L Soluo of Bacward Sochac Dffereal quao wh Jum Sog Yao arv:17.6v1 mah.pr 13 Jul 1 Abrac I h aer, we udy a mul-dmeoal bacward ochac dffereal equao wh jum BSDJ ha ha o-lchz geeraor ad ubouded radom me horzo. or ay 1,, we how ha he BSDJ wh a -egrable ermal codo adm a uque L -ye oluo. Keyword: Bacward ochac dffereal equao wh jum, L oluo, o-lchz geeraor. 1 Iroduco he bacward ochac equaobsd wa aed by Bmu 1973 ad laer develoed by Pardoux ad Peg 199 o a fully olear vero. I ha ce grow radly heory ad bee aled o varou area, uch a mahemacal face, ochac omal corol, ochac dffereal game ad ec ee he referece l Karou e al. 1997 or Cvać e al. 1998. ag ad L 1994 added o he BSD a jum erm ha drve by a Poo radom meaure deede of he Browa moo. Praccally eag, for examle, f he Browa moo ad for he oe from he facal mare, he he Poo radom meaure ca be erreed a he radome of he urace clam. he auhor obaed he exece ad uquee of a oluo o uch a BSDJ whe he ermal codo quare egrable ad he geeraor Lchz couou varable y, z ad u. he Pardoux 1997 relaxed he Lchz codo o varable y by aumg a mooocy codo a well a a lear growh codo o varable y ead. Laer, Rog 1997 ad Y ad Mao 8 eve degeeraed he mooocy codo o a weaer vero o a o remove he Lchz codo o varable z. he ubouded radom me horzo wa codered boh Pardoux 1997 ad Y ad Mao 8. Amog hoe effor o geeralze he heory of BSD, ome were devoed o weaeg he quare egrably of he ermal codo. l Karou e al. 1997 demoraed ha for ay -egrable ermal codo wh 1,, he BSD wh Lchz couou geeraor adm a uque oluo, whch alo -egrable. he Brad ad Carmoa reduced he Lchz codo o varable y by a rog mooocy codo a well a olyomal growh codo o varable y. Laer, Brad e al. 3 foud ha he olyomal growh codo o eceary f oe ue he mooocy codo mlar o ha of Pardoux 1997. I he ree aer, we aalyze he BSDJ wh ubouded radom me horzo ad uder a o-lchz geeraor codo whch lghly more geeral ha ha of Y ad Mao 8. We how he exece ad uquee of a L oluo of he BSDJ gve a -egrable ermal codo wo cae 1, ad,. he layou of h aer mle. Seco deal wh cae 1,. Gve he fe me horzo, we ar by emag he L orm of ayoluo of he BSDJ erm ofhe L orm ofhe ermal codo ad of he coeffce he mooocy codo, ee Prooo.1. Nex, we derve a ably-le reul Prooo., whch clam ha a equece of oluo of BSDJ a Cauchy equece L orm whe he equece of her ermal codo o ad whe he oluo afy a aymoc mooocy codo. he he Dearme of Mahemac, Uvery of Mchga, A Arbor, MI 4819; emal: ogyao@umch.edu.
L Soluo of BSD wh Jum uquee drecly follow, ee heorem.1. or he exece, we fr how he exece for a bouded ermal codo by alyg a mehod from Rog 1997 ha aroxmae he o-lchz geeraor by a equece of Lchz geeraor va covoluo moohg, ee Prooo.3. A o a -egrable ermal codo, we rucae a a bouded oe ad ue Prooo.3 ogeher wh Prooo. o oba he geeral exece reul. veually, he fe me horzo ca ealy bee relaced by ay uboud radom oe, ee Corollary.1. I eco 3, we regh he mooocy codo order o aly he cocluo of eco o ge he exece ad uquee reul for cae,, ee heorem 3.1 ad Corollary 3.1. 1.1 Noao ad Prelmare hroughou h aer we coder a comlee robably ace Ω,, P o whch a d-dmeoal Browa moo B defed. Gve a meaurable ace, B, le be a -valued Poo o roce o Ω,,P ha deede of B. Recall ha he coug meaure N d,dx of o, ha he comeaor N d,dx dxd for ome σ-fe meaure o, B. or ay,, we defe σ-feld σ,, B σ B, ad augme σ B by all P-ull e of. Clearly, he flrao { }, afe he uual hyohee cf. e.g., Proer 199. Le P deoe he -rogrevely meaurable σ-feld o, Ω. I addo, we e σ ad { } { },., Le H deoe a geerc real Hlber ace wh er roduc, H ad he duced orm x H x,xh, x H. or ay r,, we defe he followg wo fuco o H: 1 Dx 1 {x } 1 x H x ad π r x Gve l N, he followg ace of fuco wll be ued he equel: r r x H x, x H. 1 Le L 1, be he ace of all fuco ψ :,, wh ψd <, ad le L, be he ace of all fuco ψ :,, wh ψ d <. Le L L, B,;R l be he ace of all R l -valued, B-meaurable fuco u wh ux dx <. Clearly, L a real Hlber ace wh he er roduc u1,u L u1 x,u x dx, u 1,u L. or ay u L, duced orm u L { ux dx 3 or ay ub-σ-feld G of, le L G be he ace of all real-valued o-egave G-meaurable radom varable; { L G {ξ L G : ξ L G } ξ } 1 < for all 1, ; { } L G ξ L G : ξ L G eu ξω < ; ω Ω L G be he ace of all R l -valued, G-meaurable radom varable; { { L G ξ L G : ξ L G } ξ } 1 < for all 1, ; { } L G ξ L G : ξ L G eu ξω <. ω Ω 1 See Lemma A.5 ad Lemma A.6 for roere of fuco D ad π r. } 1.
1. BSD wh Jum 3 4 Le D be he ace of all Rl -valued, -adaed RCLL rocee wh D ω eu ω <. 5 or ay 1,, we le eu,ω, Ω ω Ω u, D be he ace of all Rl -valued, -adaed RCLL rocee wh D M H be he ace of all H-valued, -redcably meaurable rocee wh { } 1 M H H d < ; S D M Rl d M L. { u, } 1 I h aer, we ue he coveo f{ } ad le c deoe a geerc coa deedg oly o arcular, c ad for a geerc coa deedg o ohg, whoe form may vary from le o le. 1. BSD wh Jum Aarameerarξ,f coofaradomvarableξ L ad afuco f :, Ω R l R l d L R l uch ha f P B R l B R l d B L /BR l -meaurable. Defo 1.1. Gve a arameer ar ξ,f, a rle Y,Z,U called a oluo of he bacward ochac dffereal equao wh jum ha ha ermal codo ξ ad geeraor f BSDJξ,f for hor f he followg hold: Y a R l -valued, -adaed RCLL roce, Z a R l d -valued, -rogrevely meaurable rocee, ad U a L -valued, -rogrevely meaurable rocee uch ha f,y,z,u Z U d <, P-a..; 1.1 L hold P-a.. ha Y ξ f,y,z,u d Z db U xñd,dx,,. 1., { Here, Ñ d,dx } N d,dx dxd. Oe ow ha, Ψ xñd,dx a margale for ay L -valued, -rogrevely meaurable rocee Ψ wh Ψ L d <., Remar 1.1. 1 he wo ochac egral 1. are well-oed. o ee h, we e M Z,, ad defe -og me } τ f {, : Z d >, N. < ; Z db, } or ay N, ce {M Z a uformly egrable margale, here ex a P-ull e N τ uch ha 3, lm MZ τ ω ω ex for ay ω Nc. By 1.1, oe ca fd a P-ull e N uch ha for ay ω N, c τ ω for ome ω N. Hece, for ay ω N {} Nc, lm MZ ω lm MZ τ ω ω ex. Pu aoher way, he lm Z db lm rgh-couou, wh lm from he lef 3 See, e.g., heorem II.3.1 of Revuz ad Yor 1999. Z db ex P-a..
