Femtosecond laser pulses

Σχετικά έγγραφα
3 Frequency Domain Representation of Continuous Signals and Systems

Lecture 12 Modulation and Sampling

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Fourier transform of continuous-time signals

ω = radians per sec, t = 3 sec

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Space-Time Symmetries

D-Wave D-Wave Systems Inc.

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

BandPass (4A) Young Won Lim 1/11/14

6.003: Signals and Systems

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fourier Transform. Fourier Transform

Matrices and Determinants

6.4 Superposition of Linear Plane Progressive Waves

Fourier Series. Fourier Series

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Riemann Hypothesis: a GGC representation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Math 6 SL Probability Distributions Practice Test Mark Scheme

What happens when two or more waves overlap in a certain region of space at the same time?

Second Order RLC Filters

Solutions - Chapter 4

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

6.003: Signals and Systems. Modulation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Finite Field Problems: Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

4.4 Superposition of Linear Plane Progressive Waves

4.6 Autoregressive Moving Average Model ARMA(1,1)

Durbin-Levinson recursive method

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Math221: HW# 1 solutions

Lecture 2. Soundness and completeness of propositional logic

Example Sheet 3 Solutions

Positive dispersion: 2 n. ω > 0, 2 n. Negative dispersion: ω < 0, 2 n

Part 4 RAYLEIGH AND LAMB WAVES

F19MC2 Solutions 9 Complex Analysis

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Χρονοσειρές Μάθημα 3

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Calculating the propagation delay of coaxial cable

A. Two Planes Waves, Same Frequency Visible light

Uniform Convergence of Fourier Series Michael Taylor

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

6.003: Signals and Systems. Modulation

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Supporting Information

LASER και ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΤΗΣ ΑΠΕΙΚΟΝΙΣΗΣ

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Section 8.3 Trigonometric Equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Inverse trigonometric functions & General Solution of Trigonometric Equations

EE512: Error Control Coding

Approximation of distance between locations on earth given by latitude and longitude

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Assignment 1 Solutions Complex Sinusoids

Hartree-Fock Theory. Solving electronic structure problem on computers

CT Correlation (2B) Young Won Lim 8/15/14

The Student s t and F Distributions Page 1

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ITU-R P (2012/02) khz 150

Outline. Detection Theory. Background. Background (Cont.)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Ψηφιακή Επεξεργασία Φωνής

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

Galatia SIL Keyboard Information

CRASH COURSE IN PRECALCULUS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

C.S. 430 Assignment 6, Sample Solutions

The ε-pseudospectrum of a Matrix

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

14.5mm 14.5mm

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Spectrum Representation (5A) Young Won Lim 11/3/16

Bounding Nonsplitting Enumeration Degrees

Multi-dimensional Central Limit Theorem

Concrete Mathematics Exercises from 30 September 2016

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design


Supporting Information

PARTIAL NOTES for 6.1 Trigonometric Identities

Transcript:

Femosecon laser pulses Inroucion on femosecon lasers Numerical analysis Compuer conrolle experimens Lab wor

Pulse shaping Femosecon laser pulses : lab wor Time omain eraher specroscopy Specral inerferomery Average e Curren na 4-1 3 4 Time ps Wavelengh

Femosecon laser pulses Sessions 1 an 3 : Inroucion o basic noions - Femosecon laser pulses - Use of Mlbf Malab for aa processing Sessions 4-9 : experimenal wor a Laboraoire Opique e Biosciences hp://www.enseignemen.polyechnique.fr/profs/physique/manuel.joffre/ea/ manuel.joffre@polyechnique.fr

Orers of magniue Perio Frequency Wavelengh λ λ ct 3 as 3 PH X rays 1 nm ν 33 as 3 PH 1 nm Ulra-viole -15 333 as 3 PH 1 nm 3 fs 33 fs 333 fs Visible 3 TH 1 µm 3 TH 3TH Infrare 1 µm 1 µm 1fs 1 1 as 1 c -18 s s.3µm/fs c 3 ps 33 ps 3 GH Micro waves 1 mm 3 GH 1 mm Raio waves

Inroucion o femosecon lasers 1. Represenaion of a femosecon pulse. Linear propagaion 3. Nonlinear propagaion 4. Femosecon laser sources

Represenaion of a femosecon pulse fs E Fourier ransform Joseph Fourier 1768-183 E E exp iϕ E Frequency Ampliue Phase

Properies of Fourier ransforms - 1 Parseval Plancherel heorem Complex conjugaion TF Derivaion TF TF

Properies of Fourier ransforms - Proucs an convoluion proucs TF TF avec Transforms of usual funcions δ f f

Represenaion of a femosecon pulse E E * + E E exp i Elecric fiel π E E exp iϕ E Specral ampliue ϕ Specral phase I E Specral linensiy i or specrum E real E E * E + *

φ E From real fiel o analyic represenaion E * Θ E + * E Θ exp iφ Complex fiel or analyic represenaion Θ [ [E]] cf Hilber ransform * + E Re φ Temporal phase I Temporal inensiy

Average values in ime an frequency We wrie A so ha is normalie : 1 π Δ Δ ² ² Pulse cener Cenral frequency carrier frequency π Δ Pulse uraion RMS Δ Specral wih RMS Δ Δ 1 Δ Δ

Group elay i i * π * i exp ϕ i exp ϕ ϕ i i + π ϕ π i + ϕ ϕ τ g Group elay ime of arrival of frequency componen τ g Group elay ime of arrival of frequency componen τ Pulse ime of arrival τ g Pulse ime of arrival

RMS pulse uraion i π exp ϕ i exp ϕ ϕ i i + π ϕ π + π π τ g + ϕ g τ g τ τ ϕ g g + Δ ϕ g g g τ ϕ Δ + Δ Δ

Pulse uraion an specral phase iϕ exp ϕ : specral phase τ g ϕ : group elay Δ Δ ϕ + Δτ g For a given he shores possible pulse is achieve when τ g is frequency inepenen Δτ g. This is a so-calle Fourier ransform limie pulse. Conversely when τ g varies wih frequency here is a frequency chirp.

1 ϕ ϕ Quaraic specral phase : Pulse lenghening an chirp ϕ τ ϕ g Δ Δϕ + ϕ Various frequency componens arrive one a a ime : frequency chirp. Δ ϕ τ g g E

Ranom specral phase : incoheren fiel Ch hamp élec crique SPECTRE 1 3 1 8 6 4 5 15 1 5 3 35 4 Fréquence [TH] Δ Δϕ + Δτ ϕ g 5 Phase [r] Champ élecrique Inensié 15 1 5-5 -1 PROFIL TEMPOREL -15-6 -4-4 6 Temps [fs] 16 14 1 1 8 6 4-6 -4-4 6 Temps [fs]

Specral wih an emporal phase iφ exp φ : emporal phase π φ φ Ω : insananeous frequency φ Δ Δ φ + ΔΩ Δ φ Ω E ² Δ

Linear propagaion of a femosecon pulse where : Propagaion equaion : n. c + Soluion : exp i Thus : ϕ ϕ + Group elay: ϕ ϕ τ g + τ g + V g Group velociy V g 1 V g

Linear ispersion in a ransparen meium n α Specre e l'impulsion L IR Zone e ransparence UV à 8 nm L 1cm Quaniy Definiion Uni SiO SF1 Phase inex n c / - 1.453 1.711 Group inex n g c - 1.467 1.751 Group velociy V 1/ c / µm/fs.4.171 g n g GVD Group Velociy Dispersion i f²/ fs²/cm 361 159 Group elay τ ϕ L fs 49E3 58E3 g GDD Group Delay Dispersion τ ϕ LL fs² 361 159 g TOD Thir Orer Dispersion τ ϕ L fs 3 74 111 g

Linear ispersion in a ransparen meium n α Specre e l'impulsion L IR Zone e ransparence UV 1 + + +... 1 ϕ ϕ + + + ϕ τ + + g τ g +... + The pulse acquires a quaraic specral phase resuling from group velociy ispersion GVD hus a frequency chirp....

