arxiv: v1 [math.pr] 13 Jul 2010

Σχετικά έγγραφα
Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

On Zero-Sum Stochastic Differential Games

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Approximation of the Lerch zeta-function

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

The one-dimensional periodic Schrödinger equation

LAPLACE TRANSFORM TABLE

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Υπόδειγµα Προεξόφλησης

Solutions to Exercise Sheet 5

Iterative Learning Control with a Forgetting Factor for Consensus Tracking in Multi-Agent Systems

Estimators when the Correlation Coefficient. is Negative

Chapter 3 Diode and Thyristor Rectifiers

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Το άτομο του Υδρογόνου

Latent variable models Variational approximations.

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

On homeomorphisms and C 1 maps

Homework for 1/27 Due 2/5

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

arxiv: v3 [math.pr] 23 Nov 2009

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Latent variable models Variational approximations.

! " #$% & '()()*+.,/0.

1. For each of the following power series, find the interval of convergence and the radius of convergence:

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Cycles and Multiple Equilibria in the Market for Durable Lemons

Uniform Convergence of Fourier Series Michael Taylor

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

Solve the difference equation


Parametrized Surfaces

2 Composition. Invertible Mappings

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Παράγωγα Τιμολόγηση. },P). Όπου (Ω,F,P) είναι ο χώρος πιθανοτήτων και { F n

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Second Order Partial Differential Equations

m i N 1 F i = j i F ij + F x

Chapter 15 Identifying Failure & Repair Distributions

LAD Estimation for Time Series Models With Finite and Infinite Variance

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

IIT JEE (2013) (Trigonomtery 1) Solutions

Every set of first-order formulas is equivalent to an independent set

FORMULAE SHEET for STATISTICS II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

HONDA. Έτος κατασκευής

On Quasi - f -Power Increasing Sequences

ZZ (*) 4l. H γ γ. Covered by LEP GeV

Multi-dimensional Central Limit Theorem

Fourier Series. Fourier Series

Αλληλεπίδραση ακτίνων-χ με την ύλη

Note: Please use the actual date you accessed this material in your citation.

Déformation et quantification par groupoïde des variétés toriques

Other Test Constructions: Likelihood Ratio & Bayes Tests

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

On Generating Relations of Some Triple. Hypergeometric Functions

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Microscopie photothermique et endommagement laser

MATRICES WITH CONVOLUTIONS OF BINOMIAL FUNCTIONS, THEIR DETERMINANTS, AND SOME EXAMPLES

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

8. The Normalized Least-Squares Estimator with Exponential Forgetting

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Tridiagonal matrices. Gérard MEURANT. October, 2008

Solution Series 9. i=1 x i and i=1 x i.

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Example Sheet 3 Solutions

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Generalized Normal Type-2. Triangular Fuzzy Number

met la disposition du public, via de la documentation technique dont les rιfιrences, marques et logos, sont

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a


Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Quadratic Expressions

Matrices and Determinants

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Α Ρ Ι Θ Μ Ο Σ : 6.913

Transcript:

L Soluo of Bacward Sochac Dffereal quao wh Jum Sog Yao arv:17.6v1 mah.pr 13 Jul 1 Abrac I h aer, we udy a mul-dmeoal bacward ochac dffereal equao wh jum BSDJ ha ha o-lchz geeraor ad ubouded radom me horzo. or ay 1,, we how ha he BSDJ wh a -egrable ermal codo adm a uque L -ye oluo. Keyword: Bacward ochac dffereal equao wh jum, L oluo, o-lchz geeraor. 1 Iroduco he bacward ochac equaobsd wa aed by Bmu 1973 ad laer develoed by Pardoux ad Peg 199 o a fully olear vero. I ha ce grow radly heory ad bee aled o varou area, uch a mahemacal face, ochac omal corol, ochac dffereal game ad ec ee he referece l Karou e al. 1997 or Cvać e al. 1998. ag ad L 1994 added o he BSD a jum erm ha drve by a Poo radom meaure deede of he Browa moo. Praccally eag, for examle, f he Browa moo ad for he oe from he facal mare, he he Poo radom meaure ca be erreed a he radome of he urace clam. he auhor obaed he exece ad uquee of a oluo o uch a BSDJ whe he ermal codo quare egrable ad he geeraor Lchz couou varable y, z ad u. he Pardoux 1997 relaxed he Lchz codo o varable y by aumg a mooocy codo a well a a lear growh codo o varable y ead. Laer, Rog 1997 ad Y ad Mao 8 eve degeeraed he mooocy codo o a weaer vero o a o remove he Lchz codo o varable z. he ubouded radom me horzo wa codered boh Pardoux 1997 ad Y ad Mao 8. Amog hoe effor o geeralze he heory of BSD, ome were devoed o weaeg he quare egrably of he ermal codo. l Karou e al. 1997 demoraed ha for ay -egrable ermal codo wh 1,, he BSD wh Lchz couou geeraor adm a uque oluo, whch alo -egrable. he Brad ad Carmoa reduced he Lchz codo o varable y by a rog mooocy codo a well a olyomal growh codo o varable y. Laer, Brad e al. 3 foud ha he olyomal growh codo o eceary f oe ue he mooocy codo mlar o ha of Pardoux 1997. I he ree aer, we aalyze he BSDJ wh ubouded radom me horzo ad uder a o-lchz geeraor codo whch lghly more geeral ha ha of Y ad Mao 8. We how he exece ad uquee of a L oluo of he BSDJ gve a -egrable ermal codo wo cae 1, ad,. he layou of h aer mle. Seco deal wh cae 1,. Gve he fe me horzo, we ar by emag he L orm of ayoluo of he BSDJ erm ofhe L orm ofhe ermal codo ad of he coeffce he mooocy codo, ee Prooo.1. Nex, we derve a ably-le reul Prooo., whch clam ha a equece of oluo of BSDJ a Cauchy equece L orm whe he equece of her ermal codo o ad whe he oluo afy a aymoc mooocy codo. he he Dearme of Mahemac, Uvery of Mchga, A Arbor, MI 4819; emal: ogyao@umch.edu.

L Soluo of BSD wh Jum uquee drecly follow, ee heorem.1. or he exece, we fr how he exece for a bouded ermal codo by alyg a mehod from Rog 1997 ha aroxmae he o-lchz geeraor by a equece of Lchz geeraor va covoluo moohg, ee Prooo.3. A o a -egrable ermal codo, we rucae a a bouded oe ad ue Prooo.3 ogeher wh Prooo. o oba he geeral exece reul. veually, he fe me horzo ca ealy bee relaced by ay uboud radom oe, ee Corollary.1. I eco 3, we regh he mooocy codo order o aly he cocluo of eco o ge he exece ad uquee reul for cae,, ee heorem 3.1 ad Corollary 3.1. 1.1 Noao ad Prelmare hroughou h aer we coder a comlee robably ace Ω,, P o whch a d-dmeoal Browa moo B defed. Gve a meaurable ace, B, le be a -valued Poo o roce o Ω,,P ha deede of B. Recall ha he coug meaure N d,dx of o, ha he comeaor N d,dx dxd for ome σ-fe meaure o, B. or ay,, we defe σ-feld σ,, B σ B, ad augme σ B by all P-ull e of. Clearly, he flrao { }, afe he uual hyohee cf. e.g., Proer 199. Le P deoe he -rogrevely meaurable σ-feld o, Ω. I addo, we e σ ad { } { },., Le H deoe a geerc real Hlber ace wh er roduc, H ad he duced orm x H x,xh, x H. or ay r,, we defe he followg wo fuco o H: 1 Dx 1 {x } 1 x H x ad π r x Gve l N, he followg ace of fuco wll be ued he equel: r r x H x, x H. 1 Le L 1, be he ace of all fuco ψ :,, wh ψd <, ad le L, be he ace of all fuco ψ :,, wh ψ d <. Le L L, B,;R l be he ace of all R l -valued, B-meaurable fuco u wh ux dx <. Clearly, L a real Hlber ace wh he er roduc u1,u L u1 x,u x dx, u 1,u L. or ay u L, duced orm u L { ux dx 3 or ay ub-σ-feld G of, le L G be he ace of all real-valued o-egave G-meaurable radom varable; { L G {ξ L G : ξ L G } ξ } 1 < for all 1, ; { } L G ξ L G : ξ L G eu ξω < ; ω Ω L G be he ace of all R l -valued, G-meaurable radom varable; { { L G ξ L G : ξ L G } ξ } 1 < for all 1, ; { } L G ξ L G : ξ L G eu ξω <. ω Ω 1 See Lemma A.5 ad Lemma A.6 for roere of fuco D ad π r. } 1.