L Soluo of BSD wh Jum 4 Smlarly, he lm, he oe ca deduce from 1. ha U xñd,dx lm U xñd,dx ex P-a.., Y lm Y ξ, P-a.. 1.3 We ed he roduco by recallg Lemma. of Y ad Su 3, a exece ad uquee reul of BSDJ Lchz cae. Lemma 1.1. Le ξ,f be a arameer ar uch ha ξ L ad f,,, d < ; or ome φ 1 L 1, ad φ L,, hold d dp-a.e. ha f,ω,y1,z 1,u 1 f,ω,y,z,u φ 1 y 1 y φ z 1 z u 1 u L, y 1,z 1,u 1,y,z,u R l R l d L. 1.4 he he BSDJξ,f adm a uque oluo Y,Z,U S. Cae 1: 1, We ar wh a a ror emae. Prooo.1. Le ξ,f be a arameer ar wh ξ L. Suoe ha Y,Z,U a oluo of BSDJξ, f ha afe Y,f,Y,Z,U f Y a Y l Z U, d dp-a.e..1 L for wo o-egave -rogrevely meaurable rocee {f },, {a }, ad for ome coa l, 1. Se A a d,,. If A <, P-a.. ad u, he here ex a coa c,l deedg oly o ad l uch ha u, e A Y c,l e A ξ e A Z d e A Y <,. e A U Ld e A f d..3 Proof: or ay N, we defe -og me τ f {, : A f,y,z,u Z } U d >..4 L Gve,, he fuco ϕ,x x e 1,,x, R l ha he followg dervave of -h ower: ad D ϕ,x e ϕ,x, D ϕ,x ϕ,xx, {1,,l}, Dj ϕ,x ϕ,xδ j ϕ 4,xx x j,,j {1,,l}..5
. Cae 1: 1, 5 Now fx < <. or ay, ad N, alyg Iô formula 4 o e A ϕ,y over he erval τ, τ yeld ha τ e A τ ϕ τ,y τ 1 e A race Z Z D ϕ,y d τ { e A ϕ,y ϕ,y Dϕ },Y, Y τ, τ e A τ ϕ τ,y τ τ τ τ τ e A ϕ,y d e A ϕ,y Y,f,Y,Z,U a ϕ,y d M, M,, M, M, P-a..,.6 where Mr, r τ e A ϕ,y Y,Z db ad for ay r,. I follow from.5 ha M, r,r τ ϕ ea,y Y,U x Ñd,dx race Z Z D ϕ,y ϕ,y Z ϕ 4,Y ϕ O he oher had, aylor xao heorem mle ha τ, τ l d YZ j 1,Y Z ϕ 4,Y Y Z 1ϕ,Y Z..7 e A { ϕ,y ϕ,y Dϕ,Y, Y } τ, τ τ, τ 1 1 1 1 e A 1 α Y,D ϕ,y α Y dα 1 e A 1 α τ, τ τ, τ τ, τ ϕ 1 e A Y 1 αϕ j1,y α Y ϕ 4,Y α dα e A Y Y Y e 1 le Y α Y α Y,Y α Y,Y α dα e A Y Y e 1 U x N d,dx..8 I he la equaly we ued he fac ha Y α 1 αy αy Y Y. Sce all rocee.6 are RCLL oe, luggg.7,.8 ad.1 o.6 yeld ha P-a.. e A τ ϕ 1 τ τ,y τ l τ 1 τ, τ η l τ τ e A ϕ,y Z d e A Y Y e 1 U x N d,dx e A ϕ,y U M Ld, M,, M where η η, e A τ ϕ τ,y τ τ e A f ϕ 1,Y d 4 ee e.g. Ieda ad Waaabe 1981, heorem II.5.1 or Proer 199, heorem II.3 τ, M,,,.9 e A ϕ,y d.
L Soluo of BSD wh Jum 6 he Burholder-Dav-Gudy equaly,.4, Lemma A.1 ad. mly ha τ u M, u M, c e A ϕ 4,, c e c e u ϕ,y, τ u,,y Y Z ϕ 4,Y Y U d L c e e A Y 1 u Y 1, τ <, whch mle ha boh M,, ad M are uformly egrable margale. A a RCLL roce, Y jum couably may me alog P-a.. ah, more recely, {, : Y ω Y ω Y ω } a couable e for P-a.. ω Ω..1 Hece oe ca deduce ha e A Y Y e 1 U x N d,dx, τ τ e A Y Y e 1 he leg ad ag execao.9 yeld ha Le Y, τ e A ϕ,y Z U d L u e A ϕ,y,,. I follow from.9 ha, Y, τ τ ηl e A ϕ,y U L d τ U x dxd e A ϕ,y U.11 L d. 1 1 l η..1 u, he Burholder-Dav-Gudy equaly mle ha u M, u M, M c,,m, 1 M,, M,1,, 1 τ c c e A ϕ 4,Y Y Z d { Y τ, τ 1 Y, τ τ c { e A ϕ,y Z d 1 Y, τ τ c e A ϕ,y where we ued.1 he la equaly. 1, τ, τ M, u M,,..13 e A ϕ 4,Y Y U x N d,dx τ e A ϕ,y Z d e A ϕ,y Z U L e A ϕ,y U x N d,dx U x dxd 1 } 1 d,.14 Now, le c,l deoe a geerc coa deedg oly o ad l, whoe form may vary from le o le. Lemma A.1,.4 ad. mly ha Y, τ e A Y e <. u, }
. Cae 1: 1, 7 he luggg.1 ad.14 o.13, we ca deduce from Youg Iequaly ad Lemma A.1 ha Y, τ c,l η c,l e A τ Y τ Y, τ τ 1 τ e A f d e A d c,l J 1 Y, τ,.15 where J J, e A τ Y τ e A f d e. I he ecod equaly above we ued he fac ha ϕ,y e 1,,ω, Ω. he follow from.15 ha u e A Y Y, τ c,l J,.16, τ ad ha η c,l J 1 Y, τ c,l J..17 I lgh of Youg Iequaly, we ca deduce from.1,.16 ad.17 ha { τ } e A Z d Y, τ τ e A ϕ,y Z d Y, τ τ e A ϕ,y Z d Y, 1 τ η c,l J..18 1 l { τ Smlarly, we ca deduce ha e A U d } c L,l J. Summg u wh.16 ad.18 a well a leg yeld ha u, τ e A Y τ c,l e A τ Y τ τ e A Z d e A U L d e A f d..19 We ow from.1 ad. ha for P-a.. ω Ω, τ ω for ome ω N. I follow ha lm Y τ Y, P-a..,. alhough he roce Y may o be lef-couou. herefore, leg ad he leg.19, we ca deduce.3 from he Moooe Covergece heorem, he Domaed Covergece heorem,., 1.3, ad.. 1 I he re of h eco, we le θ :,, be a creag cocave fuco wh d. θ Our goal of h eco he followg exece ad uquee reul of BSDJ for cae 1,. heorem.1. Le ξ,f be a arameer ar uch ha ξ L ad ha for each,ω, Ω, H1 he mag f,ω,,,u couou for ay u L. he he BSDJξ,f adm a uque oluo Y,Z,U S f he geeraor f afe he followg codo for d dp-a.e.,ω, Ω: H f,ω,y,z, 1 y β c z, y,z R l R l d ; H3 f,ω,y,z,u 1 f,ω,y,z,u c u 1 u L, y,z,u 1,u R l R l d L L ; H4 y 1 y 1 Dy 1 y,f,ω,y 1,z 1,u 1 f,ω,y,z,u λθ y1 y Λ y 1 y Λ y 1 y 1 z 1 z u 1 u L, y1,z 1,u 1,y,z,u R l R l d L ; 1
