ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ

Σχετικά έγγραφα
ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)

ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim

1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï

ÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT

1. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï

Ìáèáßíïõìå ôéò áðïäåßîåéò

ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ

ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â

å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ.

ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ. 27 Μαΐου (Εαρινό εξάμηνο 2002) ΚΑΝΟΝΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΗΣ ΕΞΕΤΑΣΕΩΣ

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας

Τυπικές Γλώσσες. Μεταγλωττιστές. (μέρος 1ο) Νίκος Παπασπύου, Κωστής Σαγώνας

[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á.

Estimation Theory Exercises*

Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí

1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.)

Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ

ÄÉÁÍÕÓÌÁÔÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò Âáóéêïß ïñéóìïß

3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ

ÐÁÍÅÐÉÓÔÇÌÉÏ ÐÅËÏÐÏÍÍÇÓÏÕ ÁÊÁÄÇÌÁÚÊÏ ÅÔÏÓ ÔÑÉÐÏËÇ

ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß

ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

Åîéóþóåéò 1ïõ âáèìïý

ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αναδρομικές Συναρτήσεις.

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÐÉÍÁÊÅÓ ÔÉÌÙÍ ÁÍÔÉÊÅÉÌÅÍÉÊÙÍ ÁÎÉÙÍ

ËáíèÜíïõóá ÓçìáóéïëïãéêÞ ÁíÜëõóç

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος

B i o f l o n. Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí

ÌÜèçìá 3ï: ÁíáäñïìéêÝò Åîéóþóåéò

Εφαρμοσμένα Μαθηματικά

ÐÏËËÁÐËÁ ÏËÏÊËÇÑÙÌÁÔÁ

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αποδεικτικό Σύστημα.

Ramsey's Theory or something like that.

ËÕÓÇ ÐÁÑÁÄÅÉÃÌÁÔÙÍ ÃÑÁÌÌÉÊÇÓ ÁËÃÅÂÑÁÓ ÌÅ ÔÇ ÑÇÓÇ ÔÏÕ MAPLE

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç

ÁÐÁÍÔÇÓÅÉÓ ÄÏÈÅÍÔÙÍ ÈÅÌÁÔÙÍ

1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç

ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ

ÓÅÉÑÅÓ. ÌÜèçìá Áêïëïõèßåò áñéèìþí Ïñéóìüò áêïëïõèßáò

Ç íýá Ýííïéá ôïõ ýðíïõ!

Íá èõìçèïýìå ôç èåùñßá...

Μηχανική του Συνεχούς Μέσου

ÅÍÏÔÇÔÁ 5ç ÔÁ Ó ÇÌÁÔÁ

ÊåöÜëáéï 2. Ôáíõóôéêüò Ëïãéóìüò. 2.1 Ôé åßíáé ôï äéüíõóìá;

Èåùñßá ÃñáöçìÜôùí: ÔáéñéÜóìáôá

6936 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ

ΙΣΤΙΟΠΛΟΪΚΟΣ ΑΓΩΝΑΣ : ΑΣΠΡΟΝΗΣΟΣ Ο ΗΓΙΕΣ ΠΛΟΥ

ÅÑÃÁÓÉÁ ÃÉÁ ÔÏ ÌÁÈÇÌÁ: ÅÉÓÁÃÙÃÇ ÓÔÇÍÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ. ÅðéìïñöùôÞò: Â. Á. ÄÏÕÃÁËÇÓ

ΘΕΜΑ: Τροποποίηση κατηγοριών στα εγκεκριµένα ενιαία τιµολόγια εργασιών για έργα οδοποιϊας.

Èåùñßá ÃñáöçìÜôùí: Óýíïëá Áíåîáñôçóßáò, Óýíïëá ÊÜëõøçò, êáé ñùìáôéêüò Áñéèìüò

Εφαρμοσμένα Μαθηματικά

ÓÔÁÔÉÊÏÓ ÇËÅÊÔÑÉÓÌÏÓ Ðåñéå üìåíá

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Χημεία Θετικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

3524 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι. Αθανάσιος Μπράτσος

Union of Pure and Applied Chemistry).

