arxiv: v1 [math.ap] 22 Dec 2018

Σχετικά έγγραφα
Prescribing Morse scalar curvatures: subcritical blowing-up solutions

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Examples of Cost and Production Functions

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Estimators when the Correlation Coefficient. is Negative

Optimal stopping under nonlinear expectation

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

The Neutrix Product of the Distributions r. x λ

Analytical Expression for Hessian

Example 1: THE ELECTRIC DIPOLE

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Multi-dimensional Central Limit Theorem

Exam Statistics 6 th September 2017 Solution

Multi-dimensional Central Limit Theorem

Laplace s Equation in Spherical Polar Coördinates

Markov Processes and Applications

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly

Some Theorems on Multiple. A-Function Transform

Matrix Hartree-Fock Equations for a Closed Shell System

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

α & β spatial orbitals in

Every set of first-order formulas is equivalent to an independent set

Chapter 15 Identifying Failure & Repair Distributions

Homework 4.1 Solutions Math 5110/6830

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1

Statistical Inference I Locally most powerful tests

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Homework for 1/27 Due 2/5

Example Sheet 3 Solutions

Markov Processes and Applications

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

17 Monotonicity Formula And Basic Consequences

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Universal Levenshtein Automata. Building and Properties

1. For each of the following power series, find the interval of convergence and the radius of convergence:

The Laplacian in Spherical Polar Coordinates

On Quasi - f -Power Increasing Sequences

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Solve the difference equation

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

Matrices and Determinants

(b) (c) (d) When, where

The challenges of non-stable predicates

1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation.

Identities of Generalized Fibonacci-Like Sequence

ST5224: Advanced Statistical Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

2 Composition. Invertible Mappings

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

physicsandmathstutor.com

Three-Dimensional Experimental Kinematics

4.2 Differential Equations in Polar Coordinates

ANTENNAS and WAVE PROPAGATION. Solution Manual

Minimum density power divergence estimator for diffusion processes

( y) Partial Differential Equations

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Ψηφιακή Επεξεργασία Εικόνας

Uniform Convergence of Fourier Series Michael Taylor

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators


[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

8.324 Relativistic Quantum Field Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

A Note on Intuitionistic Fuzzy. Equivalence Relation

Solutions Ph 236a Week 2

Solutions to Exercise Sheet 5

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

F19MC2 Solutions 9 Complex Analysis

Concrete Mathematics Exercises from 30 September 2016

Differential Equations (Mathematics)

Article Multivariate Extended Gamma Distribution

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

The Simply Typed Lambda Calculus

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Tutorial Note - Week 09 - Solution

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

r = x 2 + y 2 and h = z y = r sin sin ϕ

C.S. 430 Assignment 6, Sample Solutions

1 3D Helmholtz Equation

IIT JEE (2013) (Trigonomtery 1) Solutions

Product of two generalized pseudo-differential operators involving fractional Fourier transform

On Zero-Sum Stochastic Differential Games

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Section 8.3 Trigonometric Equations

Transcript:

Pescbg Mose scala cuvatues: blow-up aalyss Adea Malchod ad Mat Maye Scuola Nomale Supeoe, Pazza de Cavale 7, 56 Psa, ITALY adeamalchod@sst, matmaye@sst axv:89457v [mathap] Dec 8 Decembe 7, 8 Abstact We study fte-eegy blow-ups fo pescbed Mose scala cuvatues both the subctcal ad the ctcal egme Afte geeal cosdeatos o Palas-Smale sequeces we deteme pecse blow up ates fo subctcal solutos: patcula the possblty of towe bubbles s excluded all dmesos I subsequet papes we am to establsh the shapess of ths esult, povg a covese exstece statemet, togethe wth a oe to oe coespodece of blowg-up subctcal solutos ad ctcal pots at fty Ths aalyss wll be the appled to deduce ew exstece esults fo the geometc poblem Key Wods: Cofomal geomety, sub-ctcal appoxmato, blow-up aalyss Cotets Itoducto Vaatoal settg ad pelmaes 6 3 Blow-up aalyss 9 4 Reducto ad v-pat estmates 4 5 The fuctoal ad ts devatves 7 6 Gadet bouds 3 7 Appedx 35 7 Iteactos 35 7 Devatves 39 73 Lst of costats 5 Itoducto The poblem of pescbg the scala cuvatue of a mafold cofomally has a log hstoy, statg fom [3], see also [3], [3] I case of the oud sphee, ths s ow as Nebeg s poblem Gve a closed mafold M, g of dmeso 3 ad a cofomal metc g = u 4 g fo a postve fucto u > o M, the cofomal chage of the scala cuvatue s gve by R gu u + = Lg u, whee by defto L g u = c g u + R g u, c = 4

s the cofomal Laplaca, whle g s the Laplace-Beltam opeato wth espect to g Thus, ode to pescbe a fucto K o M as the scala cuvatue wth espect to g, oe eeds to solve L g u = Ku +, u > potwse o M, see [3] The expoet o the ght-had sde s ctcal wth espect to Sobolev s embeddg, whch maes the poblem patculaly challegg I cotast to the Yamabe poblem, whch amouts to fdg a costat scala cuvatue metc, fo K vayg o M thee ae obstuctos to the exstece fo Fo example Kazda ad Wae poved [3] that o the oud sphee S, g S evey soluto u of must satsfy K, f gs u dµgs = S fo ay estcto f to S of a affe fucto o R + I patcula, sce u s postve, a ecessay codto fo the exstece of solutos s that the fucto K, f gs chages sg Oe of the fst aswes to Nebeg s poblem was gve by J Mose [38] fo two dmesos, whee the coutepat of has a expoetal fom He poved that fo K beg a eve fucto o S a soluto always exsts A elated esult was gve by J Escoba ad R Schoe [], showg exstece of solutos whe K s vaat ude some goup G actg wthout fxed pots, ude sutable flatess assumptos of ode I the same pape some esults wee also foud fo o-sphecal mafolds usg postvty of the mass Othe suffcet codtos fo the exstece case of G-vaat fuctos wee gve by E Hebey ad M Vaugo [4], [5], allowg the possblty of fxed pots Othe exstece esults wee obtaed by A Chag ad P Yag, see [7], [8], fo the case = wthout equg ay symmety of K Oe codto fo whch they obtaed exstece s the followg They assumed that K s a Mose fucto, satsfyg geecally { K = } { K = } = They also supposed that K possesses p local maxma ad q saddle pots wth egatve Laplaca ad p q + The latte codto was used to pove the esult va a Leay-Schaude degee-theoetcal agumet I the same papes othe esults wee gve, equg codtos oly at some pescbed levels of K Typcally K must possess two maxma x ad x, Kx Kx, whch ae coected by some path xt fo whch x saddle pot fo K f Kxt Kx<Kx Kx > t Statemets of ths last d have bee obtaed [] fo = ad [8] fo 3 Aothe exstece esult was gve by A Bah ad JM Coo [5] fo = 3 ad a Mose fucto K satsfyg ad mx,k 3 x { K=} { K<} Hee mx, K deotes the Mose dex of K at x, cf also [] The esult of Bah ad Coo, whch eles o a topologcal agumet, has bee exteded seveal dectos A exteso of codto 3, based o Mose s equaltes, was gve by Schoe ad Zhag [4] fo the case = 3 Fo a Mose fucto K satsfyg ad settg c q = {x M : Kx =, Kx < ad mk, x = 3 q} they equed that ethe c c + c o c c > Note that the fst codto s equvalet to 3 ad the secod oe fo = coespods to the codto p + > q [7] Othe esults of petubatve type ad elyg o fte-dmesoal eductos wee gve by A Chag ad P Yag [9] ad by A Ambosett, J Gaca-Azoeo ad I Peal [], see also [34] The authos cosdeed the case whch K s close to a costat ad satsfes a aalogue of 3, e mx,k x { K=} { K<}