Pulse lenghening 1 1 + + + ϕ ϕ + + τ ϕ τ g g + + τ τ Δ + Δ Δ Δ Δ Relaion hols for any pulse shape

Pulse envelope u is by efiniion he pulse envelope. u exp i u exp i + u is always cenere a. u is always cenere a. 1 exp i + + 1 u exp i u

From he soluion o he equaion i u u 1 exp p u i u u u u i NB : Slowly varying envelope approximaion i.e. conra-propagaing wave no aen ino accoun aen ino accoun.

Analogy wih he propagaion of a wavepace in quanum mechanics in quanum mechanics x ψ u x x m x i ψ ψ h h u u i x m i ψ ψ h h u u i m i ψ h u i exp i ϕ ψ ψ exp ϕ i u u m h ϕ 1 ϕ

Linear propagaion of a femosecon pulse Meium : fuse silica. n 1.4533 n g 1.4671 375 fs²/cm. Gaussian pulse. λ 8 nm.

Linear propagaion of a femosecon pulse Meium : fuse silica. n 1.4533 n g 1.4671 375 fs²/cm. Hypergaussian pulse. λ 8 nm.

3. Nonlinear propagaion

Nonlinear opics Linear regime Non-linear regime

Opical Kerr effec Thir-orer polariaion n I n + n I

Auofocusing nr n I n + n I ϕ x y π n + n I x y L λ

Generaion of specral coninuum n n + ni φ φ + n + n I v c c φ φ Φ Ω

Generaion of specral coninuum Ecole Polyechnique phoo G. Labroille P. Lavialle M. Joffre NB : Opical Kerr effec is only one of several nonlinear effecs conribuing o coninuum generaion.

4. Femosecon laser sources

Superposiion of longiuinal moes Frequency omain δ δ Time omain π/δ

General scheme for a femosecon laser Broaban amplifying meium L cav Energy gy source

A evice wih negaive ϕ" : he prism pair Dispersive Milieu ispersif meium GVD GVD compensaion

Anoher evice wih negaive ϕ" : he chirpe mirror

General scheme for a femosecon laser Group Velociy Dispersion Compensaion To achieve moe locing i is sufficien o mae sure ha losses are greaer when he specral phase is no fla i.e. when he pulse is longer. Moe-locing mechanism L cav Broaban amplifying meium Energy gy source

Dye laser Moe-locing mechanism : saurable absorban Mécanisme e blocage es moes : absorban saurable 6 nm.1 nj 3 fs 1 MH R6G AS Laser Argon

Tianium:Sapphire P.F. Moulon JOSAB 3 15 1986

Tianium:Sapphire laser Ti:S 8 nm nj 1 fs 1 MH Pump laser Moe-locing mechanism : Opical Kerr effe nr Ti:S

Tianium:Sapphire laser elivering ulrashor pulses 5.4 fs U. Morgner F. X. Kärner S. H. Cho Y. Chen H. A. Haus J. G. Fujimoo E. P. Ippen V. Scheurer G. Angelow T. Tschui Sub-wo-cycle pulses from a Kerr-lens moe-loce Ti:sapphire laser Op. Le. 4 411 1999.

Commercially available femosecon oscillaors 1 fs.7 1µm 1. 14 fs.7 -.93 µm hp://www.cohereninc.com/ 1 fs 8 nm hp://www.specraphysics.com/ 5 fs 1.55 µm hp://www.femolasers.com/ hp://www.menlosysems.com/

LOB Examples of femosecon amplifiers A. Bonvale e al. 1 mj / 1 fs 1 GW @ 1 H

Examples of femosecon amplifiers Laboraoire Opique Appliquée ENSTA Ecole Polyechnique 1J / 3 fs 3 TW @ 1 H

Examples of femosecon amplifiers Laboraoire Livermore Eas-Unis 1J/1ps 1 1PW