Εφαρμοσμένα Μαθηματικά

ΣΕΡΙΦΟΣ ΣΕΡΙΦΟΥ ΓΑΛΑΝΗΣ

4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò

Cel animation. ÅöáñìïãÝò ðïëõìýóùí

ÄåóìåõìÝíç ðéèáíüôçôá êáé áíåîáñôçóßá ÁóêÞóåéò

ÐñïêáôáñêôéêÝò ÌáèçìáôéêÝò ííïéåò

ÓÅÉÑÁ FOURIER. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

J-Y(St)Y Ôçëåöùíéêü êáëþäéï åóùôåñéêïý þñïõ ìå èùñüêéóç êáôü VDE 0815

6 s(s 1)(s 3) = A s + B. 3. Íá âñåèåß ï ìåô/ìüò Laplace ôùí ðáñáêüôù óõíáñôþóåùí

Μηχανική του Συνεχούς Μέσου

ΜΑΘΗΜΑ 1. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ -

Ðñïêýðôïõí ôá ðáñáêüôù äéáãñüììáôá.

ÖÅÊ 816 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) ÏÄÇÃÉÅÓ ÐÁ ÔÇ ÓÕÌÐËÇÑÙÓÇ ÔÇÓ ÁÉÔÇÓÇÓ ÅÃÊÅÊÑÉÌÅÍÏÕ ÁÐÏÈÇÊÅÕÔÇ Ï ÇÌÁÔÙÍ 1. ÇÌÅÑÏÌÇÍÉÁ: ÁíáãñÜöåô

ιαδικασία åãêáôüóôáóçò MS SQL Server, SingularLogic Accountant, SingularLogic Accountant Ìéóèïäïóßá

245/Á/1977). 2469/1997 (ÖÅÊ 36/Á/1997). 1484/Â/ ).

10.1 (ÕÐÏ)ÏÑÈÏÈÅÔÅÓ ÊÁÉ ÓÕÍÈÅÔÉÊÅÓ ÓÅÉÑÅÓ

11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ. Αθανάσιος Μπράτσος

Transcript:

55

56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 5.1 ÅéóáãùãÞ Ïñéóìüò: íá óýíïëï V êáëåßôáé äéáíõóìáôéêüò þñïò Þ ãñáììéêüò þñïò ðüíù óôïí IR áí (á) ôï V åßíáé êëåéóôü ùò ðñïò ôç ðñüóèåóç, äçëáäþ áí a, b V, ôüôå (a + b) V êáé éó ýïõí ôá ðáñáêüôù áîéþìáôá: (i) a + b = b + a, a, b V (ii) a + (b + c) = (a + b) + c, a, b, c V (iii) V, ôï ïðïßïí êáëåßôáé ìçäåíéêü óôïé åßï, ôýôïéï þóôå a + = + a = a, a V (iv) a V, ( a) V, ôï ïðïßï êáëåßôáé áíôßèåôï óôïé åßï, ôýôïéï þóôå a + ( a) =. (â) ôï V åßíáé êëåéóôü ùò ðñïò ôï âáèìùôü ðïëëáðëáóéáóìüò, äçëáäþ a V êáé k IR ïñßæåôáé ôï óôïé åßï ka V, ôï ïðïßï êáëåßôáé âáèìùôü ðïëëáðëüóéï ôïõ a åðß ôï k. Åðßóçò éó ýïõí ôá ðáñáêüôù áîéþìáôá: (i) k(a + b) = ka + kb, (ii) (k + λ)a = ka + λa, (iii) k(λa) = (kλ)a, (iv) 1a = a, a V k IR, a, b V k, λ IR, a V k, λ IR, a V

