 1 υ 1 m 1 υ 1 = ΔΡ 1 + m 1 υ 1 υ 1 = (ΔΡ 1 + m 1 υ 1 ) / m 1 υ 1 = [ (6)] / 1 υ 1 = 2 m / s. Η αρ

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου

Φυσική για Μηχανικούς

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

3ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Λυκείου

ΘΕΜΑ Α. Αρχή 1 ης Σελίδας

Εργο Θεώρημα Έργου ενέργειας. Ισχύς

0. Ασκήσεις επανάληψης.

β) Ε Φ Α Ρ Μ Ο Γ Η 1 2 α)

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 10-Οκτωβρίου-2009

ΦΥΣ. 131 Τελική εξέταση: 10-Δεκεμβρίου-2005

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

Για τις επόμενες τέσσερες ερωτήσεις ( 1η έως και 4η)) να επιλέξετε την σωστή πρόταση, χωρίς δικαιολόγηση

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Transcript:

Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις τεχνικές που θα δούμε σε αυτή τη διάλεξη.

Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις τεχνικές που θα δούμε σε αυτή τη διάλεξη.

Γνωρίσαμε τρείς μεθόδους αποθήκευσης ενέργειας σε ένα σύστημα Κινητική ενέργεια Σχετίζεται με την κίνηση των μελών του συστήματος Δυναμική ενέργεια Σχετίζεται με τη διάταξη του συστήματος Εσωτερική ενέργεια Σχετίζεται με τη θερμοκρασία του συστήματος

Θα αναλύσουμε προβλήματα με χρήση της έννοιας της ενέργειας για δυο διαφορετικά είδη συστημάτων Απομονωμένα (κλειστά) isolated Δε μεταφέρεται ενέργεια από/προς το σύστημα Σταθερή συνολική ενέργεια Αρχή Διατήρησης της Ενέργειας ΑΔΕ Αρχή Διατήρησης Μηχανικής Ενέργειας ΑΔΜΕ αν δρουν ΜΟΝΟ συντηρητικές δυνάμεις στο σύστημα Μη απομονωμένα non-isolated Ενέργεια μπορεί να μεταφερθεί έξω από το σύστημα Αλλαγή στη συνολική ενέργεια του συστήματος Αρχή Διατήρησης της Ενέργειας ΑΔΕ Θεώρημα Μεταβολής Κινητικής Ενέργειας Έργου ΘΜΚΕ

Μη απομονωμένα συστήματα Σύστημα βρίσκεται σε «επικοινωνία» με το περιβάλλον του μέσω μεταφοράς ενέργειας Θεώρημα Μεταβολής Κινητικής Ενέργειας Έργου Εξωτερική δύναμη αλλάζει μέσω έργου την κινητική ενέργεια ενός σώματος Προς το παρόν, έχουμε δει μόνο το έργο ως μέσο μεταφοράς ενέργειας σε ένα σύστημα Φυσικά, υπάρχουν κι άλλοι τρόποι

Αν η συνολική ενέργεια σε ένα σύστημα αλλάζει, αυτό συμβαίνει ΜΟΝΟΝ αν η ενέργεια έχει μεταφερθεί στο περιβάλλον του συστήματος, με κάποιον από τους προαναφερθέντες μηχανισμούς. Διατήρηση της Ενέργειας ΔE system = T όπου E system είναι η συνολική ενέργεια του συστήματος (κάθε μορφής), και T είναι το ποσό της ενέργειας που μεταφέρεται εκτός συστήματος με κάποιο μηχανισμό

Συμβολίζοντας κάθε είδους μηχανισμό ΔK + ΔU + ΔE int = W + Q + T Mηχ.Κυμ. + T Mετ.Ύλης + T Ηλ.Μετ. + T Ηλ/Μη.Ακτ. Αν W = Q = T Mηχ.Κυμ. = T Mετ.Ύλης = T Ηλ.Μετ. = T ΗλΜη.Ακτ. = 0 τότε το σύστημα είναι απομονωμένο Περισσότερα γι αυτό, λίγο αργότερα Θεώρημα Μεταβολής Κινητικής Ενέργειας-Έργου ΔU = ΔE int = Q = T Mηχ.Κυμ. = T Mετ.Ύλης = T Ηλ.Μετ. = T Ηλ/Μη.Ακτ. = 0

Απομονωμένα (κλειστά) συστήματα Δεν υπάρχει «διαφυγή» ενέργειας με κανένα τρόπο Αρχή Διατήρησης Μηχανικής Ενέργειας ΑΔΜΕ ΔE mech = ΔΚ + ΔU = 0 μόνον όταν ασκούνται συντηρητικές δυνάμεις! Αρχή Διατήρησης της Ενέργειας ΑΔΕ ΔE system = ΔΚ + ΔU + ΔE int = 0 αν ασκούνται και μη συντηρητικές δυνάμεις, δηλ. σε κάθε περίπτωση!