L Soluo of BSD wh Jum 8 where h1 c L 1, L, ad λ L1,, h β, Λ ad Λ are hree o-egave -rogrevely meaurable rocee uch ha Λ d } L, ad ha he roof of heorem.1 rele o he followg wo reul. Λ d Λ d < for ome,. { β d, Λ d, Prooo.. Le { ξ,f } N be arameer ar uch ha {ξ } N a Cauchy equece L. Aume ha for ay N, he BSDJξ,f ha a oluo Y,Z,U S, ad ha for ay N wh m >, Y,Z,U Y m Y,Z m Z,U m U afe where Y 1 DY,f m,y m,z m,u m λθ Y f,y,z,u δ Λ Y Λ Y 1 Z U L η, d dp-a.e..1 λ L 1,, Λ ad Λ are wo o-egave -rogrevely meaurable rocee uch ha Λ d } L, { Λ d, δ L a o-egave radom varable, ad η a o-egave roce uch ha lm η d.. u m> If λ o-rval.e. λd >, we furher aume ha u Y D Z M N Rl d U M L uδ < ad lm δ..3 N he { Y,Z,U } N a Cauchy equece S. Proof: Le a Λ 1 Λ ad A a d,,. I ealy follow from h ha A L wh κ A A L Λ d L 1 -og me τ τ { f, : Λ d L x, N wh m >. We defe a. Z U L } d >..4 x < <. Smlar o.6-.8, alyg Iô formula o e A ϕ,y overhe erval τ, τ yeld ha e A τ ϕ τ,y τ τ 1 e A ϕ,y Z d τ 1 e A Y Y e 1 U x N d,dx τ, τ e A τ ϕ τ,y τ τ τ τ,y d a e A ϕ τ M, M,, M e A ϕ τ τ M,,Y e A ϕ Y,f m,y m,zm,um f,y,z,u d,y d, P-a..,.5
. Cae 1: 1, 9 where M, r ad M, r r τ,r τ e A ϕ,y Y,Z db e A ϕ,y Y,U x Ñ d,dx for ay r,. Oe ca deduce from.1 ha d dp-a.e. ϕ A ϕ,y Y Y ϕ,y λθ Y,f m,y m,z m,u m f,y,z,u Y 1 DY,f m,y m,z m,u m f,y,z,u δ Λ Y Λ Y 1 Z U L η λθ Y δ Λ ϕ λθ Y,Y Λ ϕ 1 δ a ϕ,y 1 4 ϕ,y,y,y e 1,,ω, Ω, hold P-a.. ha τ τ e A ϕ Z U L η U Z L η..6,y d e κ A e d e κ A..7 Sce all rocee.5 are RCLL oe, luggg.6 ad.7 o.5 yeld ha P-a.. e A τ ϕ τ,y τ 4 1 τ 1 τ, τ g 4 1 τ where g g τ τ e A ϕ,y e A Y Y e e A ϕ,y U Ld e κa ϕ τ,y τ Z 1 U M, d x N d,dx M, M, λθ Y δ d η d he Burholder-Dav-Gudy equaly,.4, Lemma A.1 ad Hölder equaly mly ha u, M, u M,, τ c e A c e κa whch mle ha boh M, ad from.1 ha for ay, ϕ 4,Y Y u ϕ,y, τ M, e A Y Y e τ, τ he ag execao.8 yeld ha τ τ e A ϕ,y Z dϕ 4,Y Y c e κa Y 1 <, D M,,,,.8. U L d are uformly egrable margale. Smlar o.11, oe ca deduce Z 1 U U x N d,dx L d τ τ e A ϕ,y U Ld. 4 1 g,,..9
L Soluo of BSD wh Jum 1 By.8, hold P-a.. ha Ỹ, u e A ϕ,y u e A τϕ τ,y τ τ, τ, g 4 1 τ u, τ M, e A ϕ M,,Y u, U Ld M,, M Smlar o.14, oe ca deduce from he Burholder-Dav-Gudy equaly ha M, M, u M,, M u, c Ỹ, Ỹ, τ τ τ, τ, e A ϕ 1 Ỹ, τ c τ,y Z e A ϕ,y d U e A ϕ,y 1 x N d,dx Z U,,..3 1 L d,,..31 Sce Ỹ, e κ AY e D κa < by Lemma A.1, ag execao.3, we ca deduce from.9 ad.31 ha Smlar o.18, Youg Iequaly,.3 ad.9 mly ha { τ } e A Z Ỹ τ, d τ τ Smlarly, we ca deduce ha Ỹ, τ τ M { τ τ Ỹ, c g,,..3 e A ϕ e A U Ld A Z,U Rl d M L, we ee ha P-a.. ω Ω, τ ω for ome ω N, whch mle ha e A ϕ,y Z d,y Z d c g,,..33 } c g,,..34 Z U lm ϕ τ,y τ ϕ,y, P-a.., alhough he roce Y may o be lef-couou. A Y D, Lemma A.1 how ha u, ϕ,y u, he he Domaed Covergece heorem ad 1.3 mly ha lm ϕ τ,y τ ϕ L d <, P-a.. hu for Y L 1..35,Y ad lm ϕ,y ξm ξ.
. Cae 1: 1, 11 Addg u.3-.34, leg ad he leg, we ca deduce from he Moooe Covergece heorem ha ξm Ξ c e κa ξ λθ Ξ δ d η d,,, where Ξ u Y Z d U L, d ub heorem, he cocavy of θ ad Jee Iequaly ha Ξ c e κa ξm ξ c e κa ξm ξ Hece, hold for ay N ad, ha ξm uξ c e u κa ξ m> m> λ θ Ξ λθ Ξ δ d λθ Sce {ξ } N a Cauchy equece L, oe ha u m>. he leg, oe ca deduce from δ d η d η d,,. Ξ δ d u m> η d..36 ξm lm u ξ..37 m> If λ rval,.e. λd, he λθ.36, we ee from.37 ad. ha u m> lm u u m> Ξ Ξ m> O he oher had, we aume ha λ o-rval. Sce λ L 1, ad ce { } Ξ δ u Y D Z M U N Rl d M L by.3, aou Lemma, he mooocy ad he couy of θ 5 mly ha lm λθ u m> Ξ δ d δ d. ag ad leg..38 λ lm θ u m> λθ lm u δ <,,, N.39 N Ξ u Ξ m> Leg.36, we ca deduce from.37,. ad.4 ha lm Ξ c e κa λθ lm Ξ d,,. u m> u m> δ d d,,..4 A θ :,, a creag cocave fuco, eay o ee ha eher θ or θ > for ay >. Moreover, oe ca deduce from.39 ha he fuco µ lm he Lemma A.3 ad.39 mly ha lm u Ξ m> how ha { Y,Z,U } N a Cauchy equece S. u Ξ m>,, bouded.,,. herefore,.38 alway hold, whch Prooo.3. Le ξ,f be a arameer ar uch ha ξ L. If he geeraor f afe H1 for each,ω, Ω ad afe H-H4 for d dp-a.e.,ω, Ω, he he BSDJξ,f ha a oluo Y,Z,U D M Rl d M L. 5 I ow ha ay R-valued cocave fuco alo a couou fuco.
L Soluo of BSD wh Jum 1 Proof: We mae he followg eg fr: le ψ : R l,1 be a mooh fuco ha equal o 1 re. whe x R 1 re. x R, where { R ex β d L } c c d ξ L β d L cd. Le ρ : R ll d R be a mooh fuco ha vahe oude he u oe ball B 1 of R ll d ad afe ρxdx 1. or ay r,, we e ρ R ll d r x r l1d ρrx, x R ll d. } Le { O 1, N be aro6 of B 1 uch ha O O1 1 O1 hold for each O. or ay N ad 1,,, we c u a y,z O wh y Rl, ad le O deoe he volume of O. 1 x N. Clearly, β he fuco e e β,, a -rogrevely meaurable roce, whch mle ha f,ω,y,z,u β ωψyf,ω,y,π z,π u,,ω,y,z,u, Ω R l R l d L P B R l B R l d B L /BR l -meaurable. he we fx,ω,y,z,u, Ω R l R l d L ad defe f,ω,y,z,u f,ω,,,u ρ y,z. By H1, he couy of mag f,ω,,,u mle ha of mag f,ω,,,u. Hece, f,ω,y,z,u deed a Rema egral: f,ω,y,z,u lm f ỹ, z 1 f m1,ω,y 1 ỹ,z 1 z,u ρỹ, zdỹd z.41,ω,y 1 y,z 1 z,u ρy,z O, from whch oe ca deduce ha f alo P B R l B R l d B L /BR l -meaurable. Le c 1 Re c,,. Clearly, c L 1, L,. I follow from H ad H3 ha d dp-a.e. f,y,z,u β ψy f,y,π z,π u f,y,π z,π u f,y,π z, β ψy f,y,π z, c π u L β ψy 1 y β c π z c, y,z,u R l R l d L, whch mle ha d dp-a.e. 1 y1 f,y 1,z 1,u f,y,z,u y,z 1 z, ρ yα ỹ,z α z dα f,ỹ, z,udỹd z R ll d 1 c y1 y,z 1 z ρ yα ỹ,z α z dỹd zdα R ll d κ ρ c y 1 y z 1 z, y 1,z 1,y,z R l R l d, u L,.4 where y α αy1 1 αy, z α αz1 1 αz, α,1, ad κ ρ deermed by ρ ad. R ll d ρ x dx < a coa 6 We ay ha { O } m 1 a aro of he u cloed ball B 1 of R ll d f O, 1,,m are gle-coeced, oe ube of B 1 ha are arwely djo, ad f m 1 O B 1.
. Cae 1: 1, 13 Moreover,.41, H3 ad Lemma A.5 mly ha d dp-a.e. f,y,z,u 1 f,y,z,u β y ψ 1 ỹ, z 1 ỹ f,y f 1 ỹ,π z z 1,π u 1 ỹ, z 1,y 1 ỹ,π z z 1,π u 1 f,y 1 ỹ,π z z 1 f,y 1 ỹ,π z z 1,π u ρỹ, zdỹd z c π u 1 π u L c u1 u L, y,z R l R l d, u 1,u L,,π u ρỹ, zdỹd z whch ogeher wh.4 how ha f afe 1.4 wh φ 1 κ ρ c ad φ φ 1 c,,. Moreover, by.41 ad H, hold d dp-a.e. ha f,,, β, f 1 ỹ, z 1 ỹ,π z 1, ρỹ, zdỹd z β 1 1 ỹ β c π 1 ρỹ, zdỹd z ỹ, z 1 z 1e 1 c ρỹ, zdỹd z 1e 1 c. ỹ, z 1 whch mle ha f,,, d 1 1 cd <. herefore, we ow from Lemma 1.1 ha he BSDJξ,f ha a uque oluo Y,Z,U S. Now, we defe a 4β c4c ad A a d,,. I ealy follow from h1 ad h ha A L wh κ A A L 4 β d L c4c d. x N ad < <. Alyg Iô formula o e A Y over he erval, yeld ha e A Y e A Z d e A U x N d,dx, e A Y e A Y,f,Y,Z,U d a e A Y d M M M M, P-a..,.43 r where M r Y ea,z db ad M r Y,r ea,u x Ñd,dx, r,. Oe ca deduce from H ad H3 ha d dp-a.e. Y,f,Y,Z,U y,z <1 β ψ Y 1 y Y,f,Y 1 y,π Z 1 z,π U ρy,zdydz Y 1 Y β 1 y,z <1 y c π Z c 1 z π U L ρy,zdydz Y Y β c 1 Z U L β ca Y 1 Z 1 U.44 L. Moreover, Burholder-Dav-Gudy equaly ad Hölder equaly mly ha 1 u M u M c e A Y Z d,, c e κa u Y, Z d 1 e A Y U L d u Y, c e κa Y D Z M R l d U M L <, 1 U Ld 1
L Soluo of BSD wh Jum 14 whch how ha boh M ad M are uformly egrable margale. Hece, ag codoal execao.43, we ca deduce from.44 ha P-a.. e A Y 1 e Z A U d L e κa Y β d cd,.45 L where we ued he fac ha e A U x N d,dx, Sce Y D, he Domaed Covergece heorem mle ha e A U x dxd e A U Ld, P-a.. lm Y Y ξ ξ, P-a.. L Hece, a.45, he Moooe Covergece heorem gve ha e A Y 1 e A Z U d L ξ e κa L β d cd R, P-a.., L whch ogeher wh he rgh-couy of Y mle ha Y D R ad Z M Rl d U M L R, N..46 3 xce o a d dp-ull e Ñ1 of, Ω, We may aume ha H-H4 hold ad ha Y R, N. x,ω Ñc 1 ad fx m, N wh m >. By.41, Y 1 DY,f m,y m,z m,um f,y,z,u ỹ, z <1 Y 1 DY,β m h m ỹ, z β h ỹ, z ρỹ, zdỹd z,.47 where h ỹ, z f,y ỹ,π 1 Z z,π 1 U. Nex, fx ỹ, z R l R l d wh ỹ, z < 1. We e ỹ, z 1 m ỹ, 1 1 m 1 z ad coder he followg decomoo: Y 1 DY,β m h m ỹ, z β h ỹ, z β m Y ỹ 1 D Y ỹ,h m ỹ, z h ỹ, z Y 1 D Y Y ỹ 1 D Y β m Y I follow from H4 ha I 1 ỹ, z λθ Y ỹ,h m ỹ, z h ỹ, z 1 D Y,β m β h ỹ, z I 1 ỹ, zi ỹ, zi3 ỹ, z. ỹ Λ Y ỹ Λ Y ỹ 1 π m Z m m z π 1 Z z 1 πm U m π U L..48 Alyg Lemma A. wh a Y ad Y ỹ ad b Y yeld ha ỹ 1 Y 1 ỹ 1 Y 1 1.49 Y ỹ Y 1 Y ỹ ỹ Y δ.5