5.1. ÅéóáãùãÞ 57 Óçìåéþóåéò: 1. Ãéá êüèå äéáíõóìáôéêü þñï ôï ìçäåíéêü óôïé åßï åßíáé ìïíáäéêü. 2. Ãéá êüèå óôïé åßï a V, ôï áíôßèåôï ôïõ óôïé åßï åßíáé ìïíáäéêü. Éäéüôçôåò: óôù üôé V åßíáé Ýíáò äéáíõóìáôéêüò þñïò, a V êáé k IR, ôüôå (i) 0a = (ii) k = (iii) ( 1)a = a (iv) Áí ka =, ôüôå k = 0 Þ a =. Áðüäåéîç ôïõ (i): ÃñÜöïõìå 0a + 0a = (0 + 0)a 0a + 0a = 0a ÐñïóèÝôïõìå êáé óôá äýï ìýëç 0a, ãéá íá âñïýìå [0a + 0a] + ( 0a) = 0a + ( 0a) 0a + [0a + ( 0a)] = 0a + = 0a = Ðáñáäåßãìáôá äéáíõóìáôéêþí þñùí 1. V = IR n. ÄçëáäÞ, ôï óýíïëï ôùí äéáíõóìüôùí óôïí IR n åßíáé Ýíáò äéáíõóìáôéêüò þñïò ðüíù óôïí IR, åðåéäþ (á) áí a, b IR n ôüôå (a + b) IR n (â) áí a IR êáé k IR ôüôå ka IR n Åðßóçò éêáíïðïéïýíôáé üëá ôá áîéþìáôá (éäéüôçôåò ôùí äéáíõóìüôùí). 2. óôù üôé V åßíáé ôï óýíïëï ôùí n n ðéíüêùí. Èá äåßîïõìå üôé åßíáé Ýíáò äéáíõóìáôéêüò þñïò óôçí ðåñßðôùóç üðïõ n = 2. óôù [ ] [ ] a11 a A = 12 b11 b êáé B = 12 a 21 a 22 b 21 b 22

58 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ (á) Ôï V åßíáé êëåéóôü ùò ðñïò ôç ðñüóèåóç åðåéäþ [ ] [ ] [ a11 a A+B = 12 b11 b + 12 a11 + b = 11 a 12 + b 12 a 21 a 22 b 21 b 22 a 21 + b 21 a 22 + b 22 ] V (i) A + B = B + A (ii) A + (B + C) = (A + B) + C (iii) Ôï ìçäåíéêü óôïé åßï åßíáé = [ 0 0 0 0 A + = A [ ] a11 a (iv) Ôï áíôßèåôï óôïé åßï åßíáé ( A) = 12. a 21 a 22 [ ] [ ] [ ] a11 a A + ( A) = 12 a11 a + 12 0 0 = = a 21 a 22 a 21 a 22 0 0 (â) Ôï V åßíáé êëåéóôï ùò ðñïò ôï âáèìùôü ðïëëáðëáóéáóìü åðåéäþ [ ] [ ] a11 a ka = k 12 ka11 ka = 12 V a 21 a 22 ka 21 ka 22 ([ ] [ ]) a11 a (i) k(a + B) = k 12 b11 b + 12 = ka + kb a 21 a 22 b 21 b 22 (ii) (k + λ)a = ka + λa (iii) k(λa) = (kλ)a [ ] [ ] a11 a (iv) 1A = 1 12 a11 a = 12 = A a 21 a 22 a 21 a 22 3. óôù üôé V åßíáé ôï óýíïëï ôùí ðïëõùíýìùí a 0 + a 1 t + a 2 t 2 + + a n t n, ].