1. BSD wh Jum 3 4 Le D be he ace of all Rl -valued, -adaed RCLL rocee wh D ω eu ω <. 5 or ay 1,, we le eu,ω, Ω ω Ω u, D be he ace of all Rl -valued, -adaed RCLL rocee wh D M H be he ace of all H-valued, -redcably meaurable rocee wh { } 1 M H H d < ; S D M Rl d M L. { u, } 1 I h aer, we ue he coveo f{ } ad le c deoe a geerc coa deedg oly o arcular, c ad for a geerc coa deedg o ohg, whoe form may vary from le o le. 1. BSD wh Jum Aarameerarξ,f coofaradomvarableξ L ad afuco f :, Ω R l R l d L R l uch ha f P B R l B R l d B L /BR l -meaurable. Defo 1.1. Gve a arameer ar ξ,f, a rle Y,Z,U called a oluo of he bacward ochac dffereal equao wh jum ha ha ermal codo ξ ad geeraor f BSDJξ,f for hor f he followg hold: Y a R l -valued, -adaed RCLL roce, Z a R l d -valued, -rogrevely meaurable rocee, ad U a L -valued, -rogrevely meaurable rocee uch ha f,y,z,u Z U d <, P-a..; 1.1 L hold P-a.. ha Y ξ f,y,z,u d Z db U xñd,dx,,. 1., { Here, Ñ d,dx } N d,dx dxd. Oe ow ha, Ψ xñd,dx a margale for ay L -valued, -rogrevely meaurable rocee Ψ wh Ψ L d <., Remar 1.1. 1 he wo ochac egral 1. are well-oed. o ee h, we e M Z,, ad defe -og me } τ f {, : Z d >, N. < ; Z db, } or ay N, ce {M Z a uformly egrable margale, here ex a P-ull e N τ uch ha 3, lm MZ τ ω ω ex for ay ω Nc. By 1.1, oe ca fd a P-ull e N uch ha for ay ω N, c τ ω for ome ω N. Hece, for ay ω N {} Nc, lm MZ ω lm MZ τ ω ω ex. Pu aoher way, he lm Z db lm rgh-couou, wh lm from he lef 3 See, e.g., heorem II.3.1 of Revuz ad Yor 1999. Z db ex P-a..

L Soluo of BSD wh Jum 4 Smlarly, he lm, he oe ca deduce from 1. ha U xñd,dx lm U xñd,dx ex P-a.., Y lm Y ξ, P-a.. 1.3 We ed he roduco by recallg Lemma. of Y ad Su 3, a exece ad uquee reul of BSDJ Lchz cae. Lemma 1.1. Le ξ,f be a arameer ar uch ha ξ L ad f,,, d < ; or ome φ 1 L 1, ad φ L,, hold d dp-a.e. ha f,ω,y1,z 1,u 1 f,ω,y,z,u φ 1 y 1 y φ z 1 z u 1 u L, y 1,z 1,u 1,y,z,u R l R l d L. 1.4 he he BSDJξ,f adm a uque oluo Y,Z,U S. Cae 1: 1, We ar wh a a ror emae. Prooo.1. Le ξ,f be a arameer ar wh ξ L. Suoe ha Y,Z,U a oluo of BSDJξ, f ha afe Y,f,Y,Z,U f Y a Y l Z U, d dp-a.e..1 L for wo o-egave -rogrevely meaurable rocee {f },, {a }, ad for ome coa l, 1. Se A a d,,. If A <, P-a.. ad u, he here ex a coa c,l deedg oly o ad l uch ha u, e A Y c,l e A ξ e A Z d e A Y <,. e A U Ld e A f d..3 Proof: or ay N, we defe -og me τ f {, : A f,y,z,u Z } U d >..4 L Gve,, he fuco ϕ,x x e 1,,x, R l ha he followg dervave of -h ower: ad D ϕ,x e ϕ,x, D ϕ,x ϕ,xx, {1,,l}, Dj ϕ,x ϕ,xδ j ϕ 4,xx x j,,j {1,,l}..5

. Cae 1: 1, 5 Now fx < <. or ay, ad N, alyg Iô formula 4 o e A ϕ,y over he erval τ, τ yeld ha τ e A τ ϕ τ,y τ 1 e A race Z Z D ϕ,y d τ { e A ϕ,y ϕ,y Dϕ },Y, Y τ, τ e A τ ϕ τ,y τ τ τ τ τ e A ϕ,y d e A ϕ,y Y,f,Y,Z,U a ϕ,y d M, M,, M, M, P-a..,.6 where Mr, r τ e A ϕ,y Y,Z db ad for ay r,. I follow from.5 ha M, r,r τ ϕ ea,y Y,U x Ñd,dx race Z Z D ϕ,y ϕ,y Z ϕ 4,Y ϕ O he oher had, aylor xao heorem mle ha τ, τ l d YZ j 1,Y Z ϕ 4,Y Y Z 1ϕ,Y Z..7 e A { ϕ,y ϕ,y Dϕ,Y, Y } τ, τ τ, τ 1 1 1 1 e A 1 α Y,D ϕ,y α Y dα 1 e A 1 α τ, τ τ, τ τ, τ ϕ 1 e A Y 1 αϕ j1,y α Y ϕ 4,Y α dα e A Y Y Y e 1 le Y α Y α Y,Y α Y,Y α dα e A Y Y e 1 U x N d,dx..8 I he la equaly we ued he fac ha Y α 1 αy αy Y Y. Sce all rocee.6 are RCLL oe, luggg.7,.8 ad.1 o.6 yeld ha P-a.. e A τ ϕ 1 τ τ,y τ l τ 1 τ, τ η l τ τ e A ϕ,y Z d e A Y Y e 1 U x N d,dx e A ϕ,y U M Ld, M,, M where η η, e A τ ϕ τ,y τ τ e A f ϕ 1,Y d 4 ee e.g. Ieda ad Waaabe 1981, heorem II.5.1 or Proer 199, heorem II.3 τ, M,,,.9 e A ϕ,y d.

L Soluo of BSD wh Jum 6 he Burholder-Dav-Gudy equaly,.4, Lemma A.1 ad. mly ha τ u M, u M, c e A ϕ 4,, c e c e u ϕ,y, τ u,,y Y Z ϕ 4,Y Y U d L c e e A Y 1 u Y 1, τ <, whch mle ha boh M,, ad M are uformly egrable margale. A a RCLL roce, Y jum couably may me alog P-a.. ah, more recely, {, : Y ω Y ω Y ω } a couable e for P-a.. ω Ω..1 Hece oe ca deduce ha e A Y Y e 1 U x N d,dx, τ τ e A Y Y e 1 he leg ad ag execao.9 yeld ha Le Y, τ e A ϕ,y Z U d L u e A ϕ,y,,. I follow from.9 ha, Y, τ τ ηl e A ϕ,y U L d τ U x dxd e A ϕ,y U.11 L d. 1 1 l η..1 u, he Burholder-Dav-Gudy equaly mle ha u M, u M, M c,,m, 1 M,, M,1,, 1 τ c c e A ϕ 4,Y Y Z d { Y τ, τ 1 Y, τ τ c { e A ϕ,y Z d 1 Y, τ τ c e A ϕ,y where we ued.1 he la equaly. 1, τ, τ M, u M,,..13 e A ϕ 4,Y Y U x N d,dx τ e A ϕ,y Z d e A ϕ,y Z U L e A ϕ,y U x N d,dx U x dxd 1 } 1 d,.14 Now, le c,l deoe a geerc coa deedg oly o ad l, whoe form may vary from le o le. Lemma A.1,.4 ad. mly ha Y, τ e A Y e <. u, }