I [7] YY L poved exstece of solutos fo evey dmeso, f the fucto K ea each ctcal pot has a Mose-type stuctue, but wth a flatess of ode β, Hs poof eled o a homotopy agumet: cosdeg K t = t K + t, t [, ] the autho used the degee-coutg fomula of [9] fo t small, ad the a efed blow-up aalyss of equato, whe t teds to A dffeet degee fomula ude moe geeal flatess codtos was toduced [5] Othe esults obtaed by dffeet appoaches ca also be foud [7], [9], [] A useful tool fo the above esults s a subctcal appoxmato of, amely c g u + R g u = K u + τ, < τ 4 The advatage of 4, compaed to, s that the lowe expoet maes the poblem compact, so t s ease to costuct solutos Howeve, the teestg pot s passg to the lmt of solutos fo τ ad geeal oe expects some of them to dvege wth zeo wea lmt The appoach [], [4], [7] was to udestad detal the behavou of blowg-up solutos ad the to use degee- o Mose-theoetcal agumets to show that some solutos stay bouded Cosde ow a Mose fucto K o the sphee satsfyg I dmeso = 3 o ude a flatess codto hghe dmesos, t tus out that blowg-up solutos to 4 develop a sgle bubble at ctcal pots of K wth egatve Laplaca Bubbles coespod to solutos of o S wth K ad wee classfed [], see also [], [44], ad afte pope dlato epeset the pofles of dvegg solutos, cf Secto fo pecse fomulas The sgle-bubble pheomeo ca be qualtatvely explaed explotg the vaatoal featues of the poblem, whch admts the Eule-Lagage eegy J = J K gve by c u g + R g u dµ g Ju = M Ku dµg see also egadg 4 Deote by δ a, a bubble ceteed at a S wth dlato paamete The fo dstct ad fxed pots a, a ad lage oe has the expasos Kδ a, +δ a, dµgs Ka +Ka + c S, Kδ a dµ, g S c Ka c 3 S Ka 5 wth costats c >, whee c depeds o a ad a We efe to Secto 5 fo moe accuate esults Tems smla to the above oes appea the expesso of J τ By the latte fomulas ad fo ad = 3 the teacto of the bubbles wth K s domated by the mutual teactos amog bubbles Ths causes multple bubbles to suppess each othe allowg oly oe blow-up pot at a tme, whch has to be close to at ctcal pots of K wth egatve Laplaca due to a Pohozaev detty Ths aalyss was caed ove [8] also o S 4 I ths case the above teactos ae of the same ode ad multple blow-ups occu It was also show thee that multple bubbles caot accumulate at a sgle pot Usg a temology fom [4], [4] such blow-ups ae called solated smple I fou dmesos a dffeet costat o multple blow-up pots eplaces K <, depedg o the least egevalue of a matx costucted out of K ad the locato of the blow-up pots, cf 8 [8] O geeal fou-dmesoal mafolds thee s a exta tem due to the mass of the mafold leadg to smla pheomea, but wth modfed fomulas, see [6] The goal of ths pape s to vestgate the blow-up behavou a opposte egme, whe the dmeso 5 ad the fucto K s Mose I ths case the secod tem 5 domates the fst oe, so t s dastcally dffeet fom stuato of low-dmesos o wth flat cuvatues Howeve we ca stll show that blow-ups ae solated smple, whch s mpotat udestadg the Mose-theoetcal stuctue of the eegy fuctoal Hee s ou ma esult Theoem Let M, g, 5 be a closed mafold of postve Yamabe class ad K : M R a smooth postve Mose fucto satsfyg The postve sequeces of solutos to 4 fo τ m wth ufomly bouded W, -eegy ad zeo wea lmt have oly solated smple blow-ups at ctcal pots of K wth egatve Laplaca, 3

The above theoem follows fom Poposto 3, whee a geeal chaactezato of blowg-up Palas- Smale sequeces fo 4 as τ s gve, ad fom Theoem, whee a lowe boud o the om of the gadet of the Eule-Lagage fuctoal J τ fo 4 s poved, see Rema Solutos of 4 ca be foud as sutably omalzed ctcal pots of the scalg-vaat eegy J τ Fo a sequece of ctcal pots u m of J τm, wth τ m as Theoem, thee exst up to subsequeces q N ad dstct pots x,, x q M wth Kx = ad Kx < such that fo some α,m = u m q α,m δ,m,a,m W as m =, M,g Θ Kx 4 + o, a,m x ad,m τm = τ m, whee the multplcatve costat Θ eflects the scalg vaace of J τm, see, ad ca be fxed fo stace by pescbg the cofomal volume, cf Rema 6 I Theoem we wll show much moe pecse estmates, that wll be cucal fo [35] Fo example, f 6, we fd Kx,m = c Kx τ, a,m = c Kx Kx θ, α = Θ p Ka,m up to eos of ode o 3 τ m, whee c, c ae dmesoal costats ad we detfy by a slght abuse of otato a,m wth ts mage cofomal omal coodates at x, cf [6] Hece all the fte dmesoal vaables, e α,m, a,m ad,m ae detemed to a pecso of ode o 3 τ m Rema We ext compae Theoem to some exstg lteatue ad add futhe commets a O S 3 ad S 4 the solated-smpleess of solutos was poved [], [7], [8], [4] fo abtay sequeces of solutos by a efed blow-up aalyss The ufom W, -boud s the deved a- posteo I dmeso 5 the latte boud may ot hold tue geeal - we efe the eade to [], [3], [4], whee some cases t s show that blowg-up solutos fo the puely ctcal equato must have dvegg eegy ad blow-ups of dvegg eeges ad toweg bubbles ae also costucted, cf also [33], [39], [45] Howeve, the fothcomg pape [36] we wll costuct solutos to 4 va m-max o Mose theoy wth the pupose of fdg a o-zeo wea lmt These wll deed satsfy the equed eegy boud Ths wll allow us to obta exstece esults ude less stget codtos compaed to some othes the lteatue, as [8] ad [6] b O mafolds ot cofomally equvalet to S a-po estmates wee poved [9] fo = 3 both ctcal ad subctcal cases Ou aalyss caes ove fo = 4 as well, whee the matx Defto 6, toduced [6], [8] ad also volvg the mass, gves costats o the locato of multple blow-up pots The ma ew aspect of ou esult s the solated smple blow-up behavou dmeso 5, so we chose to state Theoem a smple fom oly fo ths case We efe to Theoem fo a moe pecse veso of the esult: hee we deve deed estmates o solutos wth hgh pecso as τ, as well as estmates that ae ufom ths paamete c I [35] we wll show a covese statemet Gve ay dstct pots p,, p { K = } { K < } ad τ thee exst solutos u to 4 blowg-up at p,, p exactly as descbed above Thece the chaactezato of Theoem s optmal We efe to [7], [8] fo the coutepats o thee- ad fou-sphees I [35] we wll also show a oe-to-oe coespodece of such blowg-up sequeces wth ctcal pots at fty fo poblem, cf [4] d We expect the same cocluso of Theoem should hold tue eplacg the eegy boud wth a Mose dex boud It would also be teestg to udestad the case of o-zeo wea lmts 3,m 4

We dscuss ext some heustcs about the poof of Theoem Fst we show a quatzato esult fo Palas-Smale sequeces of solutos to 4 as τ We ae sped ths step fom a esult by M Stuwe [43], whee the same was poved fo τ = : ou case we eed exta wo the lmtg pocess, due to a dffeet dlato covaace of subctcal equatos We the pove that we ae a petubatve egme ad evey soluto to 4 fo τ suffcetly small ca be wtte as a fte sum of hghly peaed bubbles ad a eo tem small W, -om, whch we pove to have a mo effect the expasos Pefomg a caeful aalyss of the teactos of the bubbles amog themselves ad wth K, t s ot dffcult to see that fo 5 blow-ups should occu at ctcal pots of K wth egatve Laplaca oly, cf also Theoem [3], ad we ae left wth excludg multple bubbles toweg at the same lmt pot, whch s the cucal esult ou pape We gve a dea of ths fact some patcula cases, that ae easy to descbe Let J τ be the Eule- Lagage eegy of 4, see Fo a ctcal pot a of K, the followg expaso holds fo J τ o a bubble cocetated at a J τ δ a, a τ Ka, 6 Ka K cf Poposto 5 By elemetay cosdeatos oe checs that fo Ka < the fucto the ght-had sde has a o-degeeate mmum pot at = τ τ, see also Poposto [4] Sce bubbles have a attactve teacto, cf the fst equato 5, eve tems of dlatos ceteg moe bubbles at the pot a would mae all dlato paametes collapse at = τ, see Fgue Fo the same easo, stll by 6, oe would get collapse wth espect to the cete pots of multple bubbles dstbuted alog the ustable dectos fom a ctcal pot of K, sce pots wth lage values of K have smalle eegy, due to 6, see Fgue We cosde the the case of bubbles ceteed at two δ a, δ a, J τ δ a, Fgue : two bubbles wth same cete, dffeet s δ a, δ a, J τ δ a, Fgue : two bubbles alog ustable decto of K, same a δ a, δ a, J τ δ a, Fgue 3: two bubbles alog stable decto of K, same a pots a, a symmetcally located at dstace d fom a ctcal pot p such that K p <, ad alog a stable decto of K, wth the same s Hee pcple the attactve foce amog bubbles could compesate the epulsve teacto fom the ctcal pot p of K, see Fgue 3 Fo ths cofguato oe gets a eegy expaso of the fom c J τ δ a, + δ a, K a τ Ka Ka c d c c 3 d τ + c 4 c d wth c > Fom the aalyss Poposto both ad d oe fds the elatos 3 t tus out that τ, so mposg ctcalty τ + d ad d d These asymptotcs mply that τ +, whch s mpossble fo lage The geeal case s athe volved to study ad wll be teated by a top-dow cascade of estmates Secto 6 The pla of the pape s the followg I Secto we toduce the vaatoal settg of the poblem ad lst some pelmay esults We the study some appoxmate solutos of, hghly cocetated at abtay pots of M Fom these oe ca cay out a educto pocedue of the poblem, whch s doe late the pape I Secto 3 we pove a geeal quatzato esult fo Palas-Smale sequeces of 4 wth ufomly bouded W, -eegy I Secto 4 we educe the poblem to a fte-dmesoal oe, whle Secto 5 we deve some pecse asymptotc expasos of the Eule-Lagage eegy Secto 6 s the devoted to povg sutable bouds o the gadet to exclude towe bubbles ad pove ou ma esult We fally collect the appedx the poofs of some useful techcal estmates as well as a lst of elevat costats appeag 5

