Pescbg Mose scala cuvatues: blow-up aalyss Adea Malchod ad Mat Maye Scuola Nomale Supeoe, Pazza de Cavale 7, 56 Psa, ITALY adeamalchod@sst, matmaye@sst axv:89457v [mathap] Dec 8 Decembe 7, 8 Abstact We study fte-eegy blow-ups fo pescbed Mose scala cuvatues both the subctcal ad the ctcal egme Afte geeal cosdeatos o Palas-Smale sequeces we deteme pecse blow up ates fo subctcal solutos: patcula the possblty of towe bubbles s excluded all dmesos I subsequet papes we am to establsh the shapess of ths esult, povg a covese exstece statemet, togethe wth a oe to oe coespodece of blowg-up subctcal solutos ad ctcal pots at fty Ths aalyss wll be the appled to deduce ew exstece esults fo the geometc poblem Key Wods: Cofomal geomety, sub-ctcal appoxmato, blow-up aalyss Cotets Itoducto Vaatoal settg ad pelmaes 6 3 Blow-up aalyss 9 4 Reducto ad v-pat estmates 4 5 The fuctoal ad ts devatves 7 6 Gadet bouds 3 7 Appedx 35 7 Iteactos 35 7 Devatves 39 73 Lst of costats 5 Itoducto The poblem of pescbg the scala cuvatue of a mafold cofomally has a log hstoy, statg fom [3], see also [3], [3] I case of the oud sphee, ths s ow as Nebeg s poblem Gve a closed mafold M, g of dmeso 3 ad a cofomal metc g = u 4 g fo a postve fucto u > o M, the cofomal chage of the scala cuvatue s gve by R gu u + = Lg u, whee by defto L g u = c g u + R g u, c = 4
s the cofomal Laplaca, whle g s the Laplace-Beltam opeato wth espect to g Thus, ode to pescbe a fucto K o M as the scala cuvatue wth espect to g, oe eeds to solve L g u = Ku +, u > potwse o M, see [3] The expoet o the ght-had sde s ctcal wth espect to Sobolev s embeddg, whch maes the poblem patculaly challegg I cotast to the Yamabe poblem, whch amouts to fdg a costat scala cuvatue metc, fo K vayg o M thee ae obstuctos to the exstece fo Fo example Kazda ad Wae poved [3] that o the oud sphee S, g S evey soluto u of must satsfy K, f gs u dµgs = S fo ay estcto f to S of a affe fucto o R + I patcula, sce u s postve, a ecessay codto fo the exstece of solutos s that the fucto K, f gs chages sg Oe of the fst aswes to Nebeg s poblem was gve by J Mose [38] fo two dmesos, whee the coutepat of has a expoetal fom He poved that fo K beg a eve fucto o S a soluto always exsts A elated esult was gve by J Escoba ad R Schoe [], showg exstece of solutos whe K s vaat ude some goup G actg wthout fxed pots, ude sutable flatess assumptos of ode I the same pape some esults wee also foud fo o-sphecal mafolds usg postvty of the mass Othe suffcet codtos fo the exstece case of G-vaat fuctos wee gve by E Hebey ad M Vaugo [4], [5], allowg the possblty of fxed pots Othe exstece esults wee obtaed by A Chag ad P Yag, see [7], [8], fo the case = wthout equg ay symmety of K Oe codto fo whch they obtaed exstece s the followg They assumed that K s a Mose fucto, satsfyg geecally { K = } { K = } = They also supposed that K possesses p local maxma ad q saddle pots wth egatve Laplaca ad p q + The latte codto was used to pove the esult va a Leay-Schaude degee-theoetcal agumet I the same papes othe esults wee gve, equg codtos oly at some pescbed levels of K Typcally K must possess two maxma x ad x, Kx Kx, whch ae coected by some path xt fo whch x saddle pot fo K f Kxt Kx<Kx Kx > t Statemets of ths last d have bee obtaed [] fo = ad [8] fo 3 Aothe exstece esult was gve by A Bah ad JM Coo [5] fo = 3 ad a Mose fucto K satsfyg ad mx,k 3 x { K=} { K<} Hee mx, K deotes the Mose dex of K at x, cf also [] The esult of Bah ad Coo, whch eles o a topologcal agumet, has bee exteded seveal dectos A exteso of codto 3, based o Mose s equaltes, was gve by Schoe ad Zhag [4] fo the case = 3 Fo a Mose fucto K satsfyg ad settg c q = {x M : Kx =, Kx < ad mk, x = 3 q} they equed that ethe c c + c o c c > Note that the fst codto s equvalet to 3 ad the secod oe fo = coespods to the codto p + > q [7] Othe esults of petubatve type ad elyg o fte-dmesoal eductos wee gve by A Chag ad P Yag [9] ad by A Ambosett, J Gaca-Azoeo ad I Peal [], see also [34] The authos cosdeed the case whch K s close to a costat ad satsfes a aalogue of 3, e mx,k x { K=} { K<}
I [7] YY L poved exstece of solutos fo evey dmeso, f the fucto K ea each ctcal pot has a Mose-type stuctue, but wth a flatess of ode β, Hs poof eled o a homotopy agumet: cosdeg K t = t K + t, t [, ] the autho used the degee-coutg fomula of [9] fo t small, ad the a efed blow-up aalyss of equato, whe t teds to A dffeet degee fomula ude moe geeal flatess codtos was toduced [5] Othe esults obtaed by dffeet appoaches ca also be foud [7], [9], [] A useful tool fo the above esults s a subctcal appoxmato of, amely c g u + R g u = K u + τ, < τ 4 The advatage of 4, compaed to, s that the lowe expoet maes the poblem compact, so t s ease to costuct solutos Howeve, the teestg pot s passg to the lmt of solutos fo τ ad geeal oe expects some of them to dvege wth zeo wea lmt The appoach [], [4], [7] was to udestad detal the behavou of blowg-up solutos ad the to use degee- o Mose-theoetcal agumets to show that some solutos stay bouded Cosde ow a Mose fucto K o the sphee satsfyg I dmeso = 3 o ude a flatess codto hghe dmesos, t tus out that blowg-up solutos to 4 develop a sgle bubble at ctcal pots of K wth egatve Laplaca Bubbles coespod to solutos of o S wth K ad wee classfed [], see also [], [44], ad afte pope dlato epeset the pofles of dvegg solutos, cf Secto fo pecse fomulas The sgle-bubble pheomeo ca be