Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Σχετικά έγγραφα
Resilient static output feedback robust H control for controlled positive systems

ER-Tree (Extended R*-Tree)

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Motion analysis and simulation of a stratospheric airship

Quick algorithm f or computing core attribute

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

High order interpolation function for surface contact problem

New conditions for exponential stability of sampled-data systems under aperiodic sampling

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Fragility analysis for control systems

Adaptive grouping difference variation wolf pack algorithm

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Buried Markov Model Pairwise

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Single-value extension property for anti-diagonal operator matrices and their square

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

A research on the influence of dummy activity on float in an AOA network and its amendments

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

The straight-line navigation control of an agricultural tractor subject to input saturation

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Congruence Classes of Invertible Matrices of Order 3 over F 2

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Identificatio n of No n2uniformly Perio dically Sa mpled Multirate Syste ms

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Control Theory & Applications PID (, )

Prey-Taxis Holling-Tanner

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Research on real-time inverse kinematics algorithms for 6R robots

A summation formula ramified with hypergeometric function and involving recurrence relation

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Probabilistic Approach to Robust Optimization

Research on model of early2warning of enterprise crisis based on entropy

CorV CVAC. CorV TU317. 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Homomorphism in Intuitionistic Fuzzy Automata

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

U(t,x) R m w i, i = 1,2,... t = τ i W R p º f(t,x,u) g(x,w) (t,x,u) [t 0,+ ) R n R m (x,w) R n R p ¹ U(t,x) (t,x) [t 0,+ ) R n

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Gain self-tuning of PI controller and parameter optimum for PMSM drives

supporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z

, -.

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

[4-7] Rosenbrock ( ) Runge-Kutta(RK)

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Detection and Recognition of Traffic Signal Using Machine Learning

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Experimental Study of Dielectric Properties on Human Lung Tissue

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

CAP A CAP

Approximation Expressions for the Temperature Integral

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Simplex Crossover for Real-coded Genetic Algolithms

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Reading Order Detection for Text Layout Excluded by Image

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Trajectory tracking of quadrotor based on disturbance rejection control

Lifting Entry (continued)

Arbitrage Analysis of Futures Market with Frictions

Fractional Colorings and Zykov Products of graphs

,,, (, ) , ;,,, ; -

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Sampling Basics (1B) Young Won Lim 9/21/13

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Study of urban housing development projects: The general planning of Alexandria City

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

The ε-pseudospectrum of a Matrix

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Contents Introduction to Filter Concepts All-Pole Approximations

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Digital Signal Octave Codes (0B)

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Second Order RLC Filters

Commutative Monoids in Intuitionistic Fuzzy Sets

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

The Simulation Experiment on Verifying the Convergence of Combination Evaluation

Ηλεκτρονικοί Υπολογιστές IV

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Transcript:

29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with multiple equilibrium points GUO Rong-wei 12 WANG Yu-zhen 1 (1 School of Control Science and Engineering Shandong University Jinan Shandong 250061 China; 2 School of Science Shandong Polytechnic University Jinan Shandong 250353 China) Abstract: We investigate the estimation of the stability region of a class of switched linear systems with multiple equilibrium points and put forward a number of new results in this research Using the component-wise ultimate-bound method we estimate the stability region for a switched linear system with multi-equilibrium points when the system is switching around any switching path or around switching paths with dwell time not less than the minimum dwell time In comparison with the existing results the obtained estimate of the stability region is more precise and less conservative in the estimation property Numerical simulation of an illustrative example shows the correctness and effectiveness of the proposed method Key words: multi-equilibrium switched system; regional stability analysis; stability region; component-wise ultimatebound method 1 (Introduction) 20 [1 7] Lyapunov(common Lyapunov function CLF) Lyapunov (multiple Lyapunov function MLF) Lyapunov Lyapunov [8] [9] LyapunovLyapunov 2011 03 23; 2011 06 22 (G61074068 G61034007 G60774009); (G20040422059); (ZR2010FM013)