. Cae 1: 1, 7 he luggg.1 ad.14 o.13, we ca deduce from Youg Iequaly ad Lemma A.1 ha Y, τ c,l η c,l e A τ Y τ Y, τ τ 1 τ e A f d e A d c,l J 1 Y, τ,.15 where J J, e A τ Y τ e A f d e. I he ecod equaly above we ued he fac ha ϕ,y e 1,,ω, Ω. he follow from.15 ha u e A Y Y, τ c,l J,.16, τ ad ha η c,l J 1 Y, τ c,l J..17 I lgh of Youg Iequaly, we ca deduce from.1,.16 ad.17 ha { τ } e A Z d Y, τ τ e A ϕ,y Z d Y, τ τ e A ϕ,y Z d Y, 1 τ η c,l J..18 1 l { τ Smlarly, we ca deduce ha e A U d } c L,l J. Summg u wh.16 ad.18 a well a leg yeld ha u, τ e A Y τ c,l e A τ Y τ τ e A Z d e A U L d e A f d..19 We ow from.1 ad. ha for P-a.. ω Ω, τ ω for ome ω N. I follow ha lm Y τ Y, P-a..,. alhough he roce Y may o be lef-couou. herefore, leg ad he leg.19, we ca deduce.3 from he Moooe Covergece heorem, he Domaed Covergece heorem,., 1.3, ad.. 1 I he re of h eco, we le θ :,, be a creag cocave fuco wh d. θ Our goal of h eco he followg exece ad uquee reul of BSDJ for cae 1,. heorem.1. Le ξ,f be a arameer ar uch ha ξ L ad ha for each,ω, Ω, H1 he mag f,ω,,,u couou for ay u L. he he BSDJξ,f adm a uque oluo Y,Z,U S f he geeraor f afe he followg codo for d dp-a.e.,ω, Ω: H f,ω,y,z, 1 y β c z, y,z R l R l d ; H3 f,ω,y,z,u 1 f,ω,y,z,u c u 1 u L, y,z,u 1,u R l R l d L L ; H4 y 1 y 1 Dy 1 y,f,ω,y 1,z 1,u 1 f,ω,y,z,u λθ y1 y Λ y 1 y Λ y 1 y 1 z 1 z u 1 u L, y1,z 1,u 1,y,z,u R l R l d L ; 1

L Soluo of BSD wh Jum 8 where h1 c L 1, L, ad λ L1,, h β, Λ ad Λ are hree o-egave -rogrevely meaurable rocee uch ha Λ d } L, ad ha he roof of heorem.1 rele o he followg wo reul. Λ d Λ d < for ome,. { β d, Λ d, Prooo.. Le { ξ,f } N be arameer ar uch ha {ξ } N a Cauchy equece L. Aume ha for ay N, he BSDJξ,f ha a oluo Y,Z,U S, ad ha for ay N wh m >, Y,Z,U Y m Y,Z m Z,U m U afe where Y 1 DY,f m,y m,z m,u m λθ Y f,y,z,u δ Λ Y Λ Y 1 Z U L η, d dp-a.e..1 λ L 1,, Λ ad Λ are wo o-egave -rogrevely meaurable rocee uch ha Λ d } L, { Λ d, δ L a o-egave radom varable, ad η a o-egave roce uch ha lm η d.. u m> If λ o-rval.e. λd >, we furher aume ha u Y D Z M N Rl d U M L uδ < ad lm δ..3 N he { Y,Z,U } N a Cauchy equece S. Proof: Le a Λ 1 Λ ad A a d,,. I ealy follow from h ha A L wh κ A A L Λ d L 1 -og me τ τ { f, : Λ d L x, N wh m >. We defe a. Z U L } d >..4 x < <. Smlar o.6-.8, alyg Iô formula o e A ϕ,y overhe erval τ, τ yeld ha e A τ ϕ τ,y τ τ 1 e A ϕ,y Z d τ 1 e A Y Y e 1 U x N d,dx τ, τ e A τ ϕ τ,y τ τ τ τ,y d a e A ϕ τ M, M,, M e A ϕ τ τ M,,Y e A ϕ Y,f m,y m,zm,um f,y,z,u d,y d, P-a..,.5

. Cae 1: 1, 9 where M, r ad M, r r τ,r τ e A ϕ,y Y,Z db e A ϕ,y Y,U x Ñ d,dx for ay r,. Oe ca deduce from.1 ha d dp-a.e. ϕ A ϕ,y Y Y ϕ,y λθ Y,f m,y m,z m,u m f,y,z,u Y 1 DY,f m,y m,z m,u m f,y,z,u δ Λ Y Λ Y 1 Z U L η λθ Y δ Λ ϕ λθ Y,Y Λ ϕ 1 δ a ϕ,y 1 4 ϕ,y,y,y e 1,,ω, Ω, hold P-a.. ha τ τ e A ϕ Z U L η U Z L η..6,y d e κ A e d e κ A..7 Sce all rocee.5 are RCLL oe, luggg.6 ad.7 o.5 yeld ha P-a.. e A τ ϕ τ,y τ 4 1 τ 1 τ, τ g 4 1 τ where g g τ τ e A ϕ,y e A Y Y e e A ϕ,y U Ld e κa ϕ τ,y τ Z 1 U M, d x N d,dx M, M, λθ Y δ d η d he Burholder-Dav-Gudy equaly,.4, Lemma A.1 ad Hölder equaly mly ha u, M, u M,, τ c e A c e κa whch mle ha boh M, ad from.1 ha for ay, ϕ 4,Y Y u ϕ,y, τ M, e A Y Y e τ, τ he ag execao.8 yeld ha τ τ e A ϕ,y Z dϕ 4,Y Y c e κa Y 1 <, D M,,,,.8. U L d are uformly egrable margale. Smlar o.11, oe ca deduce Z 1 U U x N d,dx L d τ τ e A ϕ,y U Ld. 4 1 g,,..9

L Soluo of BSD wh Jum 1 By.8, hold P-a.. ha Ỹ, u e A ϕ,y u e A τϕ τ,y τ τ, τ, g 4 1 τ u, τ M, e A ϕ M,,Y u, U Ld M,, M Smlar o.14, oe ca deduce from he Burholder-Dav-Gudy equaly ha M, M, u M,, M u, c Ỹ, Ỹ, τ τ τ, τ, e A ϕ 1 Ỹ, τ c τ,y Z e A ϕ,y d U e A ϕ,y 1 x N d,dx Z U,,..3 1 L d,,..31 Sce Ỹ, e κ AY e D κa < by Lemma A.1, ag execao.3, we ca deduce from.9 ad.31 ha Smlar o.18, Youg Iequaly,.3 ad.9 mly ha { τ } e A Z Ỹ τ, d τ τ Smlarly, we ca deduce ha Ỹ, τ τ M { τ τ Ỹ, c g,,..3 e A ϕ e A U Ld A Z,U Rl d M L, we ee ha P-a.. ω Ω, τ ω for ome ω N, whch mle ha e A ϕ,y Z d,y Z d c g,,..33 } c g,,..34 Z U lm ϕ τ,y τ ϕ,y, P-a.., alhough he roce Y may o be lef-couou. A Y D, Lemma A.1 how ha u, ϕ,y u, he he Domaed Covergece heorem ad 1.3 mly ha lm ϕ τ,y τ ϕ L d <, P-a.. hu for Y L 1..35,Y ad lm ϕ,y ξm ξ.