5.1. ÅéóáãùãÞ 59 üðïõ ïé óõíôåëåóôýò a 0, a 1, a 2,..., a n IR. Ôï V åßíáé Ýíáò äéáíõóìáôéêüò þñïò óôïí IR åðåéäþ ôï Üèñïéóìá äýï ðïëõùíýìùí åßíáé ßóï ìå ðïëõþíõìï êáé áí ðïëëáðëáóéüóïõìå Ýíá ðïëõþíõìï ìå Ýíá ðñáãìáôéêü áñéèìü, èá ìáò äþóåé Ýíá ðïëõþíõìï. Åðßóçò ôá áîéþìáôá éêáíïðïéïýíôáé. 4. óôù üôé V åßíáé ôï óýíïëï ôùí óõíáñôþóåùí f(x), ïé ïðïßåò åßíáé ëýóåéò ôùí ãñáììéêþí äéáöïñéêþí åîéóþóåùí d 2 y dx + a(x)dy + b(x)y = 0. 2 dx óôù f 1 (x), f 2 (x) V, äçëáäþ åßíáé ëýóåéò ôçò ðéï ðüíù äéáöïñéêþò åîßóùóçò, êáé d 2 f 1 dx 2 + a(x)df 1 dx + b(x)f 1 = 0 d 2 f 2 dx 2 + a(x)df 2 dx + b(x)f 2 = 0 óôù y = f 1 (x) + f 2 (x), ôüôå d 2 dx (f 2 1 + f 2 ) + a(x) d dx (f 1 + f 2 ) + b(x)(f 1 + f 2 ) = ( ) ( d 2 f 1 dx + d2 f 2 df1 + a(x) 2 dx 2 dx + df ) 2 + b(x)(f 1 + f 2 ) = dx ( ) ( ) d 2 f 1 dx + a(x)df 1 d 2 2 dx + b(x)f f 2 1 + dx + a(x)df 2 2 dx + b(x)f 2 = 0 ñá ç (f 1 (x)+f 2 (x)) åßíáé ëýóç ôçò äéáöïñéêþò åîßóùóçò êáé åðïìýíùò (f 1 (x) + f 2 (x)) V. Ìå ôïí ßäéï ôñüðï, ìðïñïýìå íá äåßîïõìå üôé kf 1 (x) V, üðïõ k IR. Ôá áîéþìáôá éó ýïõí êáé åðïìýíùò ôï óýíïëï V åßíáé Ýíáò äéáíõóìáôéêüò þñïò.

60 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 5. Ôï óýíïëï ôùí ïñéóìýíùí ïëïêëçñùìüôùí óôï äéüóôçìá [a, b], äçëáäþ I = b a f(x)dx åßíáé Ýíáò äéáíõóìáôéêüò þñïò åðåéäþ êáé b f(x)dx + b g(x)dx = b a a a [f(x) + g(x)]dx k b a f(x)dx = b a kf(x)dx 5.2 Äéáíõóìáôéêïß õðü ùñïé Ïñéóìüò: íá ìç-êåíü õðïóýíïëï W ôïõ äéáíõóìáôéêïý þñïõ V åßíáé Ýíáò õðü ùñïò ôïõ V áí êáé ìüíï áí éó ýïõí ïé óõíèþêåò: (á) áí a, b W, ôüôå (a + b) W (â) áí k IR, a W, ôüôå (ka) W Óçìåßùóç: Ï ðéï ðüíù ïñéóìüò ìðïñåß íá äïèåß êáé äéáöïñåôéêü ùò åîþò: Ôï õðïóýíïëï W åßíáé õðü ùñïò ôïõ V áí êáé ìüíï áí (ka + λb) W, k, λ IR êáé a, b W. Ðáñáäåßãìáôá äéáíõóìáôéêþí õðü ùñùí 1. ÊÜèå äéáíõóìáôéêüò þñïò V Ý åé äýï õðü ùñïõò, ôïí V êáé ôïí { }. ÊÜèå Üëëïò õðü ùñïò êáëåßôáé ãíþóéïò õðü ùñïò. 2. Ôï IR 3 åßíáé Ýíáò äéáíõóìáôéêüò þñïò. Ôï õðïóýíïëï ôïõ IR 3, w = (λ, 0, µ), üðïõ λ, µ IR (äçëáäþ, ôï õðïóýíïëï ôùí äéáíõóìüôùí ôïõ IR 3 ðïõ Ý ïõí ôçí äåýôåñç óõíôåôáãìýíç ßóç ìå ìçäýí) åßíáé Ýíáò