410 29 [10] Lyapunov [11 12] (practical stability) [13] () [11] ẋ = A σ(t) x + E σ(t) w(t) (1) w(t) R p w(t) w(t) W W Lyapunov 2 (Preliminaries) ẋ = A σ(t) (x x e σ(t)) (2) x R n σ(t): [t 0 ) I = {1 2 3 N} σ(t) = i(i = 1 2 3 N) i A i i Hurwitz x e i = (x e 1i x e 2i x e ni) T i i I x e 1 xe N : x e 1i x e ji j {2 3 N} i = 1 2 n x e Ni x e ji j {1 2 N 1} i=1 2 n σ(t) = i m I (t [t m t m+1 ) m = 0 1 2 ) {t m } + m=0 t 0 < t 1 < t 2 < < t m < < + t m+1 = (2)i m [t m + ) (2)[t m + ) t m + m + t t 0 (2) 1 x e i 0 i I (2) ẋ = A σ(t) x (3) (2)(3) 1 () [10] x 0 R n σ(t) x σ(t) (t; t 0 x 0 ) (2)x 0 Ω k R n k N lim dis(x σ(t) (t; t 0 x 0 ) Ω k ) = 0 (2)Ω k Ω k (SRR) dis(x σ(t) (t; t 0 x 0 ) Ω k ) := inf{ x y : x = x σ(t) (t; t 0 x 0 ) y Ω k } Ω k k (2) 2 (SRR)Ω k Ω k x e i 0 i I (2) T (3) Ω k = {0} Ω k = {0} (2)(3) (2) (3) Ω k [10] 1 (2) A i (i I)LyapunovV 0 (x) (2) (SRR) Ω = {x R n : V 0 (x x) C} (4) k

4 411 x = 1 N x e i C = λ 1λ 2 4 N i=1 λ 2 2 (5) λ 4 = λ 3 max i( x x e i ) i I (6) λ i > 0 i = 1 2 3 (3) V 0 (x) λ 1 x 2 (7) V 0 (x) (i) = T V 0 (x) A i (x) λ 2 x 2 i I (8) V 0(x) λ 3 x (9) V 0 (x) = x T P x P (SRR) Ω = { x R n : (x x) T P (x x) C p } (10) C p = 4λ 1 µ 2 λ 1 = λ max (P ) (11) µ = max i I A i( x x e i ) (12) λ max ( ) RC; x(t) lim x(t); M M Re M ; nxy X Y X Y X Y X ij Y ij i j = 1 2 3 n (13) n X M(X) { Re X ij i = j M(X) = (14) X ij i j M R n n M ik i k M ik 0 MMetzler MMetzlere Mt 0 t 0 2 [12] ẋ = A(t)x(t) + v(t) (15) A(t) R n n v(t) R n x(0) 0 x(t) 0 t 0 B R n n Metzler B A(t) 0 t 0 ẏ = By(t) + v(t) (16) y(0) x(0) 0 y(t) x(t) t 0 3 [12] ẋ = Ax(t) + v(t) (17) A R n n Metzler v(t) R n w t 0 w ẏ = Ay(t) + w (18) y(0) x(0) y(t) x(t) t 0 3 (Main results) (2) 1 (2) Q C n n Λ i = Q 1 A i Q Λ = max i) i I (19) Z = max i I Q 1 A i ( x x e i ) (20) M( )(14) x(5) Λ i A i i I Λ Hurwitz (2) (SRR) Ω = {x R n : x x Q Λ 1 Z} (21) (2) ẋ = A σ(t) (x x) + E σ(t) w(t) (22) E σ(t) = A σ(t) w(t) = ( x x e σ(t) ) w(t) w(t) W W (22)(1) (2) x (2) (22) (2) (22) [11] (22) Ω = {x R n : x x Q Λ 1 Z 0 } Z 0 = max [ max Q 1 E i w ] i I w: w W E i = A i w i = ( x x e i ) i I Z 0 = Z (22) Ω = {x R n : x x Q Λ 1 Z} (2)Ω 3 (2) x (2)1