. Cae 1: 1, 11 Addg u.3-.34, leg ad he leg, we ca deduce from he Moooe Covergece heorem ha ξm Ξ c e κa ξ λθ Ξ δ d η d,,, where Ξ u Y Z d U L, d ub heorem, he cocavy of θ ad Jee Iequaly ha Ξ c e κa ξm ξ c e κa ξm ξ Hece, hold for ay N ad, ha ξm uξ c e u κa ξ m> m> λ θ Ξ λθ Ξ δ d λθ Sce {ξ } N a Cauchy equece L, oe ha u m>. he leg, oe ca deduce from δ d η d η d,,. Ξ δ d u m> η d..36 ξm lm u ξ..37 m> If λ rval,.e. λd, he λθ.36, we ee from.37 ad. ha u m> lm u u m> Ξ Ξ m> O he oher had, we aume ha λ o-rval. Sce λ L 1, ad ce { } Ξ δ u Y D Z M U N Rl d M L by.3, aou Lemma, he mooocy ad he couy of θ 5 mly ha lm λθ u m> Ξ δ d δ d. ag ad leg..38 λ lm θ u m> λθ lm u δ <,,, N.39 N Ξ u Ξ m> Leg.36, we ca deduce from.37,. ad.4 ha lm Ξ c e κa λθ lm Ξ d,,. u m> u m> δ d d,,..4 A θ :,, a creag cocave fuco, eay o ee ha eher θ or θ > for ay >. Moreover, oe ca deduce from.39 ha he fuco µ lm he Lemma A.3 ad.39 mly ha lm u Ξ m> how ha { Y,Z,U } N a Cauchy equece S. u Ξ m>,, bouded.,,. herefore,.38 alway hold, whch Prooo.3. Le ξ,f be a arameer ar uch ha ξ L. If he geeraor f afe H1 for each,ω, Ω ad afe H-H4 for d dp-a.e.,ω, Ω, he he BSDJξ,f ha a oluo Y,Z,U D M Rl d M L. 5 I ow ha ay R-valued cocave fuco alo a couou fuco.

L Soluo of BSD wh Jum 1 Proof: We mae he followg eg fr: le ψ : R l,1 be a mooh fuco ha equal o 1 re. whe x R 1 re. x R, where { R ex β d L } c c d ξ L β d L cd. Le ρ : R ll d R be a mooh fuco ha vahe oude he u oe ball B 1 of R ll d ad afe ρxdx 1. or ay r,, we e ρ R ll d r x r l1d ρrx, x R ll d. } Le { O 1, N be aro6 of B 1 uch ha O O1 1 O1 hold for each O. or ay N ad 1,,, we c u a y,z O wh y Rl, ad le O deoe he volume of O. 1 x N. Clearly, β he fuco e e β,, a -rogrevely meaurable roce, whch mle ha f,ω,y,z,u β ωψyf,ω,y,π z,π u,,ω,y,z,u, Ω R l R l d L P B R l B R l d B L /BR l -meaurable. he we fx,ω,y,z,u, Ω R l R l d L ad defe f,ω,y,z,u f,ω,,,u ρ y,z. By H1, he couy of mag f,ω,,,u mle ha of mag f,ω,,,u. Hece, f,ω,y,z,u deed a Rema egral: f,ω,y,z,u lm f ỹ, z 1 f m1,ω,y 1 ỹ,z 1 z,u ρỹ, zdỹd z.41,ω,y 1 y,z 1 z,u ρy,z O, from whch oe ca deduce ha f alo P B R l B R l d B L /BR l -meaurable. Le c 1 Re c,,. Clearly, c L 1, L,. I follow from H ad H3 ha d dp-a.e. f,y,z,u β ψy f,y,π z,π u f,y,π z,π u f,y,π z, β ψy f,y,π z, c π u L β ψy 1 y β c π z c, y,z,u R l R l d L, whch mle ha d dp-a.e. 1 y1 f,y 1,z 1,u f,y,z,u y,z 1 z, ρ yα ỹ,z α z dα f,ỹ, z,udỹd z R ll d 1 c y1 y,z 1 z ρ yα ỹ,z α z dỹd zdα R ll d κ ρ c y 1 y z 1 z, y 1,z 1,y,z R l R l d, u L,.4 where y α αy1 1 αy, z α αz1 1 αz, α,1, ad κ ρ deermed by ρ ad. R ll d ρ x dx < a coa 6 We ay ha { O } m 1 a aro of he u cloed ball B 1 of R ll d f O, 1,,m are gle-coeced, oe ube of B 1 ha are arwely djo, ad f m 1 O B 1.

. Cae 1: 1, 13 Moreover,.41, H3 ad Lemma A.5 mly ha d dp-a.e. f,y,z,u 1 f,y,z,u β y ψ 1 ỹ, z 1 ỹ f,y f 1 ỹ,π z z 1,π u 1 ỹ, z 1,y 1 ỹ,π z z 1,π u 1 f,y 1 ỹ,π z z 1 f,y 1 ỹ,π z z 1,π u ρỹ, zdỹd z c π u 1 π u L c u1 u L, y,z R l R l d, u 1,u L,,π u ρỹ, zdỹd z whch ogeher wh.4 how ha f afe 1.4 wh φ 1 κ ρ c ad φ φ 1 c,,. Moreover, by.41 ad H, hold d dp-a.e. ha f,,, β, f 1 ỹ, z 1 ỹ,π z 1, ρỹ, zdỹd z β 1 1 ỹ β c π 1 ρỹ, zdỹd z ỹ, z 1 z 1e 1 c ρỹ, zdỹd z 1e 1 c. ỹ, z 1 whch mle ha f,,, d 1 1 cd <. herefore, we ow from Lemma 1.1 ha he BSDJξ,f ha a uque oluo Y,Z,U S. Now, we defe a 4β c4c ad A a d,,. I ealy follow from h1 ad h ha A L wh κ A A L 4 β d L c4c d. x N ad < <. Alyg Iô formula o e A Y over he erval, yeld ha e A Y e A Z d e A U x N d,dx, e A Y e A Y,f,Y,Z,U d a e A Y d M M M M, P-a..,.43 r where M r Y ea,z db ad M r Y,r ea,u x Ñd,dx, r,. Oe ca deduce from H ad H3 ha d dp-a.e. Y,f,Y,Z,U y,z <1 β ψ Y 1 y Y,f,Y 1 y,π Z 1 z,π U ρy,zdydz Y 1 Y β 1 y,z <1 y c π Z c 1 z π U L ρy,zdydz Y Y β c 1 Z U L β ca Y 1 Z 1 U.44 L. Moreover, Burholder-Dav-Gudy equaly ad Hölder equaly mly ha 1 u M u M c e A Y Z d,, c e κa u Y, Z d 1 e A Y U L d u Y, c e κa Y D Z M R l d U M L <, 1 U Ld 1

L Soluo of BSD wh Jum 14 whch how ha boh M ad M are uformly egrable margale. Hece, ag codoal execao.43, we ca deduce from.44 ha P-a.. e A Y 1 e Z A U d L e κa Y β d cd,.45 L where we ued he fac ha e A U x N d,dx, Sce Y D, he Domaed Covergece heorem mle ha e A U x dxd e A U Ld, P-a.. lm Y Y ξ ξ, P-a.. L Hece, a.45, he Moooe Covergece heorem gve ha e A Y 1 e A Z U d L ξ e κa L β d cd R, P-a.., L whch ogeher wh he rgh-couy of Y mle ha Y D R ad Z M Rl d U M L R, N..46 3 xce o a d dp-ull e Ñ1 of, Ω, We may aume ha H-H4 hold ad ha Y R, N. x,ω Ñc 1 ad fx m, N wh m >. By.41, Y 1 DY,f m,y m,z m,um f,y,z,u ỹ, z <1 Y 1 DY,β m h m ỹ, z β h ỹ, z ρỹ, zdỹd z,.47 where h ỹ, z f,y ỹ,π 1 Z z,π 1 U. Nex, fx ỹ, z R l R l d wh ỹ, z < 1. We e ỹ, z 1 m ỹ, 1 1 m 1 z ad coder he followg decomoo: Y 1 DY,β m h m ỹ, z β h ỹ, z β m Y ỹ 1 D Y ỹ,h m ỹ, z h ỹ, z Y 1 D Y Y ỹ 1 D Y β m Y I follow from H4 ha I 1 ỹ, z λθ Y ỹ,h m ỹ, z h ỹ, z 1 D Y,β m β h ỹ, z I 1 ỹ, zi ỹ, zi3 ỹ, z. ỹ Λ Y ỹ Λ Y ỹ 1 π m Z m m z π 1 Z z 1 πm U m π U L..48 Alyg Lemma A. wh a Y ad Y ỹ ad b Y yeld ha ỹ 1 Y 1 ỹ 1 Y 1 1.49 Y ỹ Y 1 Y ỹ ỹ Y δ.5