qualtatvely explaed explotg the vaatoal featues of the poblem, whch admts the Eule-Lagage eegy J = J K gve by c u g + R g u dµ g Ju = M Ku dµg see also egadg 4 Deote by δ a, a bubble ceteed at a S wth dlato paamete The fo dstct ad fxed pots a, a ad lage oe has the expasos Kδ a, +δ a, dµgs Ka +Ka + c S, Kδ a dµ, g S c Ka c 3 S Ka 5 wth costats c >, whee c depeds o a ad a We efe to Secto 5 fo moe accuate esults Tems smla to the above oes appea the expesso of J τ By the latte fomulas ad fo ad = 3 the teacto of the bubbles wth K s domated by the mutual teactos amog bubbles Ths causes multple bubbles to suppess each othe allowg oly oe blow-up pot at a tme, whch has to be close to at ctcal pots of K wth egatve Laplaca due to a Pohozaev detty Ths aalyss was caed ove [8] also o S 4 I ths case the above teactos ae of the same ode ad multple blow-ups occu It was also show thee that multple bubbles caot accumulate at a sgle pot Usg a temology fom [4], [4] such blow-ups ae called solated smple I fou dmesos a dffeet costat o multple blow-up pots eplaces K <, depedg o the least egevalue of a matx costucted out of K ad the locato of the blow-up pots, cf 8 [8] O geeal fou-dmesoal mafolds thee s a exta tem due to the mass of the mafold leadg to smla pheomea, but wth modfed fomulas, see [6] The goal of ths pape s to vestgate the blow-up behavou a opposte egme, whe the dmeso 5 ad the fucto K s Mose I ths case the secod tem 5 domates the fst oe, so t s dastcally dffeet fom stuato of low-dmesos o wth flat cuvatues Howeve we ca stll show that blow-ups ae solated smple, whch s mpotat udestadg the Mose-theoetcal stuctue of the eegy fuctoal Hee s ou ma esult Theoem Let M, g, 5 be a closed mafold of postve Yamabe class ad K : M R a smooth postve Mose fucto satsfyg The postve sequeces of solutos to 4 fo τ m wth ufomly bouded W, -eegy ad zeo wea lmt have oly solated smple blow-ups at ctcal pots of K wth egatve Laplaca, 3
The above theoem follows fom Poposto 3, whee a geeal chaactezato of blowg-up Palas- Smale sequeces fo 4 as τ s gve, ad fom Theoem, whee a lowe boud o the om of the gadet of the Eule-Lagage fuctoal J τ fo 4 s poved, see Rema Solutos of 4 ca be foud as sutably omalzed ctcal pots of the scalg-vaat eegy J τ Fo a sequece of ctcal pots u m of J τm, wth τ m as Theoem, thee exst up to subsequeces q N ad dstct pots x,, x q M wth Kx = ad Kx < such that fo some α,m = u m q α,m δ,m,a,m W as m =, M,g Θ Kx 4 + o, a,m x ad,m τm = τ m, whee the multplcatve costat Θ eflects the scalg vaace of J τm, see, ad ca be fxed fo stace by pescbg the cofomal volume, cf Rema 6 I Theoem we wll show much moe pecse estmates, that wll be cucal fo [35] Fo example, f 6, we fd Kx,m = c Kx τ, a,m = c Kx Kx θ, α = Θ p Ka,m up to eos of ode o 3 τ m, whee c, c ae dmesoal costats ad we detfy by a slght abuse of otato a,m wth ts mage cofomal omal coodates at x, cf [6] Hece all the fte dmesoal vaables, e α,m, a,m ad,m ae detemed to a pecso of ode o 3 τ m Rema We ext compae Theoem to some exstg lteatue ad add futhe commets a O S 3 ad S 4 the solated-smpleess of solutos was poved [], [7], [8], [4] fo abtay sequeces of solutos by a efed blow-up aalyss The ufom W, -boud s the deved a- posteo I dmeso 5 the latte boud may ot hold tue geeal - we efe the eade to [], [3], [4], whee some cases t s show that blowg-up solutos fo the puely ctcal equato must have dvegg eegy ad blow-ups of dvegg eeges ad toweg bubbles ae also costucted, cf also [33], [39], [45] Howeve, the fothcomg pape [36] we wll costuct solutos to 4 va m-max o Mose theoy wth the pupose of fdg a o-zeo wea lmt These wll deed satsfy the equed eegy boud Ths wll allow us to obta exstece esults ude less stget codtos compaed to some othes the lteatue, as [8] ad [6] b O mafolds ot cofomally equvalet to S a-po estmates wee poved [9] fo = 3 both ctcal ad subctcal cases Ou aalyss caes ove fo = 4 as well, whee the matx Defto 6, toduced [6], [8] ad also volvg the mass, gves costats o the locato of multple blow-up pots The ma ew aspect of ou esult s the solated smple blow-up behavou dmeso 5, so we chose to state Theoem a smple fom oly fo ths case We efe to Theoem fo a moe pecse veso of the esult: hee we deve deed estmates o solutos wth hgh pecso as τ, as well as estmates that ae ufom ths paamete c I [35] we wll show a covese statemet Gve ay dstct pots p,, p { K = } { K < } ad τ thee exst solutos u to 4 blowg-up at p,, p exactly as descbed above Thece the chaactezato of Theoem s optmal We efe to [7], [8] fo the coutepats o thee- ad fou-sphees I [35] we wll also show a oe-to-oe coespodece of such blowg-up sequeces wth ctcal pots at fty fo poblem, cf [4] d We expect the same cocluso of Theoem should hold tue eplacg the eegy boud wth a Mose dex boud It would also be teestg to udestad the case of o-zeo wea lmts 3,m 4