Acowledgmets AM has bee suppoted by the poect Geometc Vaatoal Poblems ad Fazameto a suppoto della ceca d base fom Scuola Nomale Supeoe ad by MIUR Bado PRIN 5 5KB9WPT He s also membe of GNAMPA as pat of INdAM Vaatoal settg ad pelmaes I ths secto we collect some bacgoud ad pelmay mateal, coceg the vaatoal popetes of the poblem ad some estmates o hghly-cocetated appoxmate solutos of bubble type We cosde a smooth, closed Remaa mafold M = M, g wth volume measue µ g ad scala cuvatue R g Lettg A = {u W, M, g u, u } the Yamabe vaat s defed as c u g Y M, g = f + R g u dµ g A, c u dµg = 4 We wll assume fom ow o that the vaat s postve As a cosequece the cofomal Laplaca L g = c g + R g s a postve ad self-adot opeato Wthout loss of geealty we assume R g > ad deote by G g : M M \ R + the Gee s fucto of L g Cosdeg a cofomal metc g = g u = u 4 g thee holds dµ gu = u dµg ad R = R gu = u + c g u + R g u = u + Lg u Note that c u W, M,g u L g u dµ g = c u g + R g u dµ g C u W, M,g I patcula we may defe ad use u = u L g = u L g u dµ g as a equvalet om o W, Fo p = + τ ad τ we wat to study the scalg-vaat fuctoals c u M g J τ u = + R g u dµ g, Ku p+ dµ g p+ u A Sce the cofomal scala cuvatue R = R u fo g = g u = u 4 g satsfes = u = Rdµ gu = ul g udµ g, we have J τ u = p+ τ p+ τ wth τ = K u p+ dµ g 3 The fst- ad secod-ode devatves of the fuctoal ae gve by J τ uv = [ L g uvdµ g Ku p ] vdµ g ; τ 6

J τ uvw = p+ τ [ L g vwdµ g p τ 4 [ L g uvdµ g p+ + τ p+ + τ Ku p vwdµ g ] Ku p wdµ g + p + 3 + Ku p vdµ g Ku p wdµ g L g uwdµ g Ku p vdµ g ] I patcula J τ s of class C,α loc A ad ufomly Hölde cotuous o each set of the fom Ideed u U ɛ mples U ɛ = {u A ɛ < u, J τ u ɛ } ɛ ɛ ad c ɛ 3 p+ τ = J τ u u Cɛ 3 Thus ufom Hölde cotuty o U ɛ follows fom the stadad potwse estmates { a p b p C p a b p case < p < a p b p C p max{ a p, b p } a b case p 4 We cosde ext some appoxmate solutos to, hghly cocetated at abtay pots of M As we wll see, fo sutable values of these ae also appoxmate solutos of 4 Let us ecall the costucto of cofomal omal coodates fom [6] Gve a M, oe chooses a sutable cofomal metc g a [g ] ad use the stadad geodesc coodates fo ths oe By the smoothess of the expoetal map exp ga a = exp ga wth espect to a we may fd a coodate system ea a such that a exp ga x = d + O x 5 We deote by a the geodesc dstace fom a wth espect to the metc g a ust toduced Wth ths choce the expesso of the Gee s fucto G ga wth pole at a M, deoted by G a = G ga a,, fo the cofomal Laplaca L ga smplfes cosdeably Fom Secto 6 [6] oe may expad G a = a + H a, a = d ga a,, H a = H,a + H s,a fo g a = u 4 a g, 6 4 ω whee ω = S Hee H,a C,α loc, whle the sgula eo tem satsfes fo = 3 a l a fo = 4 H s,a = O a fo = 5 l a fo = 6 a 6 fo 7 Pecsely the leadg tem H s,a fo = 6 s Wa 88c ϕ a, =u a + γ G a We otce that the costat γ s chose so that l, whee W deotes the Weyl teso Let, G a = G ga a,, γ = 4 ω fo > 7 γ G a x = d g a a, x + od g a a, x as x a Evaluatg the cofomal Laplaca o such fuctos shows that they ae appoxmate solutos 7

Lemma Thee holds L g ϕ a, = Oϕ + a, Moe pecsely o a geodesc ball B αa fo α > small L g ϕ a, = 4 ϕ + a, c a H a + a a H a ϕ + a, + u a R ga ϕ a, + o a ϕ + whee a = d ga a, Sce R ga = Oa cofomal omal coodates, cf [6], we obta L g ϕ a, = 4 [ c a H a a + H a ax]ϕ + a, + O 3 ϕ a, fo = 3 l ϕ a, fo = 4 ; ϕ a, fo = 5 L g ϕ a, = 4 ϕ + a, = 4 [ + c L g ϕ a, = 4 ϕ + a, = O ϕ a, fo 7 The expasos stated above pesst upo tag ad a Poof A staghtfowad calculato shows that ga + γ G a = γ ϕ a, + u a W a l ]ϕ + a, + O ϕ a, fo = 6; devatves G a g a G a + γ ϕ a, u a G a ga G a, whch s due to G a g a G a = G a g a ad c ga G a = δ a + R ga G a wth δ a deotg the Dac measue at a Ths s equvalet to ga + γ G a = γ ϕ a, u a + Sce L ga = c ga + R ga wth c = 4, we obta L ga ϕ a, u a By cofomal covaace we also get G a =4 ϕ a, + u γ G a a g a + R g a γ c g a + R g a L g ϕ a, = 4 ϕ + a, γ G a g a + u a R ga ϕ a, u a ϕ a, u a ϕ a,, G a patcula L g ϕ a, = Oϕ + a, Expadg G a as G a = 4 ω a + H a, a = d ga a, we fd γ G a g a = a + a H a ga = H a + a a H a a + oa, ad coclude that L g ϕ a, = 4 ϕ + a, c H a + a a H a a ϕ + a, + o a ϕ + a, + u a R ga a,, ϕ a, Clealy these calculatos tasced to the ad a devatves The the clam follows fom the above expaso of the Gee s fucto Afte toducg some otato we state a useful lemma, whch wll be poved the fst appedx Notato Gve a expoet p we wll deote by L p g the set of fuctos of class L p wth espect to the measue dµ g Recall also that fo u W, M, g we set u = ul g udµ g, whle fo a pot a M we deote by a the geodesc dstace fom a wth espect to the metc g a toduced above Fo a set of pots {a } of M we wll deote by K, K, K fo stace Ka, Ka, Ka Fo, l =,, 3 ad >, a M, =,, q let 8

ϕ = ϕ a, ad d,, d,, d 3, =,, a ; φ, = ϕ, φ, = ϕ, φ 3, = a ϕ, so φ, = d, ϕ Note that wth the above deftos the φ, s ae ufomly bouded W, M, g Lemma Let θ = τ ad, l =,, 3 ad, =,, q The fo thee holds ufomly as τ φ,, φ,, a φ, Cϕ ; ε, = + + γ G g a, a 8 v θ ϕ 4 τ φ, φ, dµ g = c d + Oτ + +θ + +θ fo up to some eo of ode Oτ + 4 θ ϕ + τ φ, dµ g = b d, ε, = θ, c > ; + ϕ τ + ε +, d, ϕ + dµ g ; 4 ϕ τ φ, φ l, dµ g = O + fo l ad fo =, 3 θ fo 5 φ, dµ g = O τ + l fo = 6 ; 4 4 fo 7 ϕ + τ v v θ ϕ α τ ϕ β dµ g = Oε β, fo, α + β =, α τ > > β ; ϕ ϕ dµ g = Oε, l ε,, ; v,, a ε, = Oε,, dx wth costats b = fo =,, 3 ad R + + dx c = +, c dx = 4 + +, c 3 = R 3 Blow-up aalyss R R dx + + I ths secto we pove a esult elated to a well-ow oe [43] We obta deed smla coclusos, but allowg the expoet the equato to vay alog a sequece of appoxmate solutos Poposto 3 Let u m m W, M, g be a sequece wth u m ad τm = satsfyg J τm u m = um ad J τm u m W, M, g The up to a subsequece thee exst u : M [, smooth, q N ad fo =,, q sequeces M a,m a ad R +,m as m such that u m = u + q = α ϕ a,m,,m + v m wth J u =, v m, τm,m ad Ka α 4 4 ad ε, m as m fo each pa < q 9