412 29 A i (i Λ) Lyapunov 1V 0 (x) Lyapunov(2) 2 (2) A i (i I)LyapunovV (i) 0 (x)(i I) (2)τ τ 0 Ω = N Ω i (23) j i=1 Ω i = {x R n : V (i) 0 (x x) C i } (24) x = 1 N x e i C i = λ(i) 1 ( 4 ) 2 N i=1 ( 2 ) 2 (25) 4 = 3 A i ( x x e i ) i I (26) > 0 j = 1 2 3 i I (3) V (i) 0 (x) 1 x 2 (27) V (i) 0 (x) (i) = T V (i) 0 (x) A i x 2 x 2 (28) T V (i) 0 (x) 3 x i I (29) τ 0 ẋ = A σ(t) x V i (x) = V (i) 0 (x x) C i V i (x) 0 x Ω i V i (x) > 0 x R n \Ω i V i (x) (i) = T V (i) 0 A i(x x e i ) = T V (i) 0 A i(x x) + T V (i) 0 A i( x x e i ) 2 x x 2 + 4 x x = g i (x x) g i (x x) = 2 x x 2 4 x x S i = {x R n : g i (x x) 0} g i (x x) 0 2 x x 2 4 x x 0 x x λ(i) 4 2 (27) V (i) 0 (x x) 1 ( 2 ) 2 1 x x 2 ( 2 ) 2 = C i x S i i I x Ω N S i Ω i=1 i I [8] τ τ 0 ẋ = A σ(t) x τ τ 0 V (i) 0 (x k+1 ) V (i) 0 (x k ) i I (31) V i (x k+1 ) V i (x k ) i I (32) R n \Ωτ τ 0 (30) τ τ 0 (2) Ω 21 3 (2) Q i C n n (i I) Λ i = Q 1 i A i Q i Λi = M(Λ i ) (33) Z = max i I Q 1 i A i ( x x e i ) (34) M( )(14) x(5) Λ i A i Λ i Hurwitz i I (2)τ τ 0 (SRR) Ω = N Ω i (35) i=1 Ω i = {x R n : x x Q i Λ 1 i Z} (36) τ 0 ẋ = A σ(t) x 2 τ τ 0 (2) (2) (2) (22) x = Q i z (22)i ż = Λ i (z z) + Q 1 i E i w(t) i I (37) z = Q 1 i x z(t) z(t) z = e jθ(t) ρ(t) ρ(t)z(t) z j j 2 = 1 θ(t) V i (x) (i) = g i (x x) < 0 x R n \Ω (30) θ(t) = diag{θ 1 (t) θ 2 (t) θ n (t)} (38)

4 413 θ k (t) = arg{z k (t)} k = 1 2 n (39) z(t) z = ρ(t) (37) ż = je jθ(t) θ(t)ρ(t) + e jθ(t) ρ(t) = Λ i e jθ(t) θ(t) + Q 1 E i w(t) (40) (40)e jθ(t) j θ(t)ρ(t) + ρ(t) = e jθ(t) Λ i e jθ(t) ρ(t)+e jθ(t) Q 1 i E i w(t) (41) (41) ρ(t) = N i (t)ρ(t) + γ i (t) (42) N i (t) = Re{e jθ(t) Λ i e jθ(t) } (43) γ i (t) = Re{e jθ(t) Q 1 E i w(t)} i I (44) (38) (39) { Re{[Λi ] lk } l = k [N i (t)] lk = Re{e j(θi(t) θ k(t)) [Λ i ] lk } l k N i (t) M(Λ i ) M(Λ i ) Λ i N i (t) Λ i γ i (t) Z ẏ(t) = Λ i y(t) + γ i (t) (45) Ẏ (t) = Λ i Y (t) + Z (46) (42)(45) 2 ρ(t) y(t) (45)(46) 3 y(0) ρ(0) Y (t) ρ(t) lim sup Q 1 i (x(t) x) = lim lim ρ(t) lim sup y(t) Y (t) = Λ 1 i Z (47) (22)i Ω i = {x R n : x x Q i 1 Λ i Z} τ τ 0 (22) Ω i i I τ τ 0 (2) Ω 4 V i V i I (2) Ω V i (i I) 3 1 3 τ 0 e Ait L i e αit L i > 0 α i < 0 i I [8] 4 (Example) 1 ẋ = A i (x x e i ) (48) i I = {1 2} x e 1 = (0 0) x e 2 = (1 2) ( ) ( ) 22 03 14 09 A 1 = A 2 = 08 08 24 56 P ( ) A 1 A 2 1 3 P = 4 2 ( ) P 1 1 0 A 1 P = P 1 A 2 P = ) ( 5 0 A 1 A 2 Lyapunov 1 V (x) = x T x λ 1 = 1 µ = 39962 C = 638785 Ω 1 = {x R 2 : x x 79924} A 1 A 2 Lyapunov V (x) = x T x Q = P Q1 1 ( ) ( ) 1 0 5 0 Λ 1 = Λ 2 = ) Λ = max i I M(Λ i) = ( 1 0 Z = max i I Q 1 A i ( x x e i ) = 1 ( ) 06 05 Ω 2 ={x R 2 : x 1 x 1 135 x 2 x 2 29} Ω 2 Ω 1 (2) 1 [x 1 (0) x 2 (0)] = [51 10]

[1] BRANICKY M Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[j] IEEE Transactions on Au- 414 29 2 t [t 2m t 2m+1 ) tomatic Control 1998 43(4): 475 482 t 2m+1 t 2m = 01 rand; [2] CHENG D LIN Y WANG Y Controllability of switched bilinear σ(t) = 1 t [t 2m+1 t 2m+2 ) systems[j] IEEE Transactions on Automatic Control 2005 50(4): 511 515 t 2m+2 t 2m+1 = 01 rand m = 0 1 2 rand (0 1) 1(1 1 ) [3] CHENG D GUO L LIN Y et al Stabilization of switched linear systems[j] IEEE Transactions on Automatic Control 2005 50(5): 661 666 [4] DAAFOUZ J RIEDINGER P IUNG C Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach[j] IEEE Transactions on Automatic Control 2002 47(11): 1883 1887 [5] LIBERZON D MORSE A Basic problems in stability and design of switched systems[j] IEEE Control System Maganize 1999 19(5): 59 70 [6] LIBERZON D TEMPO R Common Lyapunov functions and gradient algorithms[j] IEEE Transactions on Automatic Control 2004 49(6): 990 994 [7] LIN H ANTSAKLIS P Stability and stabilizability of switched linear systems: a survey of recent results[j] IEEE Transactions on Automatic Control 2008 53(1): 1 15 1 Fig 1 The region and the state response 1 Lyapunov 1 5 (Conclusions) (References): [8] GUO R WANG Y Stability analysis for a class of switched linear systems[j/ol] Asian Journal of Control 2013 15(2): 1 10 DOI: 101002/asjc365 [9] NI W CHENG D HU X Minimum dwell time for stability and stabilization of switched linear systems[c] //Proceedings of the 7th World Conference on Intelligent Control and Automation Piscataway NJ: IEEE 2008: 4109 4115 [10] GUO R WANG Y Region stability analysis for switched linear systems with multiple equilibria[c] //Proceedings of the 29th Chinese Control Conference Piscataway NJ: IEEE 2010: 986 991 [11] HAIMOVICH H SERON M Componentwise ultimate bound and invariant set computation for switched linear systems[j] Automatica 2010 46(11): 1897 1901 [12] HAIMOVICH H SERON M Componentwise ultimate bound computation for switched linear systems[c] //Proceedings of the 28th Chinese Control Conference Piscataway NJ: IEEE 2009: 16 18 [13] XU X ZHAI G Practical stability and stabilization of hybrid and switched systems[j] IEEE Transactions on Automatic Control 2005 50(11): 1897 1903 (1979 ) E-mail: rwguo@mailsdueducn; (1963 ) E-mail: yzwang @sdueducn