We dscuss ext some heustcs about the poof of Theoem Fst we show a quatzato esult fo Palas-Smale sequeces of solutos to 4 as τ We ae sped ths step fom a esult by M Stuwe [43], whee the same was poved fo τ = : ou case we eed exta wo the lmtg pocess, due to a dffeet dlato covaace of subctcal equatos We the pove that we ae a petubatve egme ad evey soluto to 4 fo τ suffcetly small ca be wtte as a fte sum of hghly peaed bubbles ad a eo tem small W, -om, whch we pove to have a mo effect the expasos Pefomg a caeful aalyss of the teactos of the bubbles amog themselves ad wth K, t s ot dffcult to see that fo 5 blow-ups should occu at ctcal pots of K wth egatve Laplaca oly, cf also Theoem [3], ad we ae left wth excludg multple bubbles toweg at the same lmt pot, whch s the cucal esult ou pape We gve a dea of ths fact some patcula cases, that ae easy to descbe Let J τ be the Eule- Lagage eegy of 4, see Fo a ctcal pot a of K, the followg expaso holds fo J τ o a bubble cocetated at a J τ δ a, a τ Ka, 6 Ka K cf Poposto 5 By elemetay cosdeatos oe checs that fo Ka < the fucto the ght-had sde has a o-degeeate mmum pot at = τ τ, see also Poposto [4] Sce bubbles have a attactve teacto, cf the fst equato 5, eve tems of dlatos ceteg moe bubbles at the pot a would mae all dlato paametes collapse at = τ, see Fgue Fo the same easo, stll by 6, oe would get collapse wth espect to the cete pots of multple bubbles dstbuted alog the ustable dectos fom a ctcal pot of K, sce pots wth lage values of K have smalle eegy, due to 6, see Fgue We cosde the the case of bubbles ceteed at two δ a, δ a, J τ δ a, Fgue : two bubbles wth same cete, dffeet s δ a, δ a, J τ δ a, Fgue : two bubbles alog ustable decto of K, same a δ a, δ a, J τ δ a, Fgue 3: two bubbles alog stable decto of K, same a pots a, a symmetcally located at dstace d fom a ctcal pot p such that K p <, ad alog a stable decto of K, wth the same s Hee pcple the attactve foce amog bubbles could compesate the epulsve teacto fom the ctcal pot p of K, see Fgue 3 Fo ths cofguato oe gets a eegy expaso of the fom c J τ δ a, + δ a, K a τ Ka Ka c d c c 3 d τ + c 4 c d wth c > Fom the aalyss Poposto both ad d oe fds the elatos 3 t tus out that τ, so mposg ctcalty τ + d ad d d These asymptotcs mply that τ +, whch s mpossble fo lage The geeal case s athe volved to study ad wll be teated by a top-dow cascade of estmates Secto 6 The pla of the pape s the followg I Secto we toduce the vaatoal settg of the poblem ad lst some pelmay esults We the study some appoxmate solutos of, hghly cocetated at abtay pots of M Fom these oe ca cay out a educto pocedue of the poblem, whch s doe late the pape I Secto 3 we pove a geeal quatzato esult fo Palas-Smale sequeces of 4 wth ufomly bouded W, -eegy I Secto 4 we educe the poblem to a fte-dmesoal oe, whle Secto 5 we deve some pecse asymptotc expasos of the Eule-Lagage eegy Secto 6 s the devoted to povg sutable bouds o the gadet to exclude towe bubbles ad pove ou ma esult We fally collect the appedx the poofs of some useful techcal estmates as well as a lst of elevat costats appeag 5
Acowledgmets AM has bee suppoted by the poect Geometc Vaatoal Poblems ad Fazameto a suppoto della ceca d base fom Scuola Nomale Supeoe ad by MIUR Bado PRIN 5 5KB9WPT He s also membe of GNAMPA as pat of INdAM Vaatoal settg ad pelmaes I ths secto we collect some bacgoud ad pelmay mateal, coceg the vaatoal popetes of the poblem ad some estmates o hghly-cocetated appoxmate solutos of bubble type We cosde a smooth, closed Remaa mafold M = M, g wth volume measue µ g ad scala cuvatue R g Lettg A = {u W, M, g u, u } the Yamabe vaat s defed as c u g Y M, g = f + R g u dµ g A, c u dµg = 4 We wll assume fom ow o that the vaat s postve As a cosequece the cofomal Laplaca L g = c g + R g s a postve ad self-adot opeato Wthout loss of geealty we assume R g > ad deote by G g : M M \ R + the Gee s fucto of L g Cosdeg a cofomal metc g = g u = u 4 g thee holds dµ gu = u dµg ad R = R gu = u + c g u + R g u = u + Lg u Note that c u W, M,g u L g u dµ g = c u g + R g u dµ g C u W, M,g I patcula we may defe ad use u = u L g = u L g u dµ g as a equvalet om o W, Fo p = + τ ad τ we wat to study the scalg-vaat fuctoals c u M g J τ u = + R g u dµ g, Ku p+ dµ g p+ u A Sce the cofomal scala cuvatue R = R u fo g = g u = u 4 g satsfes = u = Rdµ gu = ul g udµ g, we have J τ u = p+ τ p+ τ wth τ = K u p+ dµ g 3 The fst- ad secod-ode devatves of the fuctoal ae gve by J τ uv = [ L g uvdµ g Ku p ] vdµ g ; τ 6
J τ uvw = p+ τ [ L g vwdµ g p τ 4 [ L g uvdµ g p+ + τ p+ + τ Ku p vwdµ g ] Ku p wdµ g + p + 3 + Ku p vdµ g Ku p wdµ g L g uwdµ g Ku p vdµ g ] I patcula J τ s of class C,α loc A ad ufomly Hölde cotuous o each set of the fom Ideed u U ɛ mples U ɛ = {u A ɛ < u, J τ u ɛ } ɛ ɛ ad c ɛ 3 p+ τ = J τ u u Cɛ 3 Thus ufom Hölde cotuty o U ɛ follows fom the stadad potwse estmates { a p b p C p a b p case < p < a p b p C p max{ a p, b p } a b case p 4 We cosde ext some appoxmate solutos to, hghly cocetated at abtay pots of M As we wll see, fo sutable values of these ae also appoxmate solutos of 4 Let us ecall the costucto of cofomal omal coodates fom [6] Gve a M, oe chooses a sutable cofomal metc g a [g ] ad use the stadad geodesc coodates fo ths oe By the smoothess of the expoetal map exp ga a = exp ga wth espect to a we may fd a coodate system ea a such that a exp ga x = d + O x 5 We deote by a the geodesc dstace fom a wth espect to the metc g a ust toduced Wth ths choce the expesso of the Gee s fucto G ga wth pole at a M, deoted by G a = G ga a,, fo the cofomal Laplaca L ga smplfes cosdeably Fom Secto 6 [6] oe may expad G a = a + H a, a = d ga a,, H a = H,a + H s,a fo g a = u 4 a g, 6 4 ω whee ω = S Hee H,a C,α loc, whle the sgula eo tem satsfes fo = 3 a l a fo = 4 H s,a = O a fo = 5 l a fo = 6 a 6 fo 7 Pecsely the leadg tem H s,a fo = 6 s Wa 88c ϕ a, =u a + γ G a We otce that the costat γ s chose so that l, whee W deotes the Weyl teso Let, G a = G ga a,, γ = 4 ω fo > 7 γ G a x = d g a a, x + od g a a, x as x a Evaluatg the cofomal Laplaca o such fuctos shows that they ae appoxmate solutos 7