Poof Settg J = J τm, by ou assumptos we have Ju m = u m L g u m dµ g ad Ju m = L g u m Ku pm m = o W, M, g I patcula u m W, M, g s bouded, hece u m u wealy W, M, g ad stogly L q M, g, q < Notce that u s a ctcal pot of J ad theefoe t s a smooth fucto We may the wte u m = u + u,m wth u,m wealy, ad stogly L q M, g Thus Ju m = u L g u dµ g + u,m L g u,m dµ g + o, whece u,m L g u,m dµ g, ad secodly, due to 4, that Eu,m := L g u,m Ku pm,m = o W, M, g 3 We may assume, >, sce othewse we ae doe We ow clam the cocetato behavo < ε m : sup x M u,m g dµ g ε 3 B x m Ideed we have fo a fxed cut-off fucto [ ] o = Eu,m, u,m η = ηu,ml ηu g,m K ηu,m u pm,m dµ g + o ηu,m K m ηu,m u L pm+,m pm + o µg L pm+ µg suppη Usg Hölde s equalty ad Sobolev s embeddg we obta o ηu,m C u,m pm L pm+ µg suppη + o Thus, f u,m does ot cocetate L pm+ M, g smlaly to 3, the by a coveg agumet u,m g dµ g cotadctg, > By 3 cocetato L pm+ M, g s equvalet to cocetato L -om fo the gadet, whch had to be show Fxg ε > small, we measue the ate of cocetato va { } Λ,m = sup > max u,m g x M dµ g = ε, B x Λ ad choose fo ay,m wth lm,m m,m a,m M : u,m g dµ g B,m a,m = δ < up to a subsequece = sup u,m g dµ g c x M B x,m fo some postve c = cε, δ to be specfed late O a sutably small ball B ρ a,m we the escale w,m =,m u,m exp ga,m,m The fucto w,m s well defed o B ρ,m ad satsfes, wth θ m = τ m, c w,m Ka,m w pm, θm,m = o Wloc R, = R,m

Sce u,m dµ g s bouded, so t s B ρ,m w,m dx fo ay ρ > Hece whee w,m w, wealy W, loc R wth w, = σ κ w + κ = lm Ka,m ad σ = lm m m θm,m [, ] Gve a compactly suppoted cut-off η, we calculate w,m w, η K w,m + w,m pm dx θm R,m = w,m w, η w,m w, + σ Kw pm,m w +, dx + o R w,m w, η dx + σ Kη w,m w, pm+ dx + o R R = w,m w, η dx + σ Kη w,m w, pm+ dx + o R R The ma step hee s the equalty the above fomula Passg fom + to p m = + expoet s easy, as w, s fxed Sce w,m w, L p suppη, p < Kη w,m w, w pm,m w pm, dx = Kη w pm+,m wpm+, dx R R = Kη R [,, 33 τ m the, we have s w,m sw, pm+ ds w pm+, + w,m w, pm+ ]dx Theefoe the ma equalty follows fom obsevg that [ ] s w,m sw, pm+ ds w pm+, dx R Kη ds Kη [p m+ w,m sw, w,m sw, pm w, w R ds, wpm+, ]dx = R Kη [p m+ s pm w pm+ p m+, ]dx Hece 33 s ustfed ad we obta as befoe w,m w, η C w,m w, pm L p m+ dx o suppη R Thus w,m w, locally stogly, uless w,m cocetates L pm+, but by ou choce of Λ,m ε = sup x M u,m g dµ g sup x B c,m R w,m dx B Λ,m x B,m Λ,m x ad,m Λ,m, so the L -gadet om does ot cocetate beyod ε ad, sce c R w,m Ka,m w pm, θm,m = o locally stogly Wloc R,,m

ethe the L pm+ -om does Thus w,m w, locally stogly I patcula w, dx u,m g dµ g c = cε, δ B B,m a,m But σ = mples w, = by hamocty, so σ, ], cf 33, ad we easly show w, > ad w, = α + a wth α >, a = x a, a R ad > Note that R w, = σ κ w +, mples σ κ α 4 = 4 Moeove by costucto B w,m dx sup x B c,m B x w,m dx, whch tasfes to w, by locally stog covegece Ths mples a = ad By + B + dx = εα = εσ κ lm m θm,m = σ, ] ad < ε we get lm θm m,m u m = u + α ϕ,m + u,m, ϕ,m = ϕ a,m,,m,,m =,m Moeove we ow that u,m wealy W, M, g ad Dlatg bac we may the wte w,m =,m u,m exp ga,m,m locally stogly W, R Sce the tal sequece u m was o-egatve, t follows that u ad the egatve pat of u,m teds to zeo as m W, -om Usg a dlato agumet, the latte popety ad the above fomula, t s easy to show that, f α, β wth α + β =, the ϕ α,m u,m β dµ g as m, 34 ad that also u,m L g ϕ,m dµ g = o Thece as befoe fo u,m J τm u m = u L g u dµ g + α ϕ,m L g ϕ,m dµ g + u,m L g u,m dµ g ad theefoe u,m L g u,m dµ g, Lewse Eu,m = L g u,m Ku pm,,m = o Wloc R sce by expaso of the o-lea tem of J τm u m we fd o =L g u + α ϕ,m + u,m Ku + α ϕ,m + u,m pm =L g u Ku pm + α L g ϕ,m Kα pm ϕpm,m + L g u,m Ku pm,m + o = L g u,m Ku pm,m + o W, M, g The secod equalty follows fom applyg the latte fomulas to ay test fucto W, M, g ad the applyg Sobolev s ad Hölde s equaltes togethe wth 34 We may theefoe teate the afoe gog ad fd fo a fte sum u m = α ϕ,m + v m, wth eegy Ju m u L g u dµ g + α ϕ,m L g ϕ,m dµ g

But all α ae ufomly lowe bouded due to σ κ α 4 =, σ = lm m θm,m, ] ad κ = lm Ka,m, m thece the teato has to stop afte ftely-may steps I patcula v m does ot cocetate locally ad cosequetly vashes stogly as m Now tae ay fxed dex ad ecall that w,m =,m u,m exp ga,m,m ad that by costucto,m l,m O the othe had fo < l We had see w,m w, wealy ad locally stogly, whee c w, σ κ w +, = w,m = α + + > u a,m a α,m,m +,m γ G a,m expga,m,m up to some eo of ode o locally W,, ad the latte sum has to vash, whch s equvalet to,m,m o,m,m G a,m a,m Recallg 8, ths shows that ε, m fo all We ae left wth povg,m q,m τm,m Odeg up to a subsequece, let { },m q = l =,, q lm < m l,m The,m l,m fo q < l ad c lm m,m l,m C fo, l q Select a half-ball B + δ a,m wth q ad < δ such that B + δ a,m {a l,m l q, l } = up to a subsequece, whee fo some affe fucto ν,m wth ut gadet we have set B + δ a,m = B δ a,m {ν,m > } a local coodate system The escalg u m o B a,m δ {ν,m >,m } we fd w,m = O the othe had sde, w,m solves,m u m exp ga = α l,m + + o o B c,m {x > } c w,m κ w pm θm,m = o, κ = lm Ka,m o B c,m m,m Recallg that p m = + τ m ad θ m = τ m, ths mples, that up to otatg coodates Thus + θm s ealy costat o B + c,m {x > } θm,m The clam follows, sce lm,m m c fo all l =,, q l,m 3

4 Reducto ad v-pat estmates I ths secto we wll cosde a sequece u m as Poposto 3, wth zeo wea lmt We wll ecall some well-ow facts about fte-dmesoal eductos ad deve pelmay eo estmates ad o sutable compoets of the gadet of J τ Fo ε >, q N, u W, M, g ad α,, a R q +, R q +, M q we defe A u q, ε = {α,, a,, ε,, α V q, ε = {u W, M, g A u q, ε }, 4 Ka 4 τ, u α ϕ a, < ε, τ < + ε}; cf, 3 ad 7 Fo both codtos > ε, τ < + ε to hold, we wll always assume that τ ε ad ths s cosstet wth the statemet of Poposto 3 Ude the above codtos o the paametes α, a ad the fuctos q = α ϕ a, fom a smooth mafold W, M, g, whch mples the followg well ow esult, cf [4] Poposto 4 Fo evey ε > thee exsts ε > such that fo u V q, ε wth ε < ε u α ϕã, L g u α ϕã, dµ g f α,ã, A uq,ε admts a uque mmze α, a, A u q, ε depedg smoothly o u ad we set ϕ = ϕ a,, v = u α ϕ, K = Ka 4 The tem v = u α ϕ s othogoal to all ϕ, ϕ, a ϕ, wth espect to the poduct, Lg = L g, L g Fo u V q, ε let H u q, ε = ϕ, ϕ, a ϕ Lg 4 We ext have a estmate o the poecto of the gadet of J τ oto H u Lemma 4 Fo u V q, ε wth τ =, cf 3,ad ν H u q, ε thee holds [ J τ α ϕ ν = O τ θ + K +θ + +θ + Poof Due to the fact that τ = ad ν H u q, ε we have J τ α ϕ ν = α ϕ Kα ϕ p νdµ g, +θ + s ε +,s θ ] ν ad theefoe J τ α ϕ ν Kα ϕ p νdµ g Decomposg teatvely M as { α ϕ > > α } { ϕ α ϕ > α } ϕ, we fd Kα ϕ p νdµ g = Kα ϕ p νdµ g + O α ϕ p α s ϕ s ν dµ g s {α sϕ s α ϕ } Usg Hölde s equalty wth expoets = p + q = + + ad Lemma v appled to the latte eo tem, whee the equalty ϕ s ϕ ca be used to apply t wth β, we get Kα ϕ p νdµ g = Kα ϕ p νdµ g + O s ε +,s θ ν, 4