. Cae 1: 1, 15 wh δ R 3 1. Moreover, Lemma A.5 how ha πm Z m 1 m z π Z 1 z πm Z m 1 m z π mz 1 z πm Z 1 z π Z 1 z Z z 1 { Z z >} Z 1 1 z Z 1 { Z > 1} Z..51 Smlarly, we have πm U m π U L U L 1 { U L > } U L..5 Pug.49-.5 bac o.48, we ca deduce from he mooocy of fuco θ ha I 1 ỹ, z λθ Y where Ψ λθ Y Λ Y δ Λ Y δ Λ Y 1 1 Ψ Z U L δ Λ Y δ Λ 1R 4 1 Λ Ψ 1 Z U L 1 1 Λ Z U 1 { Z > 1} Z 1 { U L > } U L. O he oher had, oe ca deduce from H ad H3 ha L,.53 h ỹ, z 1 Y 1 ỹ β c π Z 1 z c π U L Rβ c 1 Z U L,.54 whch ogeher wh Lemma A.6 yeld ha Iỹ, z 1 D Y Y Y ỹ 1 D Y ỹ h m ỹ, z h ỹ, z 1 1 1 Rβ c Z m Z U m L U L Ĩ..55 Sce < β βm 1,,,.54 alo mle ha I 3 ỹ, z R 4 1 1 β Rβ c 1 Z U L Ĩ 3..56 Pluggg.53,.55 ad.56 bac o.47 how ha.1 afed wh δ R 3 1 ad η δ Λ 1R 4 1 Λ Ψ 1 1 Λ Z U Hölder Iequaly ad.46 gve re o he followg four emae: 1. u η d δ Λ d 1R 4 1 m> L 1 1. Λ Ψ d C1 Λ C Λ C1 Λ C 1 Λ Λ d L 8R L 1 1 { Z > 1} Z 1 d Z C1 Λ C 1 R, Λ M Rl d U Ĩ Ĩ3,,. M L Λ Ψ d Ĩ Ĩ3 d..57 1 { U L >} U 1 L d 1

L Soluo of BSD wh Jum 16 where C 1 Λ { Λ d ad C } 1 Λ Λ d. I he la equaly, we aled Lemma A.1 wh q, 1, a 1 Z M Rl d ad a U M L. 3. Ĩ d 1 1 R 1 β d cc d L 1 Z m Z U m U M Rl d M Rl d M L M L 1 1 R 1 β d cc dr. L 4. Ĩ 3 d R 4 1 R 4 1 1 β Rβ c d Z M R l d U M L { 1 β Rβ c dr { c 1 β d } 1 c 1 β d J. Becaue β e e β / ր 1 a,,, he Domaed Covergeceheorem gve ha lm J. hu, leg.57 verfe he codo.. Moreover, ce D D, M Rl d M R l d ad M L M L by Hölder equaly, we ee from.46 ha.3 alo hold. he Prooo. how ha { Y,Z,U } N a Cauchy equece S. Le Y,Z,U be lm S. 4 Sce lm Y Y D lm lm Z Z lm M Rl d lm U U M Lad lm, } 1 u Y Y,.58 Z Z d U U d L we ca exrac a ubequece { } N from N uch ha Z 1 Z M Rl d U 1 U M L, N ad ha P-a.. lm u Y Y lm Z Z d lm U U d, L,.59,.6, hu lm u Y Y lm, Z Z d lm U U d..61 L By.46, hold P-a.. ha u Y u Y Y u,,, Y u, Y Y Y D u, Y Y R, N. Leg, we ee from.61 ha u Y R, P-a.., whch mle ha Y D R., or ay N, we defe wo real-valued, -redcably meaurable rocee Z Z Z j Z j 1 ad U j1 U L U j U j 1 L,, j1

. Cae 1: 1, 17 wh Z Z ad U U. Oe ca ealy deduce ha Z M R wh Z M R Z M Rl d j1 A { Z } N a creag equece, we e Z Moooe Covergece heorem how ha for ay ω Ω Z ω d lm Z j Z j 1 M Rl d 1 Z M Rl d Z 1 Z M Z ω d, hu lm Z Z Rl d..6 Z j Z j 1,,. he j1 Z ω d lm Z ω d. Alyg he Moooe Covergece heorem oce aga, we ca deduce from.6 ad Lemma A.1 ha Z d Z d whch mle ha lm Smlarly, he roce U lm U U L Z d <, hu 3 1 1 Z M Rl d Z 1 Z <,.63 M Rl d Z d <, P-a...64 U j U j 1 L,, afe j1 U d <, hu x N. We defe a -og me τ f {, : Z Z U U d τ L Sce τ Covergece heorem ad.61 how ha lm τ Hece, here ex a ubequece { 5 Nex, le u how ha lm lm Z Z d lm 1 { τ } τ } N of { } U d <, P-a...65 } Z U d >..66 Z U d τ Z U d, ω Ω, he Bouded τ N Z Z lm U U L d..67 uch ha for d dp-a.e.,ω, Ω 1 { τ } By.41 ad.46, hold for ay N ha τ f,y,z,u f,y,z,u d τ β f,y 1 ỹ,π Z 1 z,π ỹ, z <1 U U L..68 f,y,z,u f,y,z,u d..69 U f,y,z,u ρỹ, zdỹd zd..7

L Soluo of BSD wh Jum 18 xce o a d dp-ull e Ñ of, Ω, We may aume ha H, H3 ad.68 hold; Y lm Y by.61; Y R ad Y R, N. x,ω Ñc wh τ ω, ad fx ỹ, z R l R l d wh ỹ, z < 1. I follow from.68 ha U lm Z lm L U..71 Z Wh hel of Lemma A.5, oe ca emae a follow: e1 Y 1 ỹ Y 1 Y Y, a ; e π Z 1 π z Z Z 1 z π Z Z π Z Z Z, a ; e3 π U L U π U L π U π L U U 1 a. Sce he mag f,,,u couou by H1 ad ce lm ha Moreover, H3 how ha β f lm β f,y 1 ỹ,π Z 1 z,π Z π Z Z 1 π z Z Z Z β U L L U π U U, 1, we ca deduce from e1 ad e,y 1 ỹ,π Z 1 z,u f,y,z,u..7 U whch ogeher wh.7 ad e3 mle ha lm β β f β f,y 1 ỹ,π Z 1 z,y 1 ỹ,π Z 1 z,π U,U c π U U L, f,y,z,u..73 or ay N, ce Z Z Z ad U L U U, oe ca deduce from H ad H3 ha f,y 1 ỹ,π Z 1 z,π U f,y,z,u f,y 1 Y 1 ỹ Y R 1β c 1 ỹ,π Z 1 z Z,π U U f,y,z,u Alyg Holder equaly, we ee from.63 ad.65 ha τ τ h ρỹ, zdỹd zd h d h d ỹ, z <1 π β c Z z 1 Z π U L U L Z U L L R 1β c 1Z Z U U L h. 1 { C c 1 d Zd 1 Z 1 } d U 1 d U L d 1 C c d Z M R Z M U Rl d M R U M L <.74

. Cae 1: 1, 19 wh C R 1 β d L cd. Hece, he Domaed Covergece heorem ad.73 how ha τ lm β ỹ, z <1 f whch ogeher wh.7 lead o.69.,y 1 ỹ,π Z 1 z,π U f,y,z,u ρỹ, zdỹd zd 6 Sce 7 τ,τ,τ, τ,,. he Burholder-Dav-Gudy equaly ad Hölder equaly mly ha u U x U x Ñ d,dx u U x U x Ñ d,dx, c c { τ,τ {,τ τ U x U x N d,dx } 1, c {, τ,τ, U x U x }1 N d,dx }1 U U, a,.75 Ld ad ha u, τ Z Z db τ u, τ Z Z db c τ 1 Z Z d Z c M Z, a..76 Rl d I lgh of.61,.69,.75 ad.76, here ex a ubequece { } ñ of { } N uch ha exce o N a P-ull e N1 lm Sce { u, Y ñ τ Y u, τ,τ fñ,y ñ,zñ,uñ ñ U x U x Ñ d,dx f,y,z,u d u, τ ñ Z Z db }. τ Y ñ,z ñ,u ñ olve BSDJ for ay N, hold exce o a P-ull e N ξ,fñ ha Y ñ τ 1 {τ < }Y ñ τ 1 {τ }ξ τ,τ τ τ fñ τ,y ñ,zñ,uñ d Zñ db τ Uñ xñd,dx,,, N..77 or ay ω Ω N 1 c N c ad ay,, leg.77, we oba ha over Ω τ Y τ 1 {τ < }Y τ 1 {τ }ξ f,y,z,u d Z db τ τ U xñd,dx,,..78 τ,τ ha o.64 ad.65, oe ca fd a P-ull e N 3 uch ha for ay ω N3 c, τ ω for ome ω N. veually, for ay ω Ω Ω N3 c N c 1 N c N3 c ad ay,, N N N leg.78 how ha 1. hold over Ω. o w, Y,Z,U a oluo of BSDJξ,f. 7 τ,τ ad for, ad,τ deoe, whe τ. τ

L Soluo of BSD wh Jum Proof of heorem.1: Uquee Suoe ha Y,Z,U S ad Y,Z,U S he BSDJξ,f. or ay N, we e are wo oluo of ξ,f ξ,f ad Y,Z,U { Y,Z,U f odd, Y,Z,U f eve. or ay N wh m >, H4 how ha.1 hold wh δ ad η. hu, eay o ee ha.ad.3arebohafed. heprooo.howha { Y,Z,U } N acauchyequeces, whch mle ha Y,Z,U Y,Z,U he ee ha Y Y D Z Z M Rl d U U M L. xece or ay N, we defe ξ π ξ. ha o Prooo.3, he BSDJξ,f ha a oluo Y,Z,U D M Rl d M L. or ay m, N wh m >, H4 how ha d dp-a.e. Y 1 D Y,f,Y m,z m,u m f,y,z,u λθ Y Λ Y Λ Y 1 Z U L. Hece,.1 hold wh f f, δ ad η. Clearly,. auomacally afed. Suoe ha λd >. We ca deduce from H ad H3 ha d dp-a.e. Y,f,Y,Z,U Y f,y,z, f,y,z,u f,y,z, Y 1 Y β c Z U L Y 1 4 β Y β 1 c hu.1 afed wh f β, a β 1 c, l 1 4. Sce wh κ A A L β d L 1 u, c d, Prooo.1 gve ha Y Z D M Rl d U M L c e A ξ c e κa ξ Z U L. e A Y e κa Y D e A β d β d L <, whchmle.3. heprooo.howha { Y,Z,U } N acauchyequece S. Le Y,Z,U be lm S. he re of roof mlar o ha of Prooo.3 cf. ar 4-6 here. By.58-.6, we ca fd a ubequece { } N from N uch ha Y 1 Y D Z 1 Z M Rl d U 1 U M L, N ad ha.61 hold P-a.. or ay N, we e η u Y, u j1, Y j wh Y Y. Oe ca ealy deduce ha η L wh ηl u Y, L u Y D j1 j1, Y j Y j 1 D Y j 1 Y j Y j 1 1 Y D L <, Y 1 Y D..79

. Cae 1: 1, 1 A { η } N a creag equece, we e η lm η u Y, u j1, Y j Y j 1. Alyg he Moooe Covergece heorem oce aga, we ca deduce from.79 ad Lemma A.1 ha η η lm η L 3 1 1 Y Y D 1 Y <..8 D We have ee he roof of Prooo.3 ha he wo real-valued, -redcably meaurable rocee Z Z Z j Z j 1 ad U U L U j U j 1 L,,, j1 wh Z Z ad U U, afy hu Z d < ad U d <, P-a.. j1 Z d U d <..81 x N. We ll defe he -og me τ a.66. ha o.67, oe ca exrac a ubequece { } N of { } uch ha.68 hold for d dp-a.e.,ω, Ω. xce o a d dp-ull e Ñ of N Y, Ω, We may aume ha H, H3 ad.68 hold, a well a ha lm Y by.61. x,ω Ñc wh τ ω. We ll have.71 by.68. he he couy of he mag f,,,u how ha lm f,y,z,u f,y,z,u..8 Moreover, H3 how ha f,y,z,u f,y,z U,U c L U, whch ogeher wh.8 mle ha lm f,y,z,u f,y,z,u..83 or ay N, ce u Y u Y,, u j1, oe ca deduce from H ad H3 ha f,y,z,u Y j f,y,z,u Y j 1 η η, Z Z ad U L U, Y Z Y β c Z η u Y, U β c Z Z U U L. U L L Alyg Holder equaly, we ee from.8 ha τ η u Y β d η u Y β d,, η Y L D β d <. L

L Soluo of BSD wh Jum Smlar o.74, Holder equaly ad.81 yeld ha τ c 1 Z Z U U L d c d Z M R Z M U Rl d M R U M L <. herefore, he Domaed Covergece heorem how ha lm τ f,y,z,u f,y,z,u d..84 he wo lm.75 ad.76 ll hold. he ug he mlar argume o hoe ha lead o 1. ad ug he fac ha lm ξ ξ, we ca coclude ha Y,Z,U a oluo of BSDJξ,f. Now, le γ be a -og me ha may ae he fe value. ha o heorem.1, he BSDJ wh radom me horzo γ alo well-oed for ay ermal codo ξ L γ uder hyohee H1-H4. Corollary.1. Le ξ,f be a arameer ar uch ha ξ L γ. If he geeraor f afe H1 for each,ω,γ 8 ad afe H-H4 for d dp-a.e.,ω,γ, he he followg BSDJ γ γ Y γ ξ f,y,z,u d Z db U xñd,dx,, ; P-a...85 γ γ γ,γ { Y adm a uque oluo ω,z ω,u ω } } {Y uch ha γ,1 { γ} Z,1 { γ} U,ω,γ, S. Proof: Oe ca chec ha f,ω,y,z,u 1 { γω} f,ω,y,z,u,,ω,y,z,u, Ω R l R l d L defe a P B R l B R l d B L /BR l -meaurable fuco ha afe H1 for each,ω, Ω ad afe H-H4 for d dp-a.e.,ω, Ω. heorem.1 he how ha he BSDJ ξ, f adm a uque oluo Y,Z,U S. So hold exce o a P-ull e N 1 ha Y ξ f,y,z,u d x, ad N. We defe a -og me By.86, hold o N c 1 ha τ f {, : Z db U xñd,dx,,..86, τ Y γ τ Y τ f,y,z,u d γ τ τ Y τ Z db γ τ Z } U d >..87 L Z db γ τ U xñd,dx. τ γ τ, τ γ τ, τ ag codoal execao γ τ ad mullyg 1{γ τ } o boh de yeld ha U xñd,dx 1 {γ τ }Y γ 1 {γ τ }Y γ τ 1 {γ τ } Y τ γ τ 1{γ τ } Y τ γ, P-a...88 A Z,U M Rl d M L, we ee ha Z U d <, P-a.. hu for P-a.. ω Ω, L τ ω for ome ω N, whch mle ha lm Y τ Y, P-a.. alhough he roce Y may o be 8 he ochac erval,γ defed by {,ω, Ω : γω}.

3. Cae :, 3 lef-couou. Sce ad 1.3 mly ha u, Y Y D < by Hölder equaly, he Domaed Covergece heorem lm Y τ γ Y γ, ad lm Y γ ξ γ ξ, P-a.. I clear ha lm 1 {γ τ } 1 {γ } ad ha lm 1 {γ } 1 {γ< }. hu, leg ad he leg.88 gve ha 1 {γ< } Y γ 1 {γ< } ξ, P-a.., whch ogeher wh 1.3 mle ha Y γ ξ hold exce o a P-ull e N. Le N N 1 N. I he hold o N c ha f,y,z,u d Z db U xñd,dx Y γ ξ. γ herefore, oe ca deduce from.86 ha o N c Y γ ξ ξ γ γ γ γ f,y,z,u d f,y,z,u d γ γ γ γ, Z db Z db γ, γ,γ U xñ d,dx U xñd,dx,,, { Y whch how ha ω,z ω,u ω } a oluo of.85. Moreover, ce Y,Z,U,ω,γ S, we ealy } ee ha {Y γ,1 { γ} Z,1 { γ} U belog o, S a well. { Ohe oherhad, f Ỹ ω, Z ω,ũω } aoheroluoof.85 uchha {Ỹ γ,1 { γ} Z,,ω,γ 1 { γ} Ũ }, S, he hold P-a.. ha γ Ỹ γ ξ ξ ξ γ γ f,ỹ, Z,Ũd Z db γ 1 { γ} f,ỹ, Z,Ũd f,ỹ γ,1 { γ} Z,1 { γ} Ũ d γ,γ 1 { γ} Z db Ũ xñd,dx, 1 { γ} Z db 1 { γ}, Ũ xñd,dx 1 { γ} Ũ xñd,dx,,, } whch how ha {Ỹ γ,1 { γ} Z,1 { γ} Ũ alo olve BSDJ ξ, f. Hece, he uquee of he, oluo of BSDJ ξ, f S eal ha u Y Ỹ γ Z 1 { γ} Z d U 1 { γ} Ũ d L, Y γ Ỹ Z Z γ d U Ũ d, whch mle ha u,γ { Y ω,z ω,u ω },ω,γ he uque oluo of.85 uch ha { Y γ,1 { γ} Z, 1 { γ} U }, S. L 3 Cae :, heorem 3.1. Le ξ,f be a arameer ar uch ha ξ L ad ha H1 hold for each,ω, Ω. he he BSDJξ,f adm a uque oluo Y,Z,U D M Rl d M L f he geeraor f afe H, H3 a well a he followg codo H4 for d dp-a.e.,ω, Ω:

L Soluo of BSD wh Jum 4 H4 y 1 y,f,ω,y 1,z 1,u 1 f,y,z,u, Λ y 1 y Λ y 1 y z 1 z u 1 u L, y1,z 1,u 1,y,z,u R l R l d L, where Λ ad Λ are wo o-egave -rogrevely meaurable rocee defed h. Proof: A ξ L L, alyg heorem.1 wh ad λ, we ow ha he BSDJξ,f adm a uque oluo Y,Z,U S. So uffce o how ha Y D D. More recely, we ee from he roof of heorem.1 ha Y,Z,U he lm of {Y,Z,U } N S, where Y,Z,U he uque oluo of he BSDJξ,f wh ξ π ξ uch ha Y D. Le u defe a Λ 3 1 Λ ad A a d,,. I ealy follow from h ha A L wh κ A A L Λ d L 3 1 Λ d. x, N wh m >. We ll e L Y,Z,U Y m Y,Z m Z,U m U ad defe he -og me τ τ fuco x, x R l ha dervave: a.4. he D x x x, {1,,l}, ad D j x x δ j 1 {x } x 4 x x j,,j {1,,l}. 3.1 x < <. Smlar o.6, alyg Iô formula o e A Y over he erval τ, τ yeld ha e A τ where Y τ 1 { e A τ, τ e A τ Y M τ τ Y e A race Z Z Y D Y τ τ M τ M r ad M r M e A Y M r τ,r τ for ay r,. I follow from 3.1 ha race Z Z D Y Y D Y d }, Y Y,f,Y m,z m,u m f,y,z,u a Y d, P-a.. 3. e A Y Y,Z db e A Y Y,U x Ñd,dx Z 1 {Y } Y 4 l d 1 j1 Y Z j Y Z. 3.3 O he oher had, aylor xao heorem ad lemma A.4 mly ha { e A Y Y D Y, Y } τ, τ τ, τ τ, τ τ, τ 3 1 τ, τ 1 e A 1 α Y,D Y,α Y dα 1 Y e A,α 1 α Y 1 {Y,α 1 e A Y 1 α Y,α dα 3 1 le Y,α Y } α Y Y,α 4 Y τ, τ e A Y Y,Y,α. dα e A Y U x N d,dx. 3.4

3. Cae :, 5 Moreover, H4 how ha d dp-a.e. Y,f,Y m,zm,um f,y,z,u Λ Y Λ Y Z U L a Y 31 Z U. 3.5 L Sce all rocee 3. are RCLL oe, Pluggg 3.3-3.5 o 3. yeld ha P-a.. e A τ Y 3 1 τ τ e A Y Z d3 1 e A Y e A τ τ Y τ 3 1 M M M where we ued he fac ha 1 > 31. τ τ M e A Y τ, τ U Ld he Burholder-Dav-Gudy equaly ad.4 mly ha u M u M τ c e A,, whch how ha boh M from.1 ha, τ e A Y ad M U U x N d,dx,,, 3.6 c e κa Y D Y Z Y U <, L d are uformly egrable margale. Smlar o.11, oe ca deduce τ x N d,dx Hece, leg 3.6 ad he ag execao, we oba τ e A Y I alo follow from 3.6 ha u e A Y, τ Y e κa τ 31 u, Z U u, τ e A τ Y τ e A Y L e A Y U Ld. d Y 3 1 e κa τ. 3.7 U Ld Smlar o.14, he Burholder-Dav-Gudy equaly mle ha M u M, Sce τ c 1 u, τ u, τ e A Y e A Y e A Y Z d c 1 τ e κa Y D u Y, τ u, τ, τ e A Y u, M u, M e A Y U x N d,dx Z U L. 3.8 1 d. 3.9 <, ug 3.9 o 3.8, we ca deduce from 3.7 ha e A Y c e κa Y τ. 3.1

L Soluo of BSD wh Jum 6 Sce Z,U M R l d M L, we ee ha Z U d <, P-a.. hu for L P-a.. ω Ω, τ ω for ome ω N, whch lead o ha lm Y τ Y, P-a.. alhough he roce Y may o be lef-couou. A Y D, he Bouded Covergece heorem mle ha lm Y τ Y ad lm Y ξ m ξ. herefore, leg ad he leg 3.1, we ca deduce from he Moooe Covergece heorem ha Y D Y ξm c e κa ξ c e κa ξm ξ L. 3.11 u, Sce lm ξ ξ, he Domaed Covergece heorem mle ha lm ξ ξ,.e., ξ coverge o ξ L. Hece, we ee from 3.11 ha { Y } N a Cauchy equece D. Le Ỹ be lm D. A D D, { Y } N coverge o Ỹ alo D. he he uquee of he lm of { Y } N D how ha Y ad Ỹ are dguhable9, whch mle ha Y D. Smlar o Corollary.1, we ca deduce from heorem 3.1 he followg exece ad uquee reul of BSDJ wh radom me horzo γ for cae,. Corollary 3.1. Le ξ,f be a arameer ar uch ha ξ L γ. If he geeraor f afe H1 for each,ω,γ ad afe { H, H3 a well a H4 for d dp-a.e.,ω,γ, he he BSDJ.85 Y adm a uque oluo ω,z ω,u ω } } {Y uch ha γ,1 { γ} Z,1 { γ} U,ω,γ, D M Rl d M L. A Aedx Lemma A.1. Le {a } N,. or ay, ad N wh, we have 1 1 a a 1 1 a. 1 1 1 A.1 Proof: Suoe ha 1, fr. or ay b c <, oe ca deduce ha bc c bc c 1 d bc c b 1 d b b, or equvale, bc b c. hu, a 1 a a 1 a. Whe 3, alyg A. coecuvely, we oba a a 1 a a 1 a a a 1 3 1 1 a a. 1 A. A.3 Now, le m be he coug robably meaure o S {1,,} wh m 1 for each S. Jee Iequaly mle ha a a m d a m a d S S. 1 Mullyg o boh de, we ee from A.3 ha 1 9.e., P Y Ỹ,, 1. a a 1 a. 1 1 1 A.4

A. Aedx 7 Clearly, he cae 1 rval. So rema o how A.1 for,1: Alyg A.4 wh 1 ad ã a, S yeld ha a 1 ã ã 1 1 1 ag -h ower o boh equale above, we oba a 1 1 ã 1 1 a. 1 1 1 a a 1 1 a. Lemma A.. or ay b,c,, we have { b c b c, f,1, b c 1 b c, f 1,. 1 A.5 Proof: I rval whe b c. Sce b ad c ae he ymmerc role A.5, we oly eed o aume b < c whou lo of geeraly. Whe,1,alygLemmaA.1wha 1 bada c byeldhac a 1 a a 1 a b c b, whch mle ha b c c b c b b c ; Whe 1,, oe ca deduce ha c b c b 1 d c b c 1 d c 1 c b, whch lead o ha b c c b c 1 c b b c 1 b c. Lemma A.3. Le θ,ζ,µ :,, be hree fuco uch ha eher θ or θ > for ay > ; θ creag ad afe 1 1 θ d ; ζ egrable ad µ bouded. If µ θ µ ζd for ay, he µ. Proof: he cae θ rval. So we oly aume ha θ > for ay > by. I follow from ha φ θκ µ ζd < wh κ µ u µ. hu, φ θ µ ζd,,,. defe a couou ad decreag fuco. Sce θ creag, dffereag fuco φ yeld ha φ θ µ ζ θ φ ζ,,. A.6 Aume φ >. he f{, : φ }, ad clear ha lm φ. A he couou ad decreag fuco φ mage, oo, φ, Chagg of varable gve ha φ 1 θ d 1 θ φ dφ φ θ φ d ζd ζd <, where we ued A.6 ad. or ay < a < b <, oe ca deduce from he mooocy of fuco θ ha b 1 a θ d b 1 b a a θa d θa <, whch ogeher wh A.7 mle ha 1 1 θ d <. h reul a coradco o aumo. herefore, φ, whch force φ. A a coequece, µ. Lemma A.4. Le, ad le B be a geerc real Baach ace wh orm B. or ay x,y B, 1 1 α xαy B dα 3 1 x B. A.7

L Soluo of BSD wh Jum 8 Proof: If y, oe mly ha 1 1 α x B dα 1 x B. So le u aume y ad e α x B 3 y B. Sce hold for ay α,α α, ha 1 3 x B x B α y B xαy B, we ca dcu by hree cae: 1 Whe 1 α : 1 1 α xαy B dα 1 3 x B 1 1 αdα 1 1 3 x B ; Whe 1 α < 1 : 1 1 α xαy B dα 1 1 α xαy B dα 1 3 Whe α < 1 : 1 1 α xαy B dα 1 3 x B 1 3 x B { α 1 } α 1 αdα 1 3 x 3 B α α 1 1 αdα 3 8 1 3 x B ; or he ex wo lemma, we aume ha H a geerc real Hlber ace wh er roduc, H. 1 3 1 3 x B. Lemma A.5. or ay x,y H, we have πr x π r y H x y H, r,. A.8 Coequely, x y H x H y H Dx Dy H. A.9 Proof: Whou lo of geeraly, we aume ha x H y H. o ee A.8, le u dcu by hree cae: 1 Whe r y H : Sce π r x x ad π r y y, oe mly ha πr x π r y H x y H ; Whe x H r < y H : Le u e κ x, Dy H ad ŷ κdy. Sce x ŷ, Dy, hold for ay H α R ha x αdy H x ŷ α κdy H x ŷ H α κdy H x ŷ H α κ. Hece, follow ha πr x π r y H x rdy H x ŷ H r κ x ŷ H y H κ x y where we ued he fac ha κ x, Dy H x H r < y H, ha o he Schwarz equaly. 3 Whe r < x H : We ow from ha x y H π x H x π x H y H x x H Dy H x H Dx Dy H r Dx Dy H πr x π r y H. H. If x, A.9 hold auomacally. Oherwe, alyg A.8 wh r x H gve re o A.9. Lemma A.6. Le,1. or ay x,y H, we have x H Dx y H Dy H 1 x y H. Proof: he cae 1 rval ce x H Dx y H Dy x y H. or,1, we aume whou lo H of geeraly ha x H y H ad dcu by hree cae: 1 Whe x : y H Dy H y H ; Whe < x H x y H : x H Dx y H Dy H x H Dx H y H Dy H x H y H x H x H x y H 1 x y H ; 3 Whe x H > x y H : x H Dx y H Dy H x HDx Dy x H y H x 1 H x y H x H H y H < x y H, where we ued A.9 ad Lemma A. he ecod equaly.

Referece 9 Referece J.-M. Bmu. Cojugae covex fuco omal ochac corol. J. Mah. Aal. Al., 44:384 44, 1973. ISSN -47x. P. Brad ad R. Carmoa. BSD wh olyomal growh geeraor. J. Al. Mah. Sochac Aal., 133: 7 38,. ISSN 148-9533. P. Brad, B. Delyo, Y. Hu,. Pardoux, ad L. Soca. L oluo of bacward ochac dffereal equao. Sochac Proce. Al., 181:19 19, 3. ISSN 34-4149. do: 1.116/S34-4149389-9. J. Cvać, I. Karaza, ad H. M. Soer. Bacward ochac dffereal equao wh cora o he ga-roce. A. Probab., 64:15 1551, 1998. ISSN 91-1798. do: 1.114/ao/185587. N. l Karou, S. Peg, ad M. C. Queez. Bacward ochac dffereal equao face. Mah. ace, 7 1:1 71, 1997. ISSN 96-167. N. Ieda ad S. Waaabe. Sochac dffereal equao ad dffuo rocee, volume 4 of Norh-Hollad Mahemacal Lbrary. Norh-Hollad Publhg Co., Amerdam, 1981. ISBN -444-8617-6.. Pardoux. Geeralzed dcouou bacward ochac dffereal equao. I Bacward ochac dffereal equao Par, 1995 1996, volume 364 of Pma Re. Noe Mah. Ser., age 7 19. Logma, Harlow, 1997. É. Pardoux ad S. G. Peg. Adaed oluo of a bacward ochac dffereal equao. Syem Corol Le., 141:55 61, 199. ISSN 167-6911. P. Proer. Sochac egrao ad dffereal equao, volume 1 of Alcao of Mahemac New Yor. Srger-Verlag, Berl, 199. ISBN 3-54-5996-8. A ew aroach. D. Revuz ad M. Yor. Couou margale ad Browa moo, volume 93 of Grudlehre der Mahemache Wechafe udameal Prcle of Mahemacal Scece. Srger-Verlag, Berl, hrd edo, 1999. ISBN 3-54-6435-7. S. Rog. O oluo of bacward ochac dffereal equao wh jum ad alcao. Sochac Proce. Al., 66:9 36, 1997. ISSN 34-4149. do: 1.116/S34-4149961-. S. J. ag ad. J. L. Neceary codo for omal corol of ochac yem wh radom jum. SIAM J. Corol Om., 35:1447 1475, 1994. ISSN 363-19. J. Y ad. Mao. he adaed oluo ad comaro heorem for bacward ochac dffereal equao wh Poo jum ad alcao. J. Mah. Aal. Al., 346:345 358, 8. ISSN -47. do: 1.116/j.jmaa.8.5.7. J. Y ad R. Su. O oluo of forward-bacward ochac dffereal equao wh Poo jum. Sochac Aal. Al., 16:1419 1448, 3. ISSN 736-994. do: 1.181/SAP-16113.