Lemma Thee holds L g ϕ a, = Oϕ + a, Moe pecsely o a geodesc ball B αa fo α > small L g ϕ a, = 4 ϕ + a, c a H a + a a H a ϕ + a, + u a R ga ϕ a, + o a ϕ + whee a = d ga a, Sce R ga = Oa cofomal omal coodates, cf [6], we obta L g ϕ a, = 4 [ c a H a a + H a ax]ϕ + a, + O 3 ϕ a, fo = 3 l ϕ a, fo = 4 ; ϕ a, fo = 5 L g ϕ a, = 4 ϕ + a, = 4 [ + c L g ϕ a, = 4 ϕ + a, = O ϕ a, fo 7 The expasos stated above pesst upo tag ad a Poof A staghtfowad calculato shows that ga + γ G a = γ ϕ a, + u a W a l ]ϕ + a, + O ϕ a, fo = 6; devatves G a g a G a + γ ϕ a, u a G a ga G a, whch s due to G a g a G a = G a g a ad c ga G a = δ a + R ga G a wth δ a deotg the Dac measue at a Ths s equvalet to ga + γ G a = γ ϕ a, u a + Sce L ga = c ga + R ga wth c = 4, we obta L ga ϕ a, u a By cofomal covaace we also get G a =4 ϕ a, + u γ G a a g a + R g a γ c g a + R g a L g ϕ a, = 4 ϕ + a, γ G a g a + u a R ga ϕ a, u a ϕ a, u a ϕ a,, G a patcula L g ϕ a, = Oϕ + a, Expadg G a as G a = 4 ω a + H a, a = d ga a, we fd γ G a g a = a + a H a ga = H a + a a H a a + oa, ad coclude that L g ϕ a, = 4 ϕ + a, c H a + a a H a a ϕ + a, + o a ϕ + a, + u a R ga a,, ϕ a, Clealy these calculatos tasced to the ad a devatves The the clam follows fom the above expaso of the Gee s fucto Afte toducg some otato we state a useful lemma, whch wll be poved the fst appedx Notato Gve a expoet p we wll deote by L p g the set of fuctos of class L p wth espect to the measue dµ g Recall also that fo u W, M, g we set u = ul g udµ g, whle fo a pot a M we deote by a the geodesc dstace fom a wth espect to the metc g a toduced above Fo a set of pots {a } of M we wll deote by K, K, K fo stace Ka, Ka, Ka Fo, l =,, 3 ad >, a M, =,, q let 8
ϕ = ϕ a, ad d,, d,, d 3, =,, a ; φ, = ϕ, φ, = ϕ, φ 3, = a ϕ, so φ, = d, ϕ Note that wth the above deftos the φ, s ae ufomly bouded W, M, g Lemma Let θ = τ ad, l =,, 3 ad, =,, q The fo thee holds ufomly as τ φ,, φ,, a φ, Cϕ ; ε, = + + γ G g a, a 8 v θ ϕ 4 τ φ, φ, dµ g = c d + Oτ + +θ + +θ fo up to some eo of ode Oτ + 4 θ ϕ + τ φ, dµ g = b d, ε, = θ, c > ; + ϕ τ + ε +, d, ϕ + dµ g ; 4 ϕ τ φ, φ l, dµ g = O + fo l ad fo =, 3 θ fo 5 φ, dµ g = O τ + l fo = 6 ; 4 4 fo 7 ϕ + τ v v θ ϕ α τ ϕ β dµ g = Oε β, fo, α + β =, α τ > > β ; ϕ ϕ dµ g = Oε, l ε,, ; v,, a ε, = Oε,, dx wth costats b = fo =,, 3 ad R + + dx c = +, c dx = 4 + +, c 3 = R 3 Blow-up aalyss R R dx + + I ths secto we pove a esult elated to a well-ow oe [43] We obta deed smla coclusos, but allowg the expoet the equato to vay alog a sequece of appoxmate solutos Poposto 3 Let u m m W, M, g be a sequece wth u m ad τm = satsfyg J τm u m = um ad J τm u m W, M, g The up to a subsequece thee exst u : M [, smooth, q N ad fo =,, q sequeces M a,m a ad R +,m as m such that u m = u + q = α ϕ a,m,,m + v m wth J u =, v m, τm,m ad Ka α 4 4 ad ε, m as m fo each pa < q 9
Poof Settg J = J τm, by ou assumptos we have Ju m = u m L g u m dµ g ad Ju m = L g u m Ku pm m = o W, M, g I patcula u m W, M, g s bouded, hece u m u wealy W, M, g ad stogly L q M, g, q < Notce that u s a ctcal pot of J ad theefoe t s a smooth fucto We may the wte u m = u + u,m wth u,m wealy, ad stogly L q M, g Thus Ju m = u L g u dµ g + u,m L g u,m dµ g + o, whece u,m L g u,m dµ g, ad secodly, due to 4, that Eu,m := L g u,m Ku pm,m = o W, M, g 3 We may assume, >, sce othewse we ae doe We ow clam the cocetato behavo < ε m : sup x M u,m g dµ g ε 3 B x m Ideed we have fo a fxed cut-off fucto [ ] o = Eu,m, u,m η = ηu,ml ηu g,m K ηu,m u pm,m dµ g + o ηu,m K m ηu,m u L pm+,m pm + o µg L pm+ µg suppη Usg Hölde s equalty ad Sobolev s embeddg we obta o ηu,m C u,m pm L pm+ µg suppη + o Thus, f u,m does ot cocetate L pm+ M, g smlaly to 3, the by a coveg agumet u,m g dµ g cotadctg, > By 3 cocetato L pm+ M, g s equvalet to cocetato L -om fo the gadet, whch had to be show Fxg ε > small, we measue the ate of cocetato va { } Λ,m = sup > max u,m g x M dµ g = ε, B x Λ ad choose fo ay,m wth lm,m m,m a,m M : u,m g dµ g B,m a,m = δ < up to a subsequece = sup u,m g dµ g c x M B x,m fo some postve c = cε, δ to be specfed late O a sutably small ball B ρ a,m we the escale w,m =,m u,m exp ga,m,m The fucto w,m s well defed o B ρ,m ad satsfes, wth θ m = τ m, c w,m Ka,m w pm, θm,m = o Wloc R, = R,m
Sce u,m dµ g s bouded, so t s B ρ,m w,m dx fo ay ρ > Hece whee w,m w, wealy W, loc R wth w, = σ κ w + κ = lm Ka,m ad σ = lm m m θm,m [, ] Gve a compactly suppoted cut-off η, we calculate w,m w, η K w,m + w,m pm dx θm R,m = w,m w, η w,m w, + σ Kw pm,m w +, dx + o R w,m w, η dx + σ Kη w,m w, pm+ dx + o R R = w,m w, η dx + σ Kη w,m w, pm+ dx + o R R The ma step hee s the equalty the above fomula Passg fom + to p m = + expoet s easy, as w, s fxed Sce w,m w, L p suppη, p < Kη w,m w, w pm,m w pm, dx = Kη w pm+,m wpm+, dx R R = Kη R [,, 33 τ m the, we have s w,m sw, pm+ ds w pm+, + w,m w, pm+ ]dx Theefoe the ma equalty follows fom obsevg that [ ] s w,m sw, pm+ ds w pm+, dx R Kη ds Kη [p m+ w,m sw, w,m sw, pm w, w R ds, wpm+, ]dx = R Kη [p m+ s pm w pm+ p m+, ]dx Hece 33 s ustfed ad we obta as befoe w,m w, η C w,m w, pm L p m+ dx o suppη R Thus w,m w, locally stogly, uless w,m cocetates L pm+, but by ou choce of Λ,m ε = sup x M u,m g dµ g sup x B c,m R w,m dx B Λ,m x B,m Λ,m x ad,m Λ,m, so the L -gadet om does ot cocetate beyod ε ad, sce c R w,m Ka,m w pm, θm,m = o locally stogly Wloc R,,m