ad by a smple expaso we also obta Note that whece Kα ϕ p νdµ g = θ ϕ + ϕ p B c = + θ Thus up to some O[ K α p + = + Lg τ θ + B c θ ϕ + [ ϕ p νdµ g + O ϕ + τ + θ K +θ + θ ϕ τ + dµg + O + θ + K +θ ϕ p L + g + + Kα ϕ p νdµ g = θ = O θ + +θ s K θ + O + + ε,s θ α + +θ + s θ + dx + O θ + dx + O + θ ε +,s θ + θ ] ν 43 + θ, 44 ] ν we ave at ϕ + νdµ g Fally fom Lemma ad the fact that ν H u q, ε hece νl g ϕ dµ g = we obta fo = 3 ϕ + νdµ g v L g ϕ 4 ϕ + fo = 4 = O 3 fo = 5 v, 45 L + g l 3 3 fo = 6 4 fo 7 so the clam follows Lemma 4 Fo u V q, ε wth τ = ad v s as 4 thee holds v = O τ θ + K +θ + +θ + +θ + s ε +,s θ + J τ u Poof Sce the Hessa of J τ s ufomly Hölde cotuous o bouded sets of W,, we have J τ uv = J τ α ϕ v + J τ α ϕ v + o v = J τ α ϕ v + J τ uv + o v ; [ ] J τ uv = vl g vdµ g p u Ku p v dµ g 8 ul g vdµ g Ku p vdµ g + p + 3 Ku p vdµ g Ku p vdµ g Sce v H u q, ε, by smla expasos we the fd also eplacg p wth + wth a eo o [ ] J τ uv = vl g vdµ g p u Ku p v dµ g [ = vl g vdµ g + α ϕ L g α ] ϕ dµ g Kα ϕ p v dµ g [ K α 4 α ϕ L g ϕ dµ g = vl g vdµ g +, 5 θ ϕ 4 v dµ g ] 46

up to some o v Futhemoe by defto of V q, ε thee holds θ = + o ad K α 4 = + o = α ϕ α ϕ + o L g ϕ dµ g Thus [ J τ uv = vl g vdµ g + ϕ 4 v dµ g ] + o v Ths quadatc fom s postve defte fo ε suffcetly small o the subspace v belogs to, cf [4], so v + o C J τ uv C[ J τ α ϕ v + J τ u ] Theefoe the clam follows fom Lemma 4 We ow establsh cacellatos testg the gadet of J τ othogoally to H u q, ε Lemma 43 Fo u V q, ε wth τ = the quatty J τ uφ, expads as J τ α τ ϕ φ, + O θ + K +θ + 4+θ + +θ + s ε +,s θ + J τ u Poof By the mea value theoem ad 46 we have, wth some σ [, ] J τ uφ, J τ α ϕ φ, = J τ α ϕ + σvφ, v [ ] = + O v vl g φ, dµ g p α ϕ + O v Kα ϕ + σv p vφ, dµ g [ 4 + O v α ϕ + σvl g vdµ g Kα ϕ + σv p φ, dµ g ] + α ϕ + σvl g φ, dµ g Kα ϕ + σv p vdµ g + p + 3 α ϕ + O v Kα ϕ + σv p vdµ g Kα ϕ + σv p φ, dµ g Theefoe, sce v H u q, ε, up to some O v we also get J τ uφ, J τ α ϕ φ, = p α ϕ Kα ϕ + σv p vφ, dµ g 4 α ϕ L g φ, dµ g Kα ϕ + σv p vdµ g + p + 3 α ϕ Kα ϕ + σv p vdµ g Kα ϕ + σv p φ, dµ g Decomposg ow M as {α ϕ v } {α ϕ v }, ad usg φ, Cα ϕ Cα ϕ, we fd J τ uφ, J τ α ϕ φ, = p α ϕ Kα ϕ p vφ, dµ g 4 α ϕ L g φ, dµ g Kα ϕ p vdµ g + p + 3 α ϕ Kα ϕ p vdµ g Kα ϕ p φ, dµ g + O v Now, agug as fo 43 ad usg Lemma v, we have Kα ϕ p vdµ g = K α p [ ϕ p vdµ g + O K +θ + +θ + s ε +,s θ ] v ; 6

Kα ϕ p φ, vdµ g whece = K α p [ ϕ p φ, vdµ g + O J τ uφ, J τ α ϕ φ, = p α ϕ K α p 4α up to some O K +θ + ϕ p K +θ + φ, vdµ g ϕ L g φ, dµ g K α p ϕ p vdµ g +θ + s ε +,s θ + p + 3 α ϕ K α p ϕ p φ,dµ g K α p ϕ p vdµ g + 4+θ s + ε,s θ J τ uφ, J τ α ϕ φ, = p α ϕ K α p + v Usg 44 ad 45 we ave at ϕ p φ, vdµ g ] v, τ + O θ + K +θ + 4+θ + +θ + s ε +,s θ + v Yet also the fst summad o the ght had sde s of the same ode as the secod oe, agug as fo 44 ad 45 Combg ths wth Lemma 4, we obta the cocluso 5 The fuctoal ad ts devatves Fo u V q, ε ad ε > suffcetly small let α = α, α s = K θ α s, θ = τ 5 Recallg the otato fom the pevous secto we may expad the Eule-Lagage eegy as follows Poposto 5 Fo u = α ϕ + v V q, ε ad ε >, both J τ u ad J τ α ϕ ca be wtte as H fo = 3 H +O l ĉ α K α α p+ ĉ τ ĉ p+ K α ˆb α α α ε, ˆd α fo = 4 α H fo = 5 3 W l fo = 6 4 fo 7 wth postve costats ĉ, ĉ, ĉ, ˆb, ˆd up to eos of the fom Oτ + K + 4 + + s ε +,s + J τ u Poof The above expaso fo J τ α ϕ mples the oe fo J τ u va Lemmata 4 ad 4 expadg J τ u = J τ α ϕ + J τ α ϕ v + O v We ext stat aalyzg J τ α ϕ fom the deomato Decomposg teatvely M as M = {α ϕ > α ϕ } + {α ϕ α ϕ } > > 7

we may expad Kα ϕ p+ dµ g = α p+ + O s Kϕ p+ dµ g + p + α p α {α ϕ α sϕ s} α ϕ p α s ϕ s dµ g Kϕ p ϕ dµ g Recallg θ ad the boudedess of α by the defto of V q, ε, usg Lemma ad easog as fo the poof of Lemma 4, the latte tem s of ode O s ε +,, ad also Kϕ p ϕ dµ g =K ϕ p ϕ dµ g + O K a + a ϕ p ϕ dµ g + O B ca θ =K Ideed we fo example have a ϕ p ϕ dµ g = B ca ϕ p ϕ dµ g + O B ca s a ϕ + + wth the latte om that ca be cotolled by + R + + dx C K + 4 ϕ + + + ε +,s ϕ dµ g Cε + Thus Lemma, whee b s defed, yelds Kϕ p ϕ K dµ g = b θ ε, + O τ + K + s 4 + +, ϕ + +, L + µg ++ + + d = O + ε +,s, 5 ad we ave at Kα ϕ p+ dµ g = = α p+ α p+ Kϕ p+ dµ g + p + dµ g + b Kϕ p+ α + α p α K b θ ε, K α θ ε,, b = b 53 K up to a eo Oτ + s ad deotg by x a geec polyomal of degee the x-vaables, we expad Kϕ p+ dµ g = B ca =K B ca + K + 4 + Kϕ p+ dµ g + O θ ϕ p+ dµ g + K B ca B ca x ϕ p+ dµ g + 3 6 K + ε +,s Fally, ecallg ou otato Secto xϕ p+ dµ g B ca x 3 ϕ p+ dµ g + O 4 + wth a exta eo of ode O l f = 4 Fo the fst tem o the ght-had sde up to some 4 Oτ + we may pass tegatg wth espect to cofomal omal coodates Ideed 4 ϕ p+ dµ g = u τ a ϕ θ dµ ga = ϕ θ dµ ga + Oτ a u a u ϕ θ dµ ga a u a B ca B ca B ca B ca 54 8

ad the latte tem s of ode O τ +θ ϕ p+ dµ g = = B c up to some Oτ + + 4 Clealy + θ dx = θ lettg Moeove B c B c +4 θ Fom 7 we fd B ca + θ + = θ = c θ c = Ha + dx + θ up to some O + 4 B c R B c R B c + a + a H a θ H a dx, + dx + = θ θ dx + + θ θ + c τ θ R + O τ + 4 R θ dµ ga dx + + O θ τ + 4 l + dx + + O + O + O dx + ad c = l + R + dx 55 Ha + dx C θ θ θ H a + + dx = whece up to some Oτ + 4 B c B c θ + θ ad wth a exta eo of ode O l f = 4, ad 4 B c + + θ H a + + dx = d θ H +θ + H +θ + O H 3+θ W l 4+θ l 4+θ fo = 3 fo = 4 fo = 5 l fo = 6 dx 6 fo 7 H + H x + O H + H x + O l H + O W l + O l dx, O 6, d = R dx + 56 + Lewse by adal symmety ad, sce we may assume dµ ga, cf [3], we fd B x3 ca ϕ p+ dµ ga = O ; 4 K B x ca ϕ p+ dµ g = K + dx +θ + R + O τ + 4 + ; 9

3 B xϕp+ ca dµ g = O 4 wth a exta eo of ode O l 4 Kϕ p+ dµ g = c K K τ θ + c θ + f = 4 Collectg all tems we ave at + c K +θ + d K H +θ H +θ + O H 3+θ W l 4+θ l 4+θ, c = R dx + 57 up to a eo Oτ + 4 + Kα ϕ p+ dµ g =, ad thus obta K c θ α p+ + d + c K θ K θ α α τ + c K H H +O l H 3 W l 4 +θ α + b α + 58 K α θ ε, up to some Oτ + s J τ α ϕ = c K + 4 α α ϕ L g ϕ dµ g + K α ϕ p+ p+ K +θ α α d Next fo usg Lemma we get ϕ L g ϕ 4 dµ g = + ε +,s Cosequetly up to the same eo = α α ϕ L g ϕ dµ g K θ ϕ + c K θ H H +O l Fo example to chec the eo tem, we may estmate a ϕ + ϕ dµ g B ca H 3 W l 4 α p+ p+ ϕ dµ g + O 4 a ϕ + + L + Bca α α + c b ϕ + ϕ K θ α α α + α K α θ + ε +, 4 L 3+, τ ε, 59 + whch s of ode O ε, whece thas to Lemma, ad lewse fo eg 7 + ϕ ϕ dµ = o ε, g ϕ ϕ dµ g ϕ ϕ L g Thus Lemma shows that ϕ L g ϕ dµ g = b ε, + O 4 + s = Oε, l ε,, + ε +,s, b = 4 b 5

Fally fom 7 ad Lemma we fd ϕ L g ϕ 4 dµ g = up to some eo tems of ode O 3 ϕ L g ϕ 4 dµ g = ϕ ϕ, 4 dµ g c l, 4 dµ g d B c H + H x H + H x + H + H x W l, 4, 4, whece H H + O H 3 W l 4 l 4, d = c R dx +, up to O 4 + Recallg 57, we obta ϕ L g ϕ 4 dµ g = c + 4 d d H H + O H 3 W l 4 l 4 5 up to some Oτ + 4 + α α up to a eo of ode O τ + 4 p J τ α ϕ = 4 c p+ up to some Oτ + b = As d = d, cf 56, we smply get ϕ L g ϕ dµ g =4 c α + b α α ε, 5 α K α p+ θ p+ K d + 4 K θ + c α α + + s ε +,s Pluggg ths to 59, we obta K θ α α H H +O l H 3 W l 4 b, b = 4 b, α = τ c K +θ K b θ + s ε +,s Recallg α, α α α + α α α = c b α α c α K θ α, ε, ad settg p p+ ĉ = 4 c, ĉ = c, ĉ = c, ˆd = d, c c c ˆb = b 53 c

we may ewte ths as J τ u = J τ α ϕ = ĉ α α p+ p+ ĉ ˆd K θ K θ α α α α τ ĉ H H +O l H 3 W l 4 K +θ α α ˆb K θ α + α α α α α ε, The the clam follows fom Lemma 5 We ext state thee lemmas wth some expasos fo the devatves of the fuctoals wth espect to the paametes volved ecall ou otato fom Secto The poofs ae gve appedx B Lemma 5 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ,, J τ α ϕ φ,, α J τ α ϕ ca be wtte as α α `c α α p+ + `b l K θ α p K `c K α α l α ε,l α ε, α wth postve costats `c, `c, `b, `d up to a eo of ode K α K α H α H α fo = 3 H `d α H α + O l fo = 4 4 H α 3 H α fo = 5 3 W l α 4 W l α fo = 6 4 fo 7 O τ + K + s 4 + + ε +,s + J τ u 54 I patcula fo all α α p+ K θ α p = + O τ + s + + ε,s + J τ u Lemma 5 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ,, J τ α ϕ φ, ad α J τ α ϕ ca be wtte as α α c τ + c K K b α ε, + α d wth postve costats c, c, d, b up to some eo of the fom H H fo = 3 l + O fo = 4 4 H fo = 5 3 W l fo = 6 4 fo 7, O τ + K + s 4 + + ε +,s + J τ u 55

Lemma 53 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ 3,, J τ α ϕ φ 3, ad a α J τ α ϕ ca be wtte as α α K K č 3 + č 4 K K 3 + ˇb 3 wth postve costats č 3, č 4, ˇb 3 up to some eo of the fom α α a ε,, O τ + K + s 4 + + ε +,s + J τ u 56 6 Gadet bouds Theoem wll gve sutable lowe om-bouds o the gadet of J τ, yeldg Theoem as a coollay We ecall that o S 3 ad S 4 the esult was poved [], [7], [8], [4] moe geealty Defto 6 Let H be as 6 We call a postve Mose fucto K o M o-degeeate K of degee q N case = 4, f { K = } { c K + c 3H = } = ad f fo evey q K ad evey subset {x,, x } { K = } { c K + c 3H < } the matces M x,,x Kx c Hx Kx + c G 3 Kx c x,x G 4 c x,x γ Kx Kx 4 γ Kx Kx G c x,x 4 γ Kx Kx = G c x,x 4 γ Kx Kx Kx c Hx Kx + c 3 Kx c 4 G x,x γ Kx Kx have o-vashg least egevalues, whee c = 3ω 4, c 3 = 4 3ω 4 = c 4 We say that K s o-degeeate, f t s o-degeeate of all degees case 5, f { K = } { K = } =, e holds Rema 6 No-degeeacy case = 4 mples the exstece of a least egevalue M x,,x x x,,x = x,,x x x,,x wth x,,x ad such that x,,x s smple ad has a postve egevecto, e x x,,x = x x,,x,, x x,,x wth x l x,,x > fo all l Theoem Let M x,,x be as Defto 6, ad suppose that { } K s o-degeeate of degee q fo = 4 K s o-degeeate fo 5 The fo ε > suffcetly small thee exsts c > such that fo ay u V q, ε wth τ = thee holds J τ u c τ + s K + + α α p+ K θ α p + ε,s, cf 5, uless thee s a volato of at least oe of the fou codtos 3

τ > ; { { K = } K { c thee exsts x x K + c } 3H < } fo = 4, ad da { K = } { K < } fo 5, x = O ; α = Θ K + K 8 K 6 H K 6 H K p + o fo = 4, K ; α = Θ θ K p + o fo 5 { } Mx,,x q > ad = σ+o v τ fo = 4, K c τ = c K + o fo 5 fo all, =,, q, whee σ = σ,, σ q case = 4 s the uque soluto of c σ Kx σ q Kx q = M x,,x q σ σ q wth σ >, whle Θ s gve Rema 6 I the latte case thee holds q = τ a = exp gx ā ad settg we stll have up to a eo o the lowe boud 3 Ju τ + Kx Kx + [ Hx + Kx G g x, x ] Kx γ + ā + 3 Kx Kx 3 + 8 K 3 x Kx Kx x G g x, x γ + case = 4 ad Ju α Θ p θ Ka + 8 τ + Kx 9 Kx Kx Kx + 5 9π [Hx 3 + Kx Kx 6 Hx G g x, x ] γ 3 + ā + č4 Kx Kx č 3 3 + α Θ p θ Ka Kx 9 Kx + 86 Hx π 3 Kx Kx 6 Hx Kx Kx Kx Kx + 86 π Kx Hx Kx 3 case = 5 ad J τ u τ + c Kx c Kx + ā + č4 Kx Kx θ + α Θ p č 3 Ka 3 dx +, case 6 The costats appeag above ae defed by c = R c = c + + l + dx, c = c R 4 R + + dx

ad č 3 = 4 R + dx, č 4 = R + dx The dffeeces the above expessos fo = 5 ad 6 s caused by a dffeet decay of bubble fuctos causg stoge mutual teactos lowe dmeso Rema 6 Ude o-degeeacy codtos, Theoem has the followg mmedate mplcatos I case τ = thee ae o solutos of Ju = J u = V q, ε, cf Theoem 4 [3] I case τ > evey soluto J τ u = V q, ε satsfes q τ ad has solated smple blow-ups occug close to { { K = } { c K K + c 3H < } fo = 4 { K = } { K < } fo 5 3 The α, ad a s ae detemed to a pecso oτ 3 + O J τ u Ideed, fo eg = 6 τ + c Kx c Kx detemes up to the latte eo fom τ ad x, whece a s detemed as well by ā + č4 Kx Kx č 3 fom ad x, ad fally up to the multplcatve costat Θ also α s detemed by α Θ p θ Ka fom, a ad τ, ecallg θ = + τ ad p = τ As fo the multplcatve costat we have = τ = Kα ϕ + v p+ dµ g = Kα ϕ p+ = 3 Ka θ α p+ up to some oτ 3, cf 45, Lemma 4, Lemma ad 58, whece Kx c + c τ + c Kx = Θ p α Kx c + c τ + c Kx = Θ p+ θ p Ka c + c τ + c Kx Kx up to the same eo ad so the multplcatve costat Θ s detemed as well Poof of Theoem Fst we ote that τ = mples, that all the α do ot ted to fty ad least oe of them does ot appoach zeo Hece by defto of V q, ε all the α ae ufomly bouded away fom zeo ad fty Secodly, f fo some dex =,, q we have α α p+ K θ α p τ + s K + + ε,s, 5

the the clam follows fom Lemma 5, whece we may hecefoth assume that fo all =,, q α α p+ K θ α p = + O τ + K + + ε,s 6 s Thus we have to show J τ u τ + q = ad agug by cotadcto we may assume that J τ u τ + q = K K + + + s ε,s 6 + s ε,s The by Lemmata 5 ad 53 we have a J τ uφ 3, = α Juφ, = α α α č 3 K K + ˇb 3 c τ + c K K α α a ε, ; b α ε, α up to some eos of the fom O + Oτ + K 3 s + 4 H d 8, we have + ε +,s, whee we have to add fo to c K K case = 4 Odeg dces so that q q ad ecallg ad theefoe ε, = ε, = ε, + O 4 + + γ G g a, a + γ G g a, a + ε +, case < o d g a, a o 63 Fom a ad above we fd ufomly bouded vecto felds A, Λ o V q, ε such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; K α Λ J τ uλ c τ + c K + c 4 ε, + O α 3 + O τ + K + s 4 + ε +,s wth c 4 = b, ad combg X = Λ + ɛa wth some ɛ > small ad fxed such that we eep a postve coeffcet fot of ε,, we get C B = J τ ux c K K τ + c +ɛ K + ε, +O 3 +Oτ + K + s 4,s> +ε +,s Lewse fom a ad we fd ufomly bouded vecto felds A, Λ defed o V q, ε such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; 6

K α Λ J τ uλ c τ + c K + c 4 ε, + O α < 3 + ε, + O τ + K + s 4 ad combg them as X = Λ + ɛa wth ɛ > small we obta + ε +,s B = J τ ux c K K τ + c + ɛ K + ε, + O 3 + ε, + O τ + K < + s 4 Theefoe combg B ad B so that the coeffcet of ε, s postve C B + ɛb = + ε +,s [ ɛ c K τ + c + ɛ + K K + ] ε, + O + O τ 3 + K + s 4,s> Iteatvely, fo all =,, q we ca fd ufomly bouded vecto felds A, Λ such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; + ε +,s K α Λ J τ uλ c τ + c K + c 4 ε, + O α 3 + ε, + O τ + K < + > s 4 + ε +,s ; C ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + O + O τ 3 + K + s 4 + ε +,s, whee we have to add c 3 H to c K K case = 4, whee c 3 = d 64 I patcula C q ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + O τ + K + s 4 + ε +,s The, f ethe q τ + q = K + s ε,s o q τ + q = K + ε,s, s we obvously have 6 fom C q Thus we may assume q τ + q = K + ε,s, 65 s whece we may smplfy the above fomulas to A J τ ua K + O ε, + o ; q K α Λ J τ uλ c τ + c K + c 4 < α ε, + O > ε, + o ; q 7

C ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + o, q addg c 3 H to c K K fo = 4 We fst cosde the pa q, q Suppose q = o q To pove 6 we the may assume fom C q ad 65 that also τ + s ε,s = o q, sce As the coeffcet of q ad theefoe, stll by 65, q ε, = = q s ε,s = s ε,s Λ q s o zeo by o-degeeacy, 6 follows So we may assume q q, K q q, K q q So, f a q s close to a q, these pots ae close to the same ctcal pot of K, whch, as K s Mose, mples da q, a q q q Ths howeve cotadcts the fact that by Poposto 3 ε q,q q q d a q, a q Theefoe fo the pa q, q we may assume K q, K q q q, ad da q, a q > c I patcula case 5 we have ε q,q = o q, wheeas case = 4 q ε q,q = G g a q, a q γ q q + O 4 q We tu to cosde the tple q, q, q Suppose that q assume fom C q ad 65 that τ + ε,s = o q s q = o q To get 6 we the may as well But the clealy case 5 we obta 6 fom Λ q o Λ q, sce ε q,q = o q s aleady ow I case = 4 we have to ague moe subtly Fom we fd Juφ,q = α q α K q c K q q + c 3 H q q α q G g a q, a q + c 4 α q γ q q ad Juφ,q = α q α K q H q α q G g a q, a q c K q + c 3 q + c 4 q α q γ q q 8

up to a eo of ode o q, cf 63 Obvously 6 the follows f ethe K q H q c K q + c 3 q q K q H q > o c K q + c 3 q > q We may thus assume both summads to be egatve Recallg 6, we the obta βq φ J τ u,q = β q φ,q up to a eo o q lettg q c K q Kq q + c 3 H q K q c 4 G a q,a q γ K q K q c 4 G a q,a q γ K q K q K α β = α fo = q, q, c K q K q + c 3 H q K q q q ad thus J τ u K q, sce othewse a q, a q close to x q, x q { K = } { c K + c 3H < } ad c M q,q = Kx q Kx q + c 3 Hx q Kx q c 4 G x q,x q γ Kx q Kx q c 4 G x q,x q γ Kx q Kx q c Kx q Kx q + c 3 Hx q Kx q would have afte a blow-up fo τ a vashg egevalue wth stctly postve egevecto, whch by Rema 6 s mpossble So 6 aga follows We may thus assume ad theefoe by 65 q q q K q q, K q q, K q q So, f a q s close to ethe a q o a q, these pots ae close to the same ctcal pot of K, whece ε q,q o ε q, as befoe, cotadctg Poposto 3 Thus fo q, q, q we may assume ad K q,, K q, K q q q q da q, a q, da q, a q, da q, a q > c aalogously to the pevous case of the pa q, I patcula case 5 wheeas case = 4 up to a eo O 4 q ε q,q, ε q,q, ε q,q = o, q q ε q,q = G g a q, a q γ q q, ε q,q = G g a q, a q γ q q, ε q,q = G g a q, a q γ q q Iteatvely, we the may assume fo all l =,, q K l ad da, a l > c 9

I patcula ε,l = o fo 5 ad ε,l = Gg a,a l q l K Λ J τ uλ c τ + c K + o q case 5 ad thus J τ u c K τ + c K up to some o q Theefoe 6 holds uless c τ + c K K Juφ, = α α c τ + c K K fo = 4 But the + c 3 H = o q, whle ow fo = 4 + c 4 α G g a, a α γ up to some o q, cf 63, fo all =,, q Obvously 6 the follows, f fo some =,, q c K K + c 3 H >, whece we may assume all these summads to be egatve, povg Fom ad 6 we the have τ K Juβ φ, = c + c K up to some o lettg as befoe β = α q c τ K q K K α + c 3 H K Theefoe + c 4 c τ K Ju dag,, M a,,a q q G g a, a γ K K q up to the same eo Ths mples that 6 holds tue, uless we ca solve c τ K c τ q K q = M a,,a q q + o q 66 ad we may aleady assume, by, that a s close to x { K = } { c K K + c 3H < } I patcula 6 follows case τ = by the o-degeeacy codto o K, povg I case τ >, wtg σ = τ, we fd passg to the lmt τ, that thee has to exst a soluto to c σ Kx σ q Kx q = M x,,x q I patcula, testg the above elato wth x = x x,,x q, cf Rema 6, we fd c x σ K = σ σ q x σ, 67 3

whee = x,,x q s the least egevalue of M x,,x q Thus ecessaly M x,,x q > Sce F σ = M x,,x q σ σ q σ σ q + c σ K s a sum of covex fuctos, thee exsts a uque ctcal pot of F satsfyg 67 Hece we have compaablty / τ le case 5 Thus v follows upo checg costats fo = 4, e c = + = ω4 ad R c = + l + + dx = 3ω 4 ; c R c = + dx = 3ω + 4 ; c R 3 c 3 = d = 4 + + = 4 3ω + 4 ; c R 4 c 4 = b = = 4 3ω 4, c R + + cf 74 fom the coespodg Lemma 5 We tu ext to I case 5 we may ow assume whch by Lemma 5 mples Note that α p c τ + c K K Now 6 follows, uless α p = o ad ε,l = o fo l, J τ u α α p+ K θ α p + o = Θ p θ K s modulo scalg the uque ad o-degeeate maxmum of α α α = α,, α q α p+ = p+ K α p+ θ p+ = Θ p θ K + o ad thee holds J τ u α θ Θ p K + o I case = 4 we may ewte Lemma 5 up to some o wth costat gve below as 68 J τ uφ, = α α `c α α p+ K `c K K K θ α p + `d H K + `b + α K α `c K K + `d G g a, a γ K K H K + `b G g a, a l γ K K l l l 69 usg 6 ad θ τ τ = + O l Moeove, up to a eo o thee holds α = α α α K α K = α 3 αk α α K K = K,

ad due to 66 ad c K K + c 3 c K K H K + c 4 + c 3 H K l + c 4 G g a, a l γ K K l l = M a,,a q G g a, a γ K K = M a,,a q q q e q = c = c up to some o We may theefoe cacel out the teacto tems 69 ad obta τ K τ K J τ uφ, = α α `c α + α p+ K θ α p K `c `b c K c 4 K `b `c c K c 4 K K + `d `b c 3 c 4 + `d `b c 3 H c 4 K H K 6 Checg costats fo = 4, e wth c = R dx + = ω4 `c = 8 dx R + = 6 3ω 4, `c = 8 + = 4 3ω 4 ; c R `d = 8 + = 4 3ω + 4, `b = 8 + = 44 3ω 4, c R cf 79 fom the coespodg Lemma 5, we the fd J τ u α K α p α p+ + K 8 K 6 H Note that settg θ E = 8 K K 6 H K c K K K R + + 6 H K 6 H K K K, + o thee holds E = O, o-degeeate maxmum of E K =, ad α p = Θ p θ K + E s modulo scalg the uque ad ad satsfes α = α,, α q α α p+ K +E,τ p+ = α, K θ +Eαp+ p+ α α p+ due to θ K p = K K θ α p =Θ p = θ α α p+ K p + θ K p + p+ p [ θ K + E = + E ] p + E K [ θ θ K + E ] p+ p p θ K p E + E θ = + E + o K p E 3 + O l Thus 6 follows uless, up to some o, J τ u α Θ p θ + K 8 K K 6 H K K 6 H K K 6 3