Παράδειγμα: Μπάλας μάζας m πέφτει από ύψος h. Α) Βρείτε την ταχύτητα της μπάλας σε ύψος y. Το σύστημα θα είναι η μπάλα και η Γη. B) Υπολογίστε ξανά το Α) ερώτημα θεωρώντας ως σύστημα την μπάλα.

Παράδειγμα Λύση: Μπάλας μάζας m πέφτει από ύψος h. Α) Βρείτε την ταχύτητα της μπάλας σε ύψος y. Το σύστημα θα είναι η μπάλα και η Γη.

Παράδειγμα - Λύση: Μπάλας μάζας m πέφτει από ύψος h. B) Υπολογίστε ξανά το Α) ερώτημα θεωρώντας ως σύστημα την μπάλα.

Παρουσία τριβής, αποδεικνύεται ότι για ένα μη απομονωμένο σύστημα W other forces = ΔK + f k d όπου d η διαδρομή που διένυσε το σώμα του συστήματος και τα παραπάνω έργα W other forces δεν περιλαμβάνουν τη δύναμη τριβής Αλλαγή στην εσωτερική ενέργεια λόγω τριβών εντός συστήματος ΔE int = f k d Άρα W other forces = W total = ΔK + ΔE int

Παράδειγμα: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Α) Βρείτε την ταχύτητα του σώματος όταν αυτό μετατοπιστεί κατά 3 m, εάν η επιφάνεια επαφής έχει συντελεστή τριβής ολίσθησης 0.15 Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Α) Βρείτε την ταχύτητα του σώματος όταν αυτό μετατοπιστεί κατά 3 m, εάν η επιφάνεια επαφής έχει συντελεστή τριβής ολίσθησης 0.15

Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Αν μια μη-συντηρητική δύναμη δρα σε ένα απομονωμένο σύστημα, τότε ΔK + ΔU + ΔE int = 0 ΔE mech = ΔE int Για ένα μη-απομονωμένο σύστημα, W other forces = W = ΔK + ΔU + ΔE int

Παράδειγμα: Δυο σώματα είναι συνδεδεμένα με αβαρές και ανελαστικό σχοινί που περνά από τροχαλία χωρίς τριβές. Το σώμα μάζας m 1 βρίσκεται σε οριζόντια επιφάνεια με τριβές και συνδέεται με ελατήριο σταθεράς k. Το σύστημα θεωρείται αρχικά σε ηρεμία. Αν το σώμα μάζας m 2 πέφτει κατά απόσταση h πριν έρθει σε ηρεμία, υπολογίστε το συντελεστή τριβής ολίσθησης ανάμεσα στο σώμα μάζας m 1 και της επιφάνειας.

Παράδειγμα Λύση: σώμα μάζας m 1 σε οριζόντια επιφάνεια με τριβές και συνδέεται με ελατήριο, το σύστημα θεωρείται αρχικά σε ηρεμία, σώμα μάζας m 2 πέφτει κατά απόσταση h πριν έρθει σε ηρεμία, υπολογίστε το συντελεστή τριβής ολίσθησης ανάμεσα στο σώμα μάζας m 1 και της επιφάνειας.

Παράδειγμα: Αναγνωρίστε τη διάταξη του προηγούμενου συστήματος που ανταποκρίνεται σε κάθε γράφημα ενέργειας

Γνωρίζουμε ότι έργο == μεταφορά ενέργειας Ερώτημα: Πόσο γρήγορα μεταφέρεται η ενέργεια? Αν θέλετε να αγοράσετε έναν κινητήρα για να κινεί ένα ασανσέρ μάζας 1500 kg για 5 ορόφους, έχει μεγάλη σημασία αν ο κινητήρας το κάνει σε 30 s ή σε 30 min! Το «πόσο γρήγορα» υποδηλώνει ένα ρυθμό Ρυθμό μεταφοράς ενέργειας == ισχύς P (Power) P = de dt Μονάδα μέτρησης: 1 Watt = 1 J/s

Εναλλακτικά, η ισχύς μπορεί να ιδωθεί ως ο ρυθμός παραγωγής έργου Μέση ισχύς σε διάστημα Δt Στιγμιαία ισχύς P avg = ΔE Δt = W Δt P = lim Δt 0 P avg = dw dt = F d r dt = F v

Παράδειγμα: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. Α) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας του ασανσέρ για να σηκώσει το ασανσέρ και τους επιβάτες του με σταθερή ταχύτητα u = 3 m/s? B) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας τη στιγμή που ο ανελκυστήρας έχει ταχύτητα u, αν επιταχύνει τον ανελκυστήρα με σταθερή επιτάχυνση a = 1 m/s 2 προς τα πάνω?

Παράδειγμα Λύση: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. Α) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας του ασανσέρ για να σηκώσει το ασανσέρ και τους επιβάτες του με σταθερή ταχύτητα u = 3 m/s?

Παράδειγμα Λύση: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. B) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας τη στιγμή που έχει ταχύτητα u, αν επιταχύνει τον ανελκυστήρα με σταθερή επιτάχυνση α = 1 m/s 2 προς τα πάνω?

Τέλος Διάλεξης