ethe the L pm+ -om does Thus w,m w, locally stogly I patcula w, dx u,m g dµ g c = cε, δ B B,m a,m But σ = mples w, = by hamocty, so σ, ], cf 33, ad we easly show w, > ad w, = α + a wth α >, a = x a, a R ad > Note that R w, = σ κ w +, mples σ κ α 4 = 4 Moeove by costucto B w,m dx sup x B c,m B x w,m dx, whch tasfes to w, by locally stog covegece Ths mples a = ad By + B + dx = εα = εσ κ lm m θm,m = σ, ] ad < ε we get lm θm m,m u m = u + α ϕ,m + u,m, ϕ,m = ϕ a,m,,m,,m =,m Moeove we ow that u,m wealy W, M, g ad Dlatg bac we may the wte w,m =,m u,m exp ga,m,m locally stogly W, R Sce the tal sequece u m was o-egatve, t follows that u ad the egatve pat of u,m teds to zeo as m W, -om Usg a dlato agumet, the latte popety ad the above fomula, t s easy to show that, f α, β wth α + β =, the ϕ α,m u,m β dµ g as m, 34 ad that also u,m L g ϕ,m dµ g = o Thece as befoe fo u,m J τm u m = u L g u dµ g + α ϕ,m L g ϕ,m dµ g + u,m L g u,m dµ g ad theefoe u,m L g u,m dµ g, Lewse Eu,m = L g u,m Ku pm,,m = o Wloc R sce by expaso of the o-lea tem of J τm u m we fd o =L g u + α ϕ,m + u,m Ku + α ϕ,m + u,m pm =L g u Ku pm + α L g ϕ,m Kα pm ϕpm,m + L g u,m Ku pm,m + o = L g u,m Ku pm,m + o W, M, g The secod equalty follows fom applyg the latte fomulas to ay test fucto W, M, g ad the applyg Sobolev s ad Hölde s equaltes togethe wth 34 We may theefoe teate the afoe gog ad fd fo a fte sum u m = α ϕ,m + v m, wth eegy Ju m u L g u dµ g + α ϕ,m L g ϕ,m dµ g
But all α ae ufomly lowe bouded due to σ κ α 4 =, σ = lm m θm,m, ] ad κ = lm Ka,m, m thece the teato has to stop afte ftely-may steps I patcula v m does ot cocetate locally ad cosequetly vashes stogly as m Now tae ay fxed dex ad ecall that w,m =,m u,m exp ga,m,m ad that by costucto,m l,m O the othe had fo < l We had see w,m w, wealy ad locally stogly, whee c w, σ κ w +, = w,m = α + + > u a,m a α,m,m +,m γ G a,m expga,m,m up to some eo of ode o locally W,, ad the latte sum has to vash, whch s equvalet to,m,m o,m,m G a,m a,m Recallg 8, ths shows that ε, m fo all We ae left wth povg,m q,m τm,m Odeg up to a subsequece, let { },m q = l =,, q lm < m l,m The,m l,m fo q < l ad c lm m,m l,m C fo, l q Select a half-ball B + δ a,m wth q ad < δ such that B + δ a,m {a l,m l q, l } = up to a subsequece, whee fo some affe fucto ν,m wth ut gadet we have set B + δ a,m = B δ a,m {ν,m > } a local coodate system The escalg u m o B a,m δ {ν,m >,m } we fd w,m = O the othe had sde, w,m solves,m u m exp ga = α l,m + + o o B c,m {x > } c w,m κ w pm θm,m = o, κ = lm Ka,m o B c,m m,m Recallg that p m = + τ m ad θ m = τ m, ths mples, that up to otatg coodates Thus + θm s ealy costat o B + c,m {x > } θm,m The clam follows, sce lm,m m c fo all l =,, q l,m 3
4 Reducto ad v-pat estmates I ths secto we wll cosde a sequece u m as Poposto 3, wth zeo wea lmt We wll ecall some well-ow facts about fte-dmesoal eductos ad deve pelmay eo estmates ad o sutable compoets of the gadet of J τ Fo ε >, q N, u W, M, g ad α,, a R q +, R q +, M q we defe A u q, ε = {α,, a,, ε,, α V q, ε = {u W, M, g A u q, ε }, 4 Ka 4 τ, u α ϕ a, < ε, τ < + ε}; cf, 3 ad 7 Fo both codtos > ε, τ < + ε to hold, we wll always assume that τ ε ad ths s cosstet wth the statemet of Poposto 3 Ude the above codtos o the paametes α, a ad the fuctos q = α ϕ a, fom a smooth mafold W, M, g, whch mples the followg well ow esult, cf [4] Poposto 4 Fo evey ε > thee exsts ε > such that fo u V q, ε wth ε < ε u α ϕã, L g u α ϕã, dµ g f α,ã, A uq,ε admts a uque mmze α, a, A u q, ε depedg smoothly o u ad we set ϕ = ϕ a,, v = u α ϕ, K = Ka 4 The tem v = u α ϕ s othogoal to all ϕ, ϕ, a ϕ, wth espect to the poduct, Lg = L g, L g Fo u V q, ε let H u q, ε = ϕ, ϕ, a ϕ Lg 4 We ext have a estmate o the poecto of the gadet of J τ oto H u Lemma 4 Fo u V q, ε wth τ =, cf 3,ad ν H u q, ε thee holds [ J τ α ϕ ν = O τ θ + K +θ + +θ + Poof Due to the fact that τ = ad ν H u q, ε we have J τ α ϕ ν = α ϕ Kα ϕ p νdµ g, +θ + s ε +,s θ ] ν ad theefoe J τ α ϕ ν Kα ϕ p νdµ g Decomposg teatvely M as { α ϕ > > α } { ϕ α ϕ > α } ϕ, we fd Kα ϕ p νdµ g = Kα ϕ p νdµ g + O α ϕ p α s ϕ s ν dµ g s {α sϕ s α ϕ } Usg Hölde s equalty wth expoets = p + q = + + ad Lemma v appled to the latte eo tem, whee the equalty ϕ s ϕ ca be used to apply t wth β, we get Kα ϕ p νdµ g = Kα ϕ p νdµ g + O s ε +,s θ ν, 4
ad by a smple expaso we also obta Note that whece Kα ϕ p νdµ g = θ ϕ + ϕ p B c = + θ Thus up to some O[ K α p + = + Lg τ θ + B c θ ϕ + [ ϕ p νdµ g + O ϕ + τ + θ K +θ + θ ϕ τ + dµg + O + θ + K +θ ϕ p L + g + + Kα ϕ p νdµ g = θ = O θ + +θ s K θ + O + + ε,s θ α + +θ + s θ + dx + O θ + dx + O + θ ε +,s θ + θ ] ν 43 + θ, 44 ] ν we ave at ϕ + νdµ g Fally fom Lemma ad the fact that ν H u q, ε hece νl g ϕ dµ g = we obta fo = 3 ϕ + νdµ g v L g ϕ 4 ϕ + fo = 4 = O 3 fo = 5 v, 45 L + g l 3 3 fo = 6 4 fo 7 so the clam follows Lemma 4 Fo u V q, ε wth τ = ad v s as 4 thee holds v = O τ θ + K +θ + +θ + +θ + s ε +,s θ + J τ u Poof Sce the Hessa of J τ s ufomly Hölde cotuous o bouded sets of W,, we have J τ uv = J τ α ϕ v + J τ α ϕ v + o v = J τ α ϕ v + J τ uv + o v ; [ ] J τ uv = vl g vdµ g p u Ku p v dµ g 8 ul g vdµ g Ku p vdµ g + p + 3 Ku p vdµ g Ku p vdµ g Sce v H u q, ε, by smla expasos we the fd also eplacg p wth + wth a eo o [ ] J τ uv = vl g vdµ g p u Ku p v dµ g [ = vl g vdµ g + α ϕ L g α ] ϕ dµ g Kα ϕ p v dµ g [ K α 4 α ϕ L g ϕ dµ g = vl g vdµ g +, 5 θ ϕ 4 v dµ g ] 46