We have theefoe poved -v, whch wll be used fo showg the secod statemet of the poposto I ths case the eo tems Lemmata 5, 5 ad 53 ae of type o 3 + O J τ u Ths follows mmedately case 5, whle the tems ε +,s 3 case = 4, fo whch howeve the udelyg estmates ca be mpoved to deve a quadatc eo ε,s, cf [37] Let us fst teat the lowe bouds asg fom Lemma 53 I case 5 we fd fom the latte lemma K K Ka Kx J τ u č 3 + č 4 K K 3 č 3 + č 4 3 up to some o 3 ad theefoe, wtg a = exp gx ā, that J τ u ā + č4 Kx Kx + o č 3 3 Smlaly case = 4 we fd up to some o 3 K K J τ u č 3 + č 4 K K 3 + ˇb α a G g a, a 3 α γ Fom we have α = Θ θ p + O, whch by θ = τ ad τ due to v becomes α = Θ K + O l Thus, stll up to some o 3 J τ u Ka + č4 Kx č 3 3 + ˇb 3 K 3 x x G g x, x č 3 Kx γ K ā + č4 Kx Kx č 3 3 + ˇb 3 č 3 3 K 3 x Kx Kx x G g x, x γ, ad checg costats fom Lemma 53, cf 7, we have 4 dx dx č 3 = R + = 3ω 4, č 4 = + = ω 4, ˇb 8 dx 3 = = 4ω + + 4 We coclude that, up to some o 3 R ā + 3 Kx Kx + 8 K3 x J τ u 3 Kx Kx x Gg x,x γ fo = 4 6 ā + č4 č 3 Kx Kx fo 5 By ths, e ā = O, ad α = J τ u c τ + c Kx Kx 3 Θ K + O l we the fe fom Lemma 5 that up to some o 3 + b Kx Kx wth costats, cf above, gve fo = 4, 5 espectvely by c c = R + + dx R + + l c 3 c = d c = 4 b 3 c = c4 c = + dx =, 9 ; R + + + dx R + + l + R dx + + R + + l + 33 R G g x, x γ 9π ; dx =, 5 9π, dx =, 5 + d Hx

we coclude τ + J τ u τ + 9 Kx Kx Kx Kx + [ Hx + 5 9π [ Hx 3 τ + c c By smla easog, usg ā = O ad α = α K α p α p+ θ J τ u α K α p α p+ θ Kx G g x,x Kx Kx G g x,x Kx γ 3 + γ ] fo = 4 + ] fo = 5 63 fo 6 K K + 8 K K 6 H 9 K K Θ K + O l we fally have, up to some o 3 + 86 H π 3 α K α p α p+ θ K K 6 H K fo = 4 K K K + 86 H π K 3 fo = 5 K fo 6 Ths follows case 6 mmedately fom Lemma 5 ad fo = 4 by epeatg the agumets leadg to 69 ad 6, whle the case = 5 follows by agug as case = 4 usg 63 to cacel out the teacto tems whe passg fom 69 to 6 The agug as fo the passage fom 6 to 6 we fally obta that up to some o 3 α Θ p J τ u α Θ p θ K + 8 K K 6 H θ K 9 K K + 86 H π 3 α Θ p θ K K 6 H K fo = 4 K K K + 86 H π K 3 fo = 5 64 K K fo 6 Thus the secod statemet of the theoem follows fom combg 6, 63 ad 64 I [35] the ext esult wll be eeded Lemma 6 Fo evey u V q, ε thee holds J τ u τ + s K + + + α α p+ K θ α p + ε +,s + v Poof Recallg 4 we ca fd β, β = O ad ν H u p, ε, ν = such that J τ u β, J τ uφ, + β J τ uν, J τ uφ, + J τ uν Fom Lemmata 5, 5 ad 53 we the fd J τ uφ, τ +, q = K + + + α α p+ K θ α p + ε,s + J τ u, s wheeas fom Lemma 4 we have J τ uν = J τ α ϕ ν + O v = Oτ + Fom ths the clam follows K + + + s ε +,s + v 34

7 Appedx 7 Iteactos Poof of Lemma follows usg staghtfowadly the expesso of φ, α Case = We have φ, = ϕ fo =, ad thus fo c > small ϕ τ dµ g = u τ B ca a + γ G a O B c a oe has u τ a = + Oτ x a, ad by 7 3 fo = 3 γ G 4 fo = 4 a = + O 5 fo = 5 6 l fo = 6, 6 fo 7 θ dµ + O ga θ whece passg to omal coodates at a fo = 3 ϕ τ θ +θ dx dµ g = + θ + O fo = 4 +θ fo = 5 l 3+θ B c fo = 6 4+θ fo 7 4+θ β γ up to some eo O τ +θ, whece the clam follows wth c = R dx + Case = The poof wos aalogously to the oe of case = above Case = 3 We have φ, = u γ a Ga a + γg a ϕ + a ua ϕ, whece γ a G a x = x + O, 3, 4, 5 l, 5 fo = 3,, 6 ad 7 Moeove u a = + O a, mples a u a = O a Thus ϕ 4 τ φ, dµ g = R θ dx + + θ + O +θ θ fo = 3 θ fo = 4 + O 3 θ fo = 5 l fo = 6 4+θ 4 θ fo 7 Fom ths the clam follows We ust pove the case = ad stat showg that θ ϕ + τ ϕ dµ g = θ ϕ τ ϕ + dµ g 7 up to some O τ + θ 4 + +ε +,, so we may evaluate ethe of these tegals Clealy ϕ + τ ϕ dµ g = θ ϕ + τ B ca ϕ dµ g 35

up to a eo O up to O + θ, whece usg Lemma we fd ϕ + τ ϕ dµ g = θ B ca + ε +, Ideed we clealy have +, ad the dffeece fom L g ϕ to 4 ϕ + B ca α a ϕ β ϕ dµ g = B ca ϕ τ ϕ L g ϕ 4 dµ g = O ε +, ca be estmated by Lemma va quattes of the type α a ϕ + β ϕ + ϕ dµ g = O ε +, α ϕ + β, L +, thas to case v Passg bac to tegatg o the whole mafold M we fd, estmatg also mxed poducts of gadets of ϕ ad ϕ, θ + ϕ τ ϕ dµ g = + Oτ θ + O θ By dect calculato g ϕ τ = Oτϕ 4 θ ϕ + τ ϕ dµ g = θ ϕ g ϕ τ ϕ dµ g + O τ, whece B ca ϕ τ L g ϕ + + ε, ϕ τ L gϕ 4 dµ g + Oτ + Now applyg Lemma as befoe, but dffeetated fom, 7 follows Let R, = O τ + 4 + + ε +, deote a quatty such ode We ow assume the o-exclusve alteatve 4 dµ g + ε +, ε, ε, d a, a 7 Fo c > small ad fxed we have by the expesso 7 θ ϕ + τ ϕ dµ g = θ B ca + γ G a + θ u a u +τ a + γ G a whece passg to g a -omal coodates ad ecallg 7 we fd γ G a γ G a + dµ ga + R,, θ ϕ + τ ϕ dµ g = B c u a a + + θ γ G x a exp ga γ G a exp ga x + + γ G x a exp ga dµga 73 up to the eo R, Ideed fo eg 7 7 tells us that o B c + γ G a + θ = + θ 4 + + O = θ + + + + 36

cofomal omal coodates, whece by Hölde s equalty ad Lemma B ca a ϕ + τ Due to 7 we have that ethe ϕ dµ ga ϕ + ε, γ G ad fo ɛ > suffcetly small may expad o { } x A = ɛ γ G a a the tegad 73 as + γ G x a exp ga = + γ G a + + γ G a a a x + γ G a a + γ G a a τ, L + + a, a o ε, ε +,, ε+, = O +θ { } x ɛ B c γ G a exp ga x γ G a exp ga x + γ G a a γ G a a + γ G γ G a a γ G a a + a a x + γ G a a Usg adal symmety we the get, wth b = θ ϕ + ϕ dµ g = R b u a a + γ G a + dx + + O x + γ G a a a = b, up to eos of the fom R, ad I A c, whee I A c + + θ + γ G x a exp ga A c I case ε,, we obvously have I A c C + θ = oε +, γ G a a γ G a a + dµ ga Othewse we may assume A c, thus da, a, ad wte A c B B, whee { B = ɛ γ G a x } { E γ G a a ad B = E γ G a a x } c a fo a suffcetly lage costat E > We the may estmate I B = dµ + + θ B + γ G ga x a exp ga C + + γ G a a + θ { } x E γ Ga a + γ G a exp ga x dµ ga 37