5.2. Äéáíõóìáôéêïß õðü ùñïé 61 õðü ùñïò ôïõ IR 3 åðåéäþ áí a = (a 1, 0, a 3 ), (b 1, 0, b 3 ) êáé k 1, k 2 IR, ôüôå (k 1 a + k 2 b) = (k 1 a 1 + k 2 b 1, 0, k 1 a 3 + k 2 b 3 ) w. 3. Ôï óýíïëï ôùí 2 2 ðéíüêùí åßíáé äéáíõóìáôéêüò þñïò. óôù ôï õðïóýíïëï W, åßíáé üëïé ïé 2 2 ðßíáêåò ðïõ Ý ïõí ôá óôïé åßá ôçò êýñéáò äéáãùíßïõ ßóá ìå ìçäýí. óôù A, B W, äçëáäþ, A = [ 0 a12 a 21 0 ], B = [ 0 b12 b 21 0 ] êáé k, λ IR. Ôüôå [ ka + λb = 0 ka 12 + λb 12 ka 21 + λb 21 0 ] W. ñá ôï õðïóýíïëï W åßíáé õðü ùñïò. 4. óôù üôé W åßíáé ôï õðïóýíïëï ôùí 2 2 ðéíüêùí ôùí ïðïßùí ôá óôïé åßá åßíáé áêýñáéïé áñéèìïß. Ôï õðïóýíïëï W åßíáé êëåéóôü ùò ðñïò ôç ðñüóèåóç åðåéäþ ôï Üèñïéóìá äýï áêåñáßùí åßíáé áêýñáéïò. ¼ìùò ôï W äåí åßíáé êëåéóôü ùò ðñïò ôï âáèìùôü ðïëëáðëáóéáóìü åðåéäþ ôï ãéíüìåíï ka, üðïõ k R êáé a ZZ äåí åßíáé êáôü áíüãêç áêýñáéïò. ÅðïìÝíùò ôï õðïóýíïëï W äåí åßíáé õðü ùñïò. 5. Ôï óýíïëï ôùí ðïëõùíýìùí ôñßôïõ âáèìïý, P 3 = a 0 + a 1 x + a 2 x 2 + a 3 x 3 åßíáé äéáíõóìáôéêüò þñïò. óôù üôé W åßíáé ôï õðïóýíïëï ôïõ P 3 ìå a 0 + a 1 + a 2 + a 3 = 0. óôù f, g W, äçëáäþ, êáé f = a 0 + a 1 x + a 2 x 2 + a 3 x 3 ìå a 0 + a 1 + a 2 + a 3 = 0 g = b 0 + b 1 x + b 2 x 2 + b 3 x 3 ìå b 0 + b 1 + b 2 + b 3 = 0

62 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ Ôþñá, áí k, λ IR, kf +λg = (ka 0 +λb 0 )+(ka 1 +kb 1 )x+(ka 2 +λb 2 )x 2 +(ka 3 +λb 3 )x 3 W åðåéäþ (ka 0 + λb 0 ) + (ka 1 + kb 1 ) + (ka 2 + λb 2 ) + (ka 3 + λb 3 ) = k(a 0 + a 1 + a 2 + a 3 ) + λ(b 0 + b 1 + b 2 + b 3 ) = k0 + λ0 = 0. ñá ôï õðïóýíïëï W åßíáé õðü ùñïò. 5.3 Ãñáììéêüò óõíäõáóìüò Ïñéóìüò: óôù üôé V åßíáé Ýíáò äéáíõóìáôéêüò þñïò óôïí IR, v 1, v 2,..., v k V êáé λ 1, λ 2,..., λ k IR. ÊÜèå äéüíõóìá a V ðïõ ãñüöåôáé óôç ìïñöþ a = λ 1 v 1 + λ 2 v 2 + + λ k v k êáëåßôáé ãñáììéêüò óõíäõáóìüò ôùí v 1, v 2,..., v k. ÐáñÜäåéãìá: Íá åîåôáóôåß áí ôá äéáíýóìáôá (2, 2, 2) êáé (0, 4, 5) åßíáé ãñáììéêüò óõíäõáóìüò ôùí a = (0, 2, 2) êáé b = (1, 3, 1). Ëýóç:

5.3. Ãñáììéêüò óõíäõáóìüò 63 Ïñéóìüò: Áí v 1, v 2,..., v k åßíáé äéáíýóìáôá ôïõ äéáíõóìáôéêïý þñïõ V êáé áí êüèå äéüíõóìá óôïí V ìðïñåß íá åêöñáóôåß ùò ãñáììéêüò óõíäõáóìüò áõôþí ôùí äéáíõóìüôùí, ôüôå ëýìå üôé ôá v 1, v 2,..., v k ðáñüãïõí ôïí äéáíõóìáôéêü þñï V. ÐáñÜäåéãìá: Ôá äéáíýóìáôá e 1 = (1, 0, 0), e 2 = (0, 1, 0) êáé e 3 = (0, 0, 1) ðáñüãïõí ôïí äéáíõóìáôéêü þñï IR 3, åðåéäþ êüèå äéüíõóìá óôïí IR 3 ãñüöåôáé ùò ãñáììéêüò óõíäõáóìüò ôùí e 1, e 2 êáé e 3. Ãéá ðáñüäåéãìá, a = (1, 2, 3) = 1e 1 + 2e 2 + 3e 3 b = ( 1, 0, 2) = 1e 1 + 0e 2 + 2e 3 ÐáñÜäåéãìá: Ôá ðïëõþíõìá 1, x, x 2,..., x n ðáñüãïõí ôïí äéáíõóìáôéêü þñï P n (óýíïëï ôùí ðïëõùíýìùí âáèìïý n). Ïñéóìüò: Áí v 1, v 2,..., v k åßíáé äéáíýóìáôá ôïõ äéáíõóìáôéêïý þñïõ V, ôüôå ôï óýíïëï W üëùí ôùí ãñáììéêþí óõíäõáóìþí ôùí v 1, v 2,..., v k åßíáé õðü ùñïò ôïõ V.

64 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 5.4 ÃñáììéêÞ áíåîáñôçóßá Ïñéóìüò: Áí S = {v 1, v 2,..., v k } åßíáé Ýíá óýíïëï äéáíõóìüôùí, ôüôå ç äéáíõóìáôéêþ åîßóùóç λ 1 v 1 + λ 2 v 2 + + λ k v k =, üðïõ λ 1, λ 2,..., λ k IR Ý åé ôïõëü éóôïí ìéá ëýóç, ôçí λ 1 = λ 2 = = λ k = 0. Áí áõôþ åßíáé ç ìüíç ëýóç, ôüôå ôï S êáëåßôáé ãñáììéêü áíåîüñôçôï óýíïëï (Þ èá ëýìå üôé ôá äéáíýóìáôá v 1, v 2,..., v k åßíáé ãñáììéêü áíåîüñôçôá). Áí õðüñ ïõí êáé Üëëåò ëýóåéò, ôüôå ôï S êáëåßôáé ãñáììéêü åîáñôçìýíï Þ èá ëýìå üôé ôá äéáíýóìáôá v 1, v 2,..., v k åßíáé ãñáììéêü åîáñôçìýíá). ÐáñÜäåéãìá: Íá äåé èåß üôé ôï óýíïëï {(1, 0, 1), (1 1, 1), (2, 1, 2)} åßíáé ãñáììéêü åîáñôçìýíï, åíþ ôï óýíïëï {(1, 0, 1), (0, 0, 1)} åßíáé ãñáììéêü áíåîüñôçôï. Ëýóç:

5.4. ÃñáììéêÞ áíåîáñôçóßá 65 ÐáñÜäåéãìá: Íá åîåôáóôåß áí ôá äéáíýóìáôá 2 x + 4x 2, 3 + 6x + 2x 2 êáé 2 + 10x 4x 2 åßíáé ãñáììéêü áíåîüñôçôá. Ëýóç:

66 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ Èåþñçìá: íá óýíïëï S ìå äýï Þ ðåñéóóüôåñá äéáíýóìáôá åßíáé (á) ãñáììéêü åîáñôçìýíï áí êáé ìüíï áí ôïõëü éóôïí Ýíá áðü ôá äéáíýóìáôá åßíáé ãñáììéêüò óõíäõáóìüò ôùí õðïëïßðùí äéáíõóìüôùí, (â) ãñáììéêü áíåîüñôçôï áí êáé ìüíï áí êáíýíá äéüíõóìá åßíáé ãñáììéêüò óõíäõáóìüò ôùí õðïëïßðùí äéáíõóìüôùí. ÐáñÜäåéãìá: Áðü ðñïçãïýìåíï ðáñüäåéãìá, ôá äéáíýóìáôá v 1 = (1, 0, 1), v 2 = (1, 1, 1), v 3 (2, 1, 2) åßíáé ãñáììéêü åîáñôçìýíá. Ãéá ðáñüäåéãìá åß áìå v 1 +v 2 v 3 =. ñá v 1 = v 3 v 2, v 2 = v 3 v 1, v 3 = v 1 +v 2. Óçìåéþóåéò: 1. ÊÜèå óýíïëï ðïõ ðåñéý åé ôï ìçäåíéêü äéüíõóìá åßíáé ãñáììéêü åîáñôçìýíï. 2. ÊÜèå óýíïëï ìå äýï äéáíýóìáôá åßíáé ãñáììéêü åîáñôçìýíï áí êáé ìüíï áí ôï Ýíá äéüíõóìá åßíáé ðïëëáðëüóéï ôïõ Üëëïõ. Èåþñçìá: óôù üôé S = {v 1, v 2,..., v k } åßíáé Ýíá óýíïëï äéáíõóìüôùí ôïõ IR n. Áí k > n, ôüôå ôï S åßíáé ãñáììéêü åîáñôçìýíï. 5.5 ÂÜóç êáé äéüóôáóç Ïñéóìüò: Áí V åßíáé Ýíáò äéáíõóìáôéêüò þñïò êáé S = {v 1, v 2,..., v n } åßíáé Ýíá óýíïëï ìå äéáíýóìáôá ôïõ V, ôüôå ôï S êáëåßôáé âüóç ôïõ V áí ïé ðéï êüôù óõíèþêåò éó ýïõí: (á) Ôï óýíïëï S åßíáé ãñáììéêü áíåîüñôçôï. (â) Ôï óýíïëï S ðáñüãåé ôïí äéáíõóìáôéêü þñï V.

5.5. ÂÜóç êáé äéüóôáóç 67 Èåþñçìá: Áí S = {v 1, v 2,..., v n } åßíáé ìéá âüóç ôïõ äéáíõóìáôéêïý þñïõ V, ôüôå êüèå a V ìðïñåß íá åêöñáóôåß óôç ìïñöþ a = c 1 v 1 + c 2 v 2 + + c n v n ìüíï ìå Ýíá ôñüðï. (ÄçëáäÞ, ïé óôáèåñýò c 1, c 2,..., c n åßíáé ìïíáäéêü ïñéóìýíåò.) Óôï ðéï ðüíù èåþñçìá ïé óôáèåñýò c 1, c 2,..., c n êáëïýíôáé óõíôåôáãìýíåò ùò ðñïò ôç âüóç {v 1, v 2,..., v n }. Ôï äéüíõóìá v S = (c 1, c 2,..., c n ) êáëåßôáé äéüíõóìá óõíôåôáãìýíùí ôïõ V ùò ðñïò ôç âüóç S. ÐáñÜäåéãìá: Íá äåé èåß üôé ôï óýíïëï [ ] [ 1 0 0 1 M 1 =, M 0 0 2 = 0 0 ], M 3 = [ 0 0 1 0 ] [ 0 0, M 4 = 0 1 åßíáé ìéá âüóç ôïõ äéáíõóìáôéêïý þñïõ M 22 (óýíïëï ôùí 2 2 ðéíüêùí). Ëýóç: ]

68 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ ÐáñÜäåéãìá: Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ ðïëõùíýìïõ u = 2t 2 5t + 6 ùò ðñïò ôç âüóç e 1 = 1, e 2 = t 1, e 3 = (t 1) 2 Ëýóç: Ïñéóìüò: Áí ï äéáíõóìáôéêüò þñïò V Ý åé ìéá âüóç ìå n äéáíýóìáôá, ôüôå ï áñéèìüò n êáëåßôáé äéüóôáóç ôïõ V êáé ãñüöïõìå dimv = n. Óçìåéþóåéò: 1. ¼ëåò ïé âüóåéò ôïõ V Ý ïõí ôïí ßäéïí áñéèìü äéáíõóìüôùí. 2. íá óýíïëï ìå n ãñáììéêü áíåîüñôçôá äéáíýóìáôá åßíáé âüóç. 3. Áí dimv = n, ôüôå ïðïéáäþðïôå m > n äéáíýóìáôá åßíáé ãñáììéêü åîáñôçìýíá.