. Cae 1: 1, 15 wh δ R 3 1. Moreover, Lemma A.5 how ha πm Z m 1 m z π Z 1 z πm Z m 1 m z π mz 1 z πm Z 1 z π Z 1 z Z z 1 { Z z >} Z 1 1 z Z 1 { Z > 1} Z..51 Smlarly, we have πm U m π U L U L 1 { U L > } U L..5 Pug.49-.5 bac o.48, we ca deduce from he mooocy of fuco θ ha I 1 ỹ, z λθ Y where Ψ λθ Y Λ Y δ Λ Y δ Λ Y 1 1 Ψ Z U L δ Λ Y δ Λ 1R 4 1 Λ Ψ 1 Z U L 1 1 Λ Z U 1 { Z > 1} Z 1 { U L > } U L. O he oher had, oe ca deduce from H ad H3 ha L,.53 h ỹ, z 1 Y 1 ỹ β c π Z 1 z c π U L Rβ c 1 Z U L,.54 whch ogeher wh Lemma A.6 yeld ha Iỹ, z 1 D Y Y Y ỹ 1 D Y ỹ h m ỹ, z h ỹ, z 1 1 1 Rβ c Z m Z U m L U L Ĩ..55 Sce < β βm 1,,,.54 alo mle ha I 3 ỹ, z R 4 1 1 β Rβ c 1 Z U L Ĩ 3..56 Pluggg.53,.55 ad.56 bac o.47 how ha.1 afed wh δ R 3 1 ad η δ Λ 1R 4 1 Λ Ψ 1 1 Λ Z U Hölder Iequaly ad.46 gve re o he followg four emae: 1. u η d δ Λ d 1R 4 1 m> L 1 1. Λ Ψ d C1 Λ C Λ C1 Λ C 1 Λ Λ d L 8R L 1 1 { Z > 1} Z 1 d Z C1 Λ C 1 R, Λ M Rl d U Ĩ Ĩ3,,. M L Λ Ψ d Ĩ Ĩ3 d..57 1 { U L >} U 1 L d 1
L Soluo of BSD wh Jum 16 where C 1 Λ { Λ d ad C } 1 Λ Λ d. I he la equaly, we aled Lemma A.1 wh q, 1, a 1 Z M Rl d ad a U M L. 3. Ĩ d 1 1 R 1 β d cc d L 1 Z m Z U m U M Rl d M Rl d M L M L 1 1 R 1 β d cc dr. L 4. Ĩ 3 d R 4 1 R 4 1 1 β Rβ c d Z M R l d U M L { 1 β Rβ c dr { c 1 β d } 1 c 1 β d J. Becaue β e e β / ր 1 a,,, he Domaed Covergeceheorem gve ha lm J. hu, leg.57 verfe he codo.. Moreover, ce D D, M Rl d M R l d ad M L M L by Hölder equaly, we ee from.46 ha.3 alo hold. he Prooo. how ha { Y,Z,U } N a Cauchy equece S. Le Y,Z,U be lm S. 4 Sce lm Y Y D lm lm Z Z lm M Rl d lm U U M Lad lm, } 1 u Y Y,.58 Z Z d U U d L we ca exrac a ubequece { } N from N uch ha Z 1 Z M Rl d U 1 U M L, N ad ha P-a.. lm u Y Y lm Z Z d lm U U d, L,.59,.6, hu lm u Y Y lm, Z Z d lm U U d..61 L By.46, hold P-a.. ha u Y u Y Y u,,, Y u, Y Y Y D u, Y Y R, N. Leg, we ee from.61 ha u Y R, P-a.., whch mle ha Y D R., or ay N, we defe wo real-valued, -redcably meaurable rocee Z Z Z j Z j 1 ad U j1 U L U j U j 1 L,, j1
. Cae 1: 1, 17 wh Z Z ad U U. Oe ca ealy deduce ha Z M R wh Z M R Z M Rl d j1 A { Z } N a creag equece, we e Z Moooe Covergece heorem how ha for ay ω Ω Z ω d lm Z j Z j 1 M Rl d 1 Z M Rl d Z 1 Z M Z ω d, hu lm Z Z Rl d..6 Z j Z j 1,,. he j1 Z ω d lm Z ω d. Alyg he Moooe Covergece heorem oce aga, we ca deduce from.6 ad Lemma A.1 ha Z d Z d whch mle ha lm Smlarly, he roce U lm U U L Z d <, hu 3 1 1 Z M Rl d Z 1 Z <,.63 M Rl d Z d <, P-a...64 U j U j 1 L,, afe j1 U d <, hu x N. We defe a -og me τ f {, : Z Z U U d τ L Sce τ Covergece heorem ad.61 how ha lm τ Hece, here ex a ubequece { 5 Nex, le u how ha lm lm Z Z d lm 1 { τ } τ } N of { } U d <, P-a...65 } Z U d >..66 Z U d τ Z U d, ω Ω, he Bouded τ N Z Z lm U U L d..67 uch ha for d dp-a.e.,ω, Ω 1 { τ } By.41 ad.46, hold for ay N ha τ f,y,z,u f,y,z,u d τ β f,y 1 ỹ,π Z 1 z,π ỹ, z <1 U U L..68 f,y,z,u f,y,z,u d..69 U f,y,z,u ρỹ, zdỹd zd..7
L Soluo of BSD wh Jum 18 xce o a d dp-ull e Ñ of, Ω, We may aume ha H, H3 ad.68 hold; Y lm Y by.61; Y R ad Y R, N. x,ω Ñc wh τ ω, ad fx ỹ, z R l R l d wh ỹ, z < 1. I follow from.68 ha U lm Z lm L U..71 Z Wh hel of Lemma A.5, oe ca emae a follow: e1 Y 1 ỹ Y 1 Y Y, a ; e π Z 1 π z Z Z 1 z π Z Z π Z Z Z, a ; e3 π U L U π U L π U π L U U 1 a. Sce he mag f,,,u couou by H1 ad ce lm ha Moreover, H3 how ha β f lm β f,y 1 ỹ,π Z 1 z,π Z π Z Z 1 π z Z Z Z β U L L U π U U, 1, we ca deduce from e1 ad e,y 1 ỹ,π Z 1 z,u f,y,z,u..7 U whch ogeher wh.7 ad e3 mle ha lm β β f β f,y 1 ỹ,π Z 1 z,y 1 ỹ,π Z 1 z,π U,U c π U U L, f,y,z,u..73 or ay N, ce Z Z Z ad U L U U, oe ca deduce from H ad H3 ha f,y 1 ỹ,π Z 1 z,π U f,y,z,u f,y 1 Y 1 ỹ Y R 1β c 1 ỹ,π Z 1 z Z,π U U f,y,z,u Alyg Holder equaly, we ee from.63 ad.65 ha τ τ h ρỹ, zdỹd zd h d h d ỹ, z <1 π β c Z z 1 Z π U L U L Z U L L R 1β c 1Z Z U U L h. 1 { C c 1 d Zd 1 Z 1 } d U 1 d U L d 1 C c d Z M R Z M U Rl d M R U M L <.74
. Cae 1: 1, 19 wh C R 1 β d L cd. Hece, he Domaed Covergece heorem ad.73 how ha τ lm β ỹ, z <1 f whch ogeher wh.7 lead o.69.,y 1 ỹ,π Z 1 z,π U f,y,z,u ρỹ, zdỹd zd 6 Sce 7 τ,τ,τ, τ,,. he Burholder-Dav-Gudy equaly ad Hölder equaly mly ha u U x U x Ñ d,dx u U x U x Ñ d,dx, c c { τ,τ {,τ τ U x U x N d,dx } 1, c {, τ,τ, U x U x }1 N d,dx }1 U U, a,.75 Ld ad ha u, τ Z Z db τ u, τ Z Z db c τ 1 Z Z d Z c M Z, a..76 Rl d I lgh of.61,.69,.75 ad.76, here ex a ubequece { } ñ of { } N uch ha exce o N a P-ull e N1 lm Sce { u, Y ñ τ Y u, τ,τ fñ,y ñ,zñ,uñ ñ U x U x Ñ d,dx f,y,z,u d u, τ ñ Z Z db }. τ Y ñ,z ñ,u ñ olve BSDJ for ay N, hold exce o a P-ull e N ξ,fñ ha Y ñ τ 1 {τ < }Y ñ τ 1 {τ }ξ τ,τ τ τ fñ τ,y ñ,zñ,uñ d Zñ db τ Uñ xñd,dx,,, N..77 or ay ω Ω N 1 c N c ad ay,, leg.77, we oba ha over Ω τ Y τ 1 {τ < }Y τ 1 {τ }ξ f,y,z,u d Z db τ τ U xñd,dx,,..78 τ,τ ha o.64 ad.65, oe ca fd a P-ull e N 3 uch ha for ay ω N3 c, τ ω for ome ω N. veually, for ay ω Ω Ω N3 c N c 1 N c N3 c ad ay,, N N N leg.78 how ha 1. hold over Ω. o w, Y,Z,U a oluo of BSDJξ,f. 7 τ,τ ad for, ad,τ deoe, whe τ. τ
L Soluo of BSD wh Jum Proof of heorem.1: Uquee Suoe ha Y,Z,U S ad Y,Z,U S he BSDJξ,f. or ay N, we e are wo oluo of ξ,f ξ,f ad Y,Z,U { Y,Z,U f odd, Y,Z,U f eve. or ay N wh m >, H4 how ha.1 hold wh δ ad η. hu, eay o ee ha.ad.3arebohafed. heprooo.howha { Y,Z,U } N acauchyequeces, whch mle ha Y,Z,U Y,Z,U he ee ha Y Y D Z Z M Rl d U U M L. xece or ay N, we defe ξ π ξ. ha o Prooo.3, he BSDJξ,f ha a oluo Y,Z,U D M Rl d M L. or ay m, N wh m >, H4 how ha d dp-a.e. Y 1 D Y,f,Y m,z m,u m f,y,z,u λθ Y Λ Y Λ Y 1 Z U L. Hece,.1 hold wh f f, δ ad η. Clearly,. auomacally afed. Suoe ha λd >. We ca deduce from H ad H3 ha d dp-a.e. Y,f,Y,Z,U Y f,y,z, f,y,z,u f,y,z, Y 1 Y β c Z U L Y 1 4 β Y β 1 c hu.1 afed wh f β, a β 1 c, l 1 4. Sce wh κ A A L β d L 1 u, c d, Prooo.1 gve ha Y Z D M Rl d U M L c e A ξ c e κa ξ Z U L. e A Y e κa Y D e A β d β d L <, whchmle.3. heprooo.howha { Y,Z,U } N acauchyequece S. Le Y,Z,U be lm S. he re of roof mlar o ha of Prooo.3 cf. ar 4-6 here. By.58-.6, we ca fd a ubequece { } N from N uch ha Y 1 Y D Z 1 Z M Rl d U 1 U M L, N ad ha.61 hold P-a.. or ay N, we e η u Y, u j1, Y j wh Y Y. Oe ca ealy deduce ha η L wh ηl u Y, L u Y D j1 j1, Y j Y j 1 D Y j 1 Y j Y j 1 1 Y D L <, Y 1 Y D..79
. Cae 1: 1, 1 A { η } N a creag equece, we e η lm η u Y, u j1, Y j Y j 1. Alyg he Moooe Covergece heorem oce aga, we ca deduce from.79 ad Lemma A.1 ha η η lm η L 3 1 1 Y Y D 1 Y <..8 D We have ee he roof of Prooo.3 ha he wo real-valued, -redcably meaurable rocee Z Z Z j Z j 1 ad U U L U j U j 1 L,,, j1 wh Z Z ad U U, afy hu Z d < ad U d <, P-a.. j1 Z d U d <..81 x N. We ll defe he -og me τ a.66. ha o.67, oe ca exrac a ubequece { } N of { } uch ha.68 hold for d dp-a.e.,ω, Ω. xce o a d dp-ull e Ñ of N Y, Ω, We may aume ha H, H3 ad.68 hold, a well a ha lm Y by.61. x,ω Ñc wh τ ω. We ll have.71 by.68. he he couy of he mag f,,,u how ha lm f,y,z,u f,y,z,u..8 Moreover, H3 how ha f,y,z,u f,y,z U,U c L U, whch ogeher wh.8 mle ha lm f,y,z,u f,y,z,u..83 or ay N, ce u Y u Y,, u j1, oe ca deduce from H ad H3 ha f,y,z,u Y j f,y,z,u Y j 1 η η, Z Z ad U L U, Y Z Y β c Z η u Y, U β c Z Z U U L. U L L Alyg Holder equaly, we ee from.8 ha τ η u Y β d η u Y β d,, η Y L D β d <. L
L Soluo of BSD wh Jum Smlar o.74, Holder equaly ad.81 yeld ha τ c 1 Z Z U U L d c d Z M R Z M U Rl d M R U M L <. herefore, he Domaed Covergece heorem how ha lm τ f,y,z,u f,y,z,u d..84 he wo lm.75 ad.76 ll hold. he ug he mlar argume o hoe ha lead o 1. ad ug he fac ha lm ξ ξ, we ca coclude ha Y,Z,U a oluo of BSDJξ,f. Now, le γ be a -og me ha may ae he fe value. ha o heorem.1, he BSDJ wh radom me horzo γ alo well-oed for ay ermal codo ξ L γ uder hyohee H1-H4. Corollary.1. Le ξ,f be a arameer ar uch ha ξ L γ. If he geeraor f afe H1 for each,ω,γ 8 ad afe H-H4 for d dp-a.e.,ω,γ, he he followg BSDJ γ γ Y γ ξ f,y,z,u d Z db U xñd,dx,, ; P-a...85 γ γ γ,γ { Y adm a uque oluo ω,z ω,u ω } } {Y uch ha γ,1 { γ} Z,1 { γ} U,ω,γ, S. Proof: Oe ca chec ha f,ω,y,z,u 1 { γω} f,ω,y,z,u,,ω,y,z,u, Ω R l R l d L defe a P B R l B R l d B L /BR l -meaurable fuco ha afe H1 for each,ω, Ω ad afe H-H4 for d dp-a.e.,ω, Ω. heorem.1 he how ha he BSDJ ξ, f adm a uque oluo Y,Z,U S. So hold exce o a P-ull e N 1 ha Y ξ f,y,z,u d x, ad N. We defe a -og me By.86, hold o N c 1 ha τ f {, : Z db U xñd,dx,,..86, τ Y γ τ Y τ f,y,z,u d γ τ τ Y τ Z db γ τ Z } U d >..87 L Z db γ τ U xñd,dx. τ γ τ, τ γ τ, τ ag codoal execao γ τ ad mullyg 1{γ τ } o boh de yeld ha U xñd,dx 1 {γ τ }Y γ 1 {γ τ }Y γ τ 1 {γ τ } Y τ γ τ 1{γ τ } Y τ γ, P-a...88 A Z,U M Rl d M L, we ee ha Z U d <, P-a.. hu for P-a.. ω Ω, L τ ω for ome ω N, whch mle ha lm Y τ Y, P-a.. alhough he roce Y may o be 8 he ochac erval,γ defed by {,ω, Ω : γω}.
3. Cae :, 3 lef-couou. Sce ad 1.3 mly ha u, Y Y D < by Hölder equaly, he Domaed Covergece heorem lm Y τ γ Y γ, ad lm Y γ ξ γ ξ, P-a.. I clear ha lm 1 {γ τ } 1 {γ } ad ha lm 1 {γ } 1 {γ< }. hu, leg ad he leg.88 gve ha 1 {γ< } Y γ 1 {γ< } ξ, P-a.., whch ogeher wh 1.3 mle ha Y γ ξ hold exce o a P-ull e N. Le N N 1 N. I he hold o N c ha f,y,z,u d Z db U xñd,dx Y γ ξ. γ herefore, oe ca deduce from.86 ha o N c Y γ ξ ξ γ γ γ γ f,y,z,u d f,y,z,u d γ γ γ γ, Z db Z db γ, γ,γ U xñ d,dx U xñd,dx,,, { Y whch how ha ω,z ω,u ω } a oluo of.85. Moreover, ce Y,Z,U,ω,γ S, we ealy } ee ha {Y γ,1 { γ} Z,1 { γ} U belog o, S a well. { Ohe oherhad, f Ỹ ω, Z ω,ũω } aoheroluoof.85 uchha {Ỹ γ,1 { γ} Z,,ω,γ 1 { γ} Ũ }, S, he hold P-a.. ha γ Ỹ γ ξ ξ ξ γ γ f,ỹ, Z,Ũd Z db γ 1 { γ} f,ỹ, Z,Ũd f,ỹ γ,1 { γ} Z,1 { γ} Ũ d γ,γ 1 { γ} Z db Ũ xñd,dx, 1 { γ} Z db 1 { γ}, Ũ xñd,dx 1 { γ} Ũ xñd,dx,,, } whch how ha {Ỹ γ,1 { γ} Z,1 { γ} Ũ alo olve BSDJ ξ, f. Hece, he uquee of he, oluo of BSDJ ξ, f S eal ha u Y Ỹ γ Z 1 { γ} Z d U 1 { γ} Ũ d L, Y γ Ỹ Z Z γ d U Ũ d, whch mle ha u,γ { Y ω,z ω,u ω },ω,γ he uque oluo of.85 uch ha { Y γ,1 { γ} Z, 1 { γ} U }, S. L 3 Cae :, heorem 3.1. Le ξ,f be a arameer ar uch ha ξ L ad ha H1 hold for each,ω, Ω. he he BSDJξ,f adm a uque oluo Y,Z,U D M Rl d M L f he geeraor f afe H, H3 a well a he followg codo H4 for d dp-a.e.,ω, Ω:
L Soluo of BSD wh Jum 4 H4 y 1 y,f,ω,y 1,z 1,u 1 f,y,z,u, Λ y 1 y Λ y 1 y z 1 z u 1 u L, y1,z 1,u 1,y,z,u R l R l d L, where Λ ad Λ are wo o-egave -rogrevely meaurable rocee defed h. Proof: A ξ L L, alyg heorem.1 wh ad λ, we ow ha he BSDJξ,f adm a uque oluo Y,Z,U S. So uffce o how ha Y D D. More recely, we ee from he roof of heorem.1 ha Y,Z,U he lm of {Y,Z,U } N S, where Y,Z,U he uque oluo of he BSDJξ,f wh ξ π ξ uch ha Y D. Le u defe a Λ 3 1 Λ ad A a d,,. I ealy follow from h ha A L wh κ A A L Λ d L 3 1 Λ d. x, N wh m >. We ll e L Y,Z,U Y m Y,Z m Z,U m U ad defe he -og me τ τ fuco x, x R l ha dervave: a.4. he D x x x, {1,,l}, ad D j x x δ j 1 {x } x 4 x x j,,j {1,,l}. 3.1 x < <. Smlar o.6, alyg Iô formula o e A Y over he erval τ, τ yeld ha e A τ where Y τ 1 { e A τ, τ e A τ Y M τ τ Y e A race Z Z Y D Y τ τ M τ M r ad M r M e A Y M r τ,r τ for ay r,. I follow from 3.1 ha race Z Z D Y Y D Y d }, Y Y,f,Y m,z m,u m f,y,z,u a Y d, P-a.. 3. e A Y Y,Z db e A Y Y,U x Ñd,dx Z 1 {Y } Y 4 l d 1 j1 Y Z j Y Z. 3.3 O he oher had, aylor xao heorem ad lemma A.4 mly ha { e A Y Y D Y, Y } τ, τ τ, τ τ, τ τ, τ 3 1 τ, τ 1 e A 1 α Y,D Y,α Y dα 1 Y e A,α 1 α Y 1 {Y,α 1 e A Y 1 α Y,α dα 3 1 le Y,α Y } α Y Y,α 4 Y τ, τ e A Y Y,Y,α. dα e A Y U x N d,dx. 3.4
3. Cae :, 5 Moreover, H4 how ha d dp-a.e. Y,f,Y m,zm,um f,y,z,u Λ Y Λ Y Z U L a Y 31 Z U. 3.5 L Sce all rocee 3. are RCLL oe, Pluggg 3.3-3.5 o 3. yeld ha P-a.. e A τ Y 3 1 τ τ e A Y Z d3 1 e A Y e A τ τ Y τ 3 1 M M M where we ued he fac ha 1 > 31. τ τ M e A Y τ, τ U Ld he Burholder-Dav-Gudy equaly ad.4 mly ha u M u M τ c e A,, whch how ha boh M from.1 ha, τ e A Y ad M U U x N d,dx,,, 3.6 c e κa Y D Y Z Y U <, L d are uformly egrable margale. Smlar o.11, oe ca deduce τ x N d,dx Hece, leg 3.6 ad he ag execao, we oba τ e A Y I alo follow from 3.6 ha u e A Y, τ Y e κa τ 31 u, Z U u, τ e A τ Y τ e A Y L e A Y U Ld. d Y 3 1 e κa τ. 3.7 U Ld Smlar o.14, he Burholder-Dav-Gudy equaly mle ha M u M, Sce τ c 1 u, τ u, τ e A Y e A Y e A Y Z d c 1 τ e κa Y D u Y, τ u, τ, τ e A Y u, M u, M e A Y U x N d,dx Z U L. 3.8 1 d. 3.9 <, ug 3.9 o 3.8, we ca deduce from 3.7 ha e A Y c e κa Y τ. 3.1
L Soluo of BSD wh Jum 6 Sce Z,U M R l d M L, we ee ha Z U d <, P-a.. hu for L P-a.. ω Ω, τ ω for ome ω N, whch lead o ha lm Y τ Y, P-a.. alhough he roce Y may o be lef-couou. A Y D, he Bouded Covergece heorem mle ha lm Y τ Y ad lm Y ξ m ξ. herefore, leg ad he leg 3.1, we ca deduce from he Moooe Covergece heorem ha Y D Y ξm c e κa ξ c e κa ξm ξ L. 3.11 u, Sce lm ξ ξ, he Domaed Covergece heorem mle ha lm ξ ξ,.e., ξ coverge o ξ L. Hece, we ee from 3.11 ha { Y } N a Cauchy equece D. Le Ỹ be lm D. A D D, { Y } N coverge o Ỹ alo D. he he uquee of he lm of { Y } N D how ha Y ad Ỹ are dguhable9, whch mle ha Y D. Smlar o Corollary.1, we ca deduce from heorem 3.1 he followg exece ad uquee reul of BSDJ wh radom me horzo γ for cae,. Corollary 3.1. Le ξ,f be a arameer ar uch ha ξ L γ. If he geeraor f afe H1 for each,ω,γ ad afe { H, H3 a well a H4 for d dp-a.e.,ω,γ, he he BSDJ.85 Y adm a uque oluo ω,z ω,u ω } } {Y uch ha γ,1 { γ} Z,1 { γ} U,ω,γ, D M Rl d M L. A Aedx Lemma A.1. Le {a } N,. or ay, ad N wh, we have 1 1 a a 1 1 a. 1 1 1 A.1 Proof: Suoe ha 1, fr. or ay b c <, oe ca deduce ha bc c bc c 1 d bc c b 1 d b b, or equvale, bc b c. hu, a 1 a a 1 a. Whe 3, alyg A. coecuvely, we oba a a 1 a a 1 a a a 1 3 1 1 a a. 1 A. A.3 Now, le m be he coug robably meaure o S {1,,} wh m 1 for each S. Jee Iequaly mle ha a a m d a m a d S S. 1 Mullyg o boh de, we ee from A.3 ha 1 9.e., P Y Ỹ,, 1. a a 1 a. 1 1 1 A.4
A. Aedx 7 Clearly, he cae 1 rval. So rema o how A.1 for,1: Alyg A.4 wh 1 ad ã a, S yeld ha a 1 ã ã 1 1 1 ag -h ower o boh equale above, we oba a 1 1 ã 1 1 a. 1 1 1 a a 1 1 a. Lemma A.. or ay b,c,, we have { b c b c, f,1, b c 1 b c, f 1,. 1 A.5 Proof: I rval whe b c. Sce b ad c ae he ymmerc role A.5, we oly eed o aume b < c whou lo of geeraly. Whe,1,alygLemmaA.1wha 1 bada c byeldhac a 1 a a 1 a b c b, whch mle ha b c c b c b b c ; Whe 1,, oe ca deduce ha c b c b 1 d c b c 1 d c 1 c b, whch lead o ha b c c b c 1 c b b c 1 b c. Lemma A.3. Le θ,ζ,µ :,, be hree fuco uch ha eher θ or θ > for ay > ; θ creag ad afe 1 1 θ d ; ζ egrable ad µ bouded. If µ θ µ ζd for ay, he µ. Proof: he cae θ rval. So we oly aume ha θ > for ay > by. I follow from ha φ θκ µ ζd < wh κ µ u µ. hu, φ θ µ ζd,,,. defe a couou ad decreag fuco. Sce θ creag, dffereag fuco φ yeld ha φ θ µ ζ θ φ ζ,,. A.6 Aume φ >. he f{, : φ }, ad clear ha lm φ. A he couou ad decreag fuco φ mage, oo, φ, Chagg of varable gve ha φ 1 θ d 1 θ φ dφ φ θ φ d ζd ζd <, where we ued A.6 ad. or ay < a < b <, oe ca deduce from he mooocy of fuco θ ha b 1 a θ d b 1 b a a θa d θa <, whch ogeher wh A.7 mle ha 1 1 θ d <. h reul a coradco o aumo. herefore, φ, whch force φ. A a coequece, µ. Lemma A.4. Le, ad le B be a geerc real Baach ace wh orm B. or ay x,y B, 1 1 α xαy B dα 3 1 x B. A.7
L Soluo of BSD wh Jum 8 Proof: If y, oe mly ha 1 1 α x B dα 1 x B. So le u aume y ad e α x B 3 y B. Sce hold for ay α,α α, ha 1 3 x B x B α y B xαy B, we ca dcu by hree cae: 1 Whe 1 α : 1 1 α xαy B dα 1 3 x B 1 1 αdα 1 1 3 x B ; Whe 1 α < 1 : 1 1 α xαy B dα 1 1 α xαy B dα 1 3 Whe α < 1 : 1 1 α xαy B dα 1 3 x B 1 3 x B { α 1 } α 1 αdα 1 3 x 3 B α α 1 1 αdα 3 8 1 3 x B ; or he ex wo lemma, we aume ha H a geerc real Hlber ace wh er roduc, H. 1 3 1 3 x B. Lemma A.5. or ay x,y H, we have πr x π r y H x y H, r,. A.8 Coequely, x y H x H y H Dx Dy H. A.9 Proof: Whou lo of geeraly, we aume ha x H y H. o ee A.8, le u dcu by hree cae: 1 Whe r y H : Sce π r x x ad π r y y, oe mly ha πr x π r y H x y H ; Whe x H r < y H : Le u e κ x, Dy H ad ŷ κdy. Sce x ŷ, Dy, hold for ay H α R ha x αdy H x ŷ α κdy H x ŷ H α κdy H x ŷ H α κ. Hece, follow ha πr x π r y H x rdy H x ŷ H r κ x ŷ H y H κ x y where we ued he fac ha κ x, Dy H x H r < y H, ha o he Schwarz equaly. 3 Whe r < x H : We ow from ha x y H π x H x π x H y H x x H Dy H x H Dx Dy H r Dx Dy H πr x π r y H. H. If x, A.9 hold auomacally. Oherwe, alyg A.8 wh r x H gve re o A.9. Lemma A.6. Le,1. or ay x,y H, we have x H Dx y H Dy H 1 x y H. Proof: he cae 1 rval ce x H Dx y H Dy x y H. or,1, we aume whou lo H of geeraly ha x H y H ad dcu by hree cae: 1 Whe x : y H Dy H y H ; Whe < x H x y H : x H Dx y H Dy H x H Dx H y H Dy H x H y H x H x H x y H 1 x y H ; 3 Whe x H > x y H : x H Dx y H Dy H x HDx Dy x H y H x 1 H x y H x H H y H < x y H, where we ued A.9 ad Lemma A. he ecod equaly.
Referece 9 Referece J.-M. Bmu. Cojugae covex fuco omal ochac corol. J. Mah. Aal. Al., 44:384 44, 1973. ISSN -47x. P. Brad ad R. Carmoa. BSD wh olyomal growh geeraor. J. Al. Mah. Sochac Aal., 133: 7 38,. ISSN 148-9533. P. Brad, B. Delyo, Y. Hu,. Pardoux, ad L. Soca. L oluo of bacward ochac dffereal equao. Sochac Proce. Al., 181:19 19, 3. ISSN 34-4149. do: 1.116/S34-4149389-9. J. Cvać, I. Karaza, ad H. M. Soer. Bacward ochac dffereal equao wh cora o he ga-roce. A. Probab., 64:15 1551, 1998. ISSN 91-1798. do: 1.114/ao/185587. N. l Karou, S. Peg, ad M. C. Queez. Bacward ochac dffereal equao face. Mah. ace, 7 1:1 71, 1997. ISSN 96-167. N. Ieda ad S. Waaabe. Sochac dffereal equao ad dffuo rocee, volume 4 of Norh-Hollad Mahemacal Lbrary. Norh-Hollad Publhg Co., Amerdam, 1981. ISBN -444-8617-6.. Pardoux. Geeralzed dcouou bacward ochac dffereal equao. I Bacward ochac dffereal equao Par, 1995 1996, volume 364 of Pma Re. Noe Mah. Ser., age 7 19. Logma, Harlow, 1997. É. Pardoux ad S. G. Peg. Adaed oluo of a bacward ochac dffereal equao. Syem Corol Le., 141:55 61, 199. ISSN 167-6911. P. Proer. Sochac egrao ad dffereal equao, volume 1 of Alcao of Mahemac New Yor. Srger-Verlag, Berl, 199. ISBN 3-54-5996-8. A ew aroach. D. Revuz ad M. Yor. Couou margale ad Browa moo, volume 93 of Grudlehre der Mahemache Wechafe udameal Prcle of Mahemacal Scece. Srger-Verlag, Berl, hrd edo, 1999. ISBN 3-54-6435-7. S. Rog. O oluo of bacward ochac dffereal equao wh jum ad alcao. Sochac Proce. Al., 66:9 36, 1997. ISSN 34-4149. do: 1.116/S34-4149961-. S. J. ag ad. J. L. Neceary codo for omal corol of ochac yem wh radom jum. SIAM J. Corol Om., 35:1447 1475, 1994. ISSN 363-19. J. Y ad. Mao. he adaed oluo ad comaro heorem for bacward ochac dffereal equao wh Poo jum ad alcao. J. Mah. Aal. Al., 346:345 358, 8. ISSN -47. do: 1.116/j.jmaa.8.5.7. J. Y ad R. Su. O oluo of forward-bacward ochac dffereal equao wh Poo jum. Sochac Aal. Al., 16:1419 1448, 3. ISSN 736-994. do: 1.181/SAP-16113.