up to some o v Futhemoe by defto of V q, ε thee holds θ = + o ad K α 4 = + o = α ϕ α ϕ + o L g ϕ dµ g Thus [ J τ uv = vl g vdµ g + ϕ 4 v dµ g ] + o v Ths quadatc fom s postve defte fo ε suffcetly small o the subspace v belogs to, cf [4], so v + o C J τ uv C[ J τ α ϕ v + J τ u ] Theefoe the clam follows fom Lemma 4 We ow establsh cacellatos testg the gadet of J τ othogoally to H u q, ε Lemma 43 Fo u V q, ε wth τ = the quatty J τ uφ, expads as J τ α τ ϕ φ, + O θ + K +θ + 4+θ + +θ + s ε +,s θ + J τ u Poof By the mea value theoem ad 46 we have, wth some σ [, ] J τ uφ, J τ α ϕ φ, = J τ α ϕ + σvφ, v [ ] = + O v vl g φ, dµ g p α ϕ + O v Kα ϕ + σv p vφ, dµ g [ 4 + O v α ϕ + σvl g vdµ g Kα ϕ + σv p φ, dµ g ] + α ϕ + σvl g φ, dµ g Kα ϕ + σv p vdµ g + p + 3 α ϕ + O v Kα ϕ + σv p vdµ g Kα ϕ + σv p φ, dµ g Theefoe, sce v H u q, ε, up to some O v we also get J τ uφ, J τ α ϕ φ, = p α ϕ Kα ϕ + σv p vφ, dµ g 4 α ϕ L g φ, dµ g Kα ϕ + σv p vdµ g + p + 3 α ϕ Kα ϕ + σv p vdµ g Kα ϕ + σv p φ, dµ g Decomposg ow M as {α ϕ v } {α ϕ v }, ad usg φ, Cα ϕ Cα ϕ, we fd J τ uφ, J τ α ϕ φ, = p α ϕ Kα ϕ p vφ, dµ g 4 α ϕ L g φ, dµ g Kα ϕ p vdµ g + p + 3 α ϕ Kα ϕ p vdµ g Kα ϕ p φ, dµ g + O v Now, agug as fo 43 ad usg Lemma v, we have Kα ϕ p vdµ g = K α p [ ϕ p vdµ g + O K +θ + +θ + s ε +,s θ ] v ; 6
Kα ϕ p φ, vdµ g whece = K α p [ ϕ p φ, vdµ g + O J τ uφ, J τ α ϕ φ, = p α ϕ K α p 4α up to some O K +θ + ϕ p K +θ + φ, vdµ g ϕ L g φ, dµ g K α p ϕ p vdµ g +θ + s ε +,s θ + p + 3 α ϕ K α p ϕ p φ,dµ g K α p ϕ p vdµ g + 4+θ s + ε,s θ J τ uφ, J τ α ϕ φ, = p α ϕ K α p + v Usg 44 ad 45 we ave at ϕ p φ, vdµ g ] v, τ + O θ + K +θ + 4+θ + +θ + s ε +,s θ + v Yet also the fst summad o the ght had sde s of the same ode as the secod oe, agug as fo 44 ad 45 Combg ths wth Lemma 4, we obta the cocluso 5 The fuctoal ad ts devatves Fo u V q, ε ad ε > suffcetly small let α = α, α s = K θ α s, θ = τ 5 Recallg the otato fom the pevous secto we may expad the Eule-Lagage eegy as follows Poposto 5 Fo u = α ϕ + v V q, ε ad ε >, both J τ u ad J τ α ϕ ca be wtte as H fo = 3 H +O l ĉ α K α α p+ ĉ τ ĉ p+ K α ˆb α α α ε, ˆd α fo = 4 α H fo = 5 3 W l fo = 6 4 fo 7 wth postve costats ĉ, ĉ, ĉ, ˆb, ˆd up to eos of the fom Oτ + K + 4 + + s ε +,s + J τ u Poof The above expaso fo J τ α ϕ mples the oe fo J τ u va Lemmata 4 ad 4 expadg J τ u = J τ α ϕ + J τ α ϕ v + O v We ext stat aalyzg J τ α ϕ fom the deomato Decomposg teatvely M as M = {α ϕ > α ϕ } + {α ϕ α ϕ } > > 7
we may expad Kα ϕ p+ dµ g = α p+ + O s Kϕ p+ dµ g + p + α p α {α ϕ α sϕ s} α ϕ p α s ϕ s dµ g Kϕ p ϕ dµ g Recallg θ ad the boudedess of α by the defto of V q, ε, usg Lemma ad easog as fo the poof of Lemma 4, the latte tem s of ode O s ε +,, ad also Kϕ p ϕ dµ g =K ϕ p ϕ dµ g + O K a + a ϕ p ϕ dµ g + O B ca θ =K Ideed we fo example have a ϕ p ϕ dµ g = B ca ϕ p ϕ dµ g + O B ca s a ϕ + + wth the latte om that ca be cotolled by + R + + dx C K + 4 ϕ + + + ε +,s ϕ dµ g Cε + Thus Lemma, whee b s defed, yelds Kϕ p ϕ K dµ g = b θ ε, + O τ + K + s 4 + +, ϕ + +, L + µg ++ + + d = O + ε +,s, 5 ad we ave at Kα ϕ p+ dµ g = = α p+ α p+ Kϕ p+ dµ g + p + dµ g + b Kϕ p+ α + α p α K b θ ε, K α θ ε,, b = b 53 K up to a eo Oτ + s ad deotg by x a geec polyomal of degee the x-vaables, we expad Kϕ p+ dµ g = B ca =K B ca + K + 4 + Kϕ p+ dµ g + O θ ϕ p+ dµ g + K B ca B ca x ϕ p+ dµ g + 3 6 K + ε +,s Fally, ecallg ou otato Secto xϕ p+ dµ g B ca x 3 ϕ p+ dµ g + O 4 + wth a exta eo of ode O l f = 4 Fo the fst tem o the ght-had sde up to some 4 Oτ + we may pass tegatg wth espect to cofomal omal coodates Ideed 4 ϕ p+ dµ g = u τ a ϕ θ dµ ga = ϕ θ dµ ga + Oτ a u a u ϕ θ dµ ga a u a B ca B ca B ca B ca 54 8
ad the latte tem s of ode O τ +θ ϕ p+ dµ g = = B c up to some Oτ + + 4 Clealy + θ dx = θ lettg Moeove B c B c +4 θ Fom 7 we fd B ca + θ + = θ = c θ c = Ha + dx + θ up to some O + 4 B c R B c R B c + a + a H a θ H a dx, + dx + = θ θ dx + + θ θ + c τ θ R + O τ + 4 R θ dµ ga dx + + O θ τ + 4 l + dx + + O + O + O dx + ad c = l + R + dx 55 Ha + dx C θ θ θ H a + + dx = whece up to some Oτ + 4 B c B c θ + θ ad wth a exta eo of ode O l f = 4, ad 4 B c + + θ H a + + dx = d θ H +θ + H +θ + O H 3+θ W l 4+θ l 4+θ fo = 3 fo = 4 fo = 5 l fo = 6 dx 6 fo 7 H + H x + O H + H x + O l H + O W l + O l dx, O 6, d = R dx + 56 + Lewse by adal symmety ad, sce we may assume dµ ga, cf [3], we fd B x3 ca ϕ p+ dµ ga = O ; 4 K B x ca ϕ p+ dµ g = K + dx +θ + R + O τ + 4 + ; 9
3 B xϕp+ ca dµ g = O 4 wth a exta eo of ode O l 4 Kϕ p+ dµ g = c K K τ θ + c θ + f = 4 Collectg all tems we ave at + c K +θ + d K H +θ H +θ + O H 3+θ W l 4+θ l 4+θ, c = R dx + 57 up to a eo Oτ + 4 + Kα ϕ p+ dµ g =, ad thus obta K c θ α p+ + d + c K θ K θ α α τ + c K H H +O l H 3 W l 4 +θ α + b α + 58 K α θ ε, up to some Oτ + s J τ α ϕ = c K + 4 α α ϕ L g ϕ dµ g + K α ϕ p+ p+ K +θ α α d Next fo usg Lemma we get ϕ L g ϕ 4 dµ g = + ε +,s Cosequetly up to the same eo = α α ϕ L g ϕ dµ g K θ ϕ + c K θ H H +O l Fo example to chec the eo tem, we may estmate a ϕ + ϕ dµ g B ca H 3 W l 4 α p+ p+ ϕ dµ g + O 4 a ϕ + + L + Bca α α + c b ϕ + ϕ K θ α α α + α K α θ + ε +, 4 L 3+, τ ε, 59 + whch s of ode O ε, whece thas to Lemma, ad lewse fo eg 7 + ϕ ϕ dµ = o ε, g ϕ ϕ dµ g ϕ ϕ L g Thus Lemma shows that ϕ L g ϕ dµ g = b ε, + O 4 + s = Oε, l ε,, + ε +,s, b = 4 b 5
Fally fom 7 ad Lemma we fd ϕ L g ϕ 4 dµ g = up to some eo tems of ode O 3 ϕ L g ϕ 4 dµ g = ϕ ϕ, 4 dµ g c l, 4 dµ g d B c H + H x H + H x + H + H x W l, 4, 4, whece H H + O H 3 W l 4 l 4, d = c R dx +, up to O 4 + Recallg 57, we obta ϕ L g ϕ 4 dµ g = c + 4 d d H H + O H 3 W l 4 l 4 5 up to some Oτ + 4 + α α up to a eo of ode O τ + 4 p J τ α ϕ = 4 c p+ up to some Oτ + b = As d = d, cf 56, we smply get ϕ L g ϕ dµ g =4 c α + b α α ε, 5 α K α p+ θ p+ K d + 4 K θ + c α α + + s ε +,s Pluggg ths to 59, we obta K θ α α H H +O l H 3 W l 4 b, b = 4 b, α = τ c K +θ K b θ + s ε +,s Recallg α, α α α + α α α = c b α α c α K θ α, ε, ad settg p p+ ĉ = 4 c, ĉ = c, ĉ = c, ˆd = d, c c c ˆb = b 53 c
we may ewte ths as J τ u = J τ α ϕ = ĉ α α p+ p+ ĉ ˆd K θ K θ α α α α τ ĉ H H +O l H 3 W l 4 K +θ α α ˆb K θ α + α α α α α ε, The the clam follows fom Lemma 5 We ext state thee lemmas wth some expasos fo the devatves of the fuctoals wth espect to the paametes volved ecall ou otato fom Secto The poofs ae gve appedx B Lemma 5 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ,, J τ α ϕ φ,, α J τ α ϕ ca be wtte as α α `c α α p+ + `b l K θ α p K `c K α α l α ε,l α ε, α wth postve costats `c, `c, `b, `d up to a eo of ode K α K α H α H α fo = 3 H `d α H α + O l fo = 4 4 H α 3 H α fo = 5 3 W l α 4 W l α fo = 6 4 fo 7 O τ + K + s 4 + + ε +,s + J τ u 54 I patcula fo all α α p+ K θ α p = + O τ + s + + ε,s + J τ u Lemma 5 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ,, J τ α ϕ φ, ad α J τ α ϕ ca be wtte as α α c τ + c K K b α ε, + α d wth postve costats c, c, d, b up to some eo of the fom H H fo = 3 l + O fo = 4 4 H fo = 5 3 W l fo = 6 4 fo 7, O τ + K + s 4 + + ε +,s + J τ u 55
Lemma 53 Fo u V q, ε ad ε > suffcetly small the thee quattes J τ uφ 3,, J τ α ϕ φ 3, ad a α J τ α ϕ ca be wtte as α α K K č 3 + č 4 K K 3 + ˇb 3 wth postve costats č 3, č 4, ˇb 3 up to some eo of the fom α α a ε,, O τ + K + s 4 + + ε +,s + J τ u 56 6 Gadet bouds Theoem wll gve sutable lowe om-bouds o the gadet of J τ, yeldg Theoem as a coollay We ecall that o S 3 ad S 4 the esult was poved [], [7], [8], [4] moe geealty Defto 6 Let H be as 6 We call a postve Mose fucto K o M o-degeeate K of degee q N case = 4, f { K = } { c K + c 3H = } = ad f fo evey q K ad evey subset {x,, x } { K = } { c K + c 3H < } the matces M x,,x Kx c Hx Kx + c G 3 Kx c x,x G 4 c x,x γ Kx Kx 4 γ Kx Kx G c x,x 4 γ Kx Kx = G c x,x 4 γ Kx Kx Kx c Hx Kx + c 3 Kx c 4 G x,x γ Kx Kx have o-vashg least egevalues, whee c = 3ω 4, c 3 = 4 3ω 4 = c 4 We say that K s o-degeeate, f t s o-degeeate of all degees case 5, f { K = } { K = } =, e holds Rema 6 No-degeeacy case = 4 mples the exstece of a least egevalue M x,,x x x,,x = x,,x x x,,x wth x,,x ad such that x,,x s smple ad has a postve egevecto, e x x,,x = x x,,x,, x x,,x wth x l x,,x > fo all l Theoem Let M x,,x be as Defto 6, ad suppose that { } K s o-degeeate of degee q fo = 4 K s o-degeeate fo 5 The fo ε > suffcetly small thee exsts c > such that fo ay u V q, ε wth τ = thee holds J τ u c τ + s K + + α α p+ K θ α p + ε,s, cf 5, uless thee s a volato of at least oe of the fou codtos 3
τ > ; { { K = } K { c thee exsts x x K + c } 3H < } fo = 4, ad da { K = } { K < } fo 5, x = O ; α = Θ K + K 8 K 6 H K 6 H K p + o fo = 4, K ; α = Θ θ K p + o fo 5 { } Mx,,x q > ad = σ+o v τ fo = 4, K c τ = c K + o fo 5 fo all, =,, q, whee σ = σ,, σ q case = 4 s the uque soluto of c σ Kx σ q Kx q = M x,,x q σ σ q wth σ >, whle Θ s gve Rema 6 I the latte case thee holds q = τ a = exp gx ā ad settg we stll have up to a eo o the lowe boud 3 Ju τ + Kx Kx + [ Hx + Kx G g x, x ] Kx γ + ā + 3 Kx Kx 3 + 8 K 3 x Kx Kx x G g x, x γ + case = 4 ad Ju α Θ p θ Ka + 8 τ + Kx 9 Kx Kx Kx + 5 9π [Hx 3 + Kx Kx 6 Hx G g x, x ] γ 3 + ā + č4 Kx Kx č 3 3 + α Θ p θ Ka Kx 9 Kx + 86 Hx π 3 Kx Kx 6 Hx Kx Kx Kx Kx + 86 π Kx Hx Kx 3 case = 5 ad J τ u τ + c Kx c Kx + ā + č4 Kx Kx θ + α Θ p č 3 Ka 3 dx +, case 6 The costats appeag above ae defed by c = R c = c + + l + dx, c = c R 4 R + + dx
ad č 3 = 4 R + dx, č 4 = R + dx The dffeeces the above expessos fo = 5 ad 6 s caused by a dffeet decay of bubble fuctos causg stoge mutual teactos lowe dmeso Rema 6 Ude o-degeeacy codtos, Theoem has the followg mmedate mplcatos I case τ = thee ae o solutos of Ju = J u = V q, ε, cf Theoem 4 [3] I case τ > evey soluto J τ u = V q, ε satsfes q τ ad has solated smple blow-ups occug close to { { K = } { c K K + c 3H < } fo = 4 { K = } { K < } fo 5 3 The α, ad a s ae detemed to a pecso oτ 3 + O J τ u Ideed, fo eg = 6 τ + c Kx c Kx detemes up to the latte eo fom τ ad x, whece a s detemed as well by ā + č4 Kx Kx č 3 fom ad x, ad fally up to the multplcatve costat Θ also α s detemed by α Θ p θ Ka fom, a ad τ, ecallg θ = + τ ad p = τ As fo the multplcatve costat we have = τ = Kα ϕ + v p+ dµ g = Kα ϕ p+ = 3 Ka θ α p+ up to some oτ 3, cf 45, Lemma 4, Lemma ad 58, whece Kx c + c τ + c Kx = Θ p α Kx c + c τ + c Kx = Θ p+ θ p Ka c + c τ + c Kx Kx up to the same eo ad so the multplcatve costat Θ s detemed as well Poof of Theoem Fst we ote that τ = mples, that all the α do ot ted to fty ad least oe of them does ot appoach zeo Hece by defto of V q, ε all the α ae ufomly bouded away fom zeo ad fty Secodly, f fo some dex =,, q we have α α p+ K θ α p τ + s K + + ε,s, 5
the the clam follows fom Lemma 5, whece we may hecefoth assume that fo all =,, q α α p+ K θ α p = + O τ + K + + ε,s 6 s Thus we have to show J τ u τ + q = ad agug by cotadcto we may assume that J τ u τ + q = K K + + + s ε,s 6 + s ε,s The by Lemmata 5 ad 53 we have a J τ uφ 3, = α Juφ, = α α α č 3 K K + ˇb 3 c τ + c K K α α a ε, ; b α ε, α up to some eos of the fom O + Oτ + K 3 s + 4 H d 8, we have + ε +,s, whee we have to add fo to c K K case = 4 Odeg dces so that q q ad ecallg ad theefoe ε, = ε, = ε, + O 4 + + γ G g a, a + γ G g a, a + ε +, case < o d g a, a o 63 Fom a ad above we fd ufomly bouded vecto felds A, Λ o V q, ε such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; K α Λ J τ uλ c τ + c K + c 4 ε, + O α 3 + O τ + K + s 4 + ε +,s wth c 4 = b, ad combg X = Λ + ɛa wth some ɛ > small ad fxed such that we eep a postve coeffcet fot of ε,, we get C B = J τ ux c K K τ + c +ɛ K + ε, +O 3 +Oτ + K + s 4,s> +ε +,s Lewse fom a ad we fd ufomly bouded vecto felds A, Λ defed o V q, ε such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; 6
K α Λ J τ uλ c τ + c K + c 4 ε, + O α < 3 + ε, + O τ + K + s 4 ad combg them as X = Λ + ɛa wth ɛ > small we obta + ε +,s B = J τ ux c K K τ + c + ɛ K + ε, + O 3 + ε, + O τ + K < + s 4 Theefoe combg B ad B so that the coeffcet of ε, s postve C B + ɛb = + ε +,s [ ɛ c K τ + c + ɛ + K K + ] ε, + O + O τ 3 + K + s 4,s> Iteatvely, fo all =,, q we ca fd ufomly bouded vecto felds A, Λ such that A J τ ua K + O 3 + ε, + O τ + K + s 4 + ε +,s ; + ε +,s K α Λ J τ uλ c τ + c K + c 4 ε, + O α 3 + ε, + O τ + K < + > s 4 + ε +,s ; C ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + O + O τ 3 + K + s 4 + ε +,s, whee we have to add c 3 H to c K K case = 4, whee c 3 = d 64 I patcula C q ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + O τ + K + s 4 + ε +,s The, f ethe q τ + q = K + s ε,s o q τ + q = K + ε,s, s we obvously have 6 fom C q Thus we may assume q τ + q = K + ε,s, 65 s whece we may smplfy the above fomulas to A J τ ua K + O ε, + o ; q K α Λ J τ uλ c τ + c K + c 4 < α ε, + O > ε, + o ; q 7
C ɛ B = = [ ɛ c K τ + c + ɛ + K K + ] ε, + o, q addg c 3 H to c K K fo = 4 We fst cosde the pa q, q Suppose q = o q To pove 6 we the may assume fom C q ad 65 that also τ + s ε,s = o q, sce As the coeffcet of q ad theefoe, stll by 65, q ε, = = q s ε,s = s ε,s Λ q s o zeo by o-degeeacy, 6 follows So we may assume q q, K q q, K q q So, f a q s close to a q, these pots ae close to the same ctcal pot of K, whch, as K s Mose, mples da q, a q q q Ths howeve cotadcts the fact that by Poposto 3 ε q,q q q d a q, a q Theefoe fo the pa q, q we may assume K q, K q q q, ad da q, a q > c I patcula case 5 we have ε q,q = o q, wheeas case = 4 q ε q,q = G g a q, a q γ q q + O 4 q We tu to cosde the tple q, q, q Suppose that q assume fom C q ad 65 that τ + ε,s = o q s q = o q To get 6 we the may as well But the clealy case 5 we obta 6 fom Λ q o Λ q, sce ε q,q = o q s aleady ow I case = 4 we have to ague moe subtly Fom we fd Juφ,q = α q α K q c K q q + c 3 H q q α q G g a q, a q + c 4 α q γ q q ad Juφ,q = α q α K q H q α q G g a q, a q c K q + c 3 q + c 4 q α q γ q q 8
up to a eo of ode o q, cf 63 Obvously 6 the follows f ethe K q H q c K q + c 3 q q K q H q > o c K q + c 3 q > q We may thus assume both summads to be egatve Recallg 6, we the obta βq φ J τ u,q = β q φ,q up to a eo o q lettg q c K q Kq q + c 3 H q K q c 4 G a q,a q γ K q K q c 4 G a q,a q γ K q K q K α β = α fo = q, q, c K q K q + c 3 H q K q q q ad thus J τ u K q, sce othewse a q, a q close to x q, x q { K = } { c K + c 3H < } ad c M q,q = Kx q Kx q + c 3 Hx q Kx q c 4 G x q,x q γ Kx q Kx q c 4 G x q,x q γ Kx q Kx q c Kx q Kx q + c 3 Hx q Kx q would have afte a blow-up fo τ a vashg egevalue wth stctly postve egevecto, whch by Rema 6 s mpossble So 6 aga follows We may thus assume ad theefoe by 65 q q q K q q, K q q, K q q So, f a q s close to ethe a q o a q, these pots ae close to the same ctcal pot of K, whece ε q,q o ε q, as befoe, cotadctg Poposto 3 Thus fo q, q, q we may assume ad K q,, K q, K q q q q da q, a q, da q, a q, da q, a q > c aalogously to the pevous case of the pa q, I patcula case 5 wheeas case = 4 up to a eo O 4 q ε q,q, ε q,q, ε q,q = o, q q ε q,q = G g a q, a q γ q q, ε q,q = G g a q, a q γ q q, ε q,q = G g a q, a q γ q q Iteatvely, we the may assume fo all l =,, q K l ad da, a l > c 9
I patcula ε,l = o fo 5 ad ε,l = Gg a,a l q l K Λ J τ uλ c τ + c K + o q case 5 ad thus J τ u c K τ + c K up to some o q Theefoe 6 holds uless c τ + c K K Juφ, = α α c τ + c K K fo = 4 But the + c 3 H = o q, whle ow fo = 4 + c 4 α G g a, a α γ up to some o q, cf 63, fo all =,, q Obvously 6 the follows, f fo some =,, q c K K + c 3 H >, whece we may assume all these summads to be egatve, povg Fom ad 6 we the have τ K Juβ φ, = c + c K up to some o lettg as befoe β = α q c τ K q K K α + c 3 H K Theefoe + c 4 c τ K Ju dag,, M a,,a q q G g a, a γ K K q up to the same eo Ths mples that 6 holds tue, uless we ca solve c τ K c τ q K q = M a,,a q q + o q 66 ad we may aleady assume, by, that a s close to x { K = } { c K K + c 3H < } I patcula 6 follows case τ = by the o-degeeacy codto o K, povg I case τ >, wtg σ = τ, we fd passg to the lmt τ, that thee has to exst a soluto to c σ Kx σ q Kx q = M x,,x q I patcula, testg the above elato wth x = x x,,x q, cf Rema 6, we fd c x σ K = σ σ q x σ, 67 3
whee = x,,x q s the least egevalue of M x,,x q Thus ecessaly M x,,x q > Sce F σ = M x,,x q σ σ q σ σ q + c σ K s a sum of covex fuctos, thee exsts a uque ctcal pot of F satsfyg 67 Hece we have compaablty / τ le case 5 Thus v follows upo checg costats fo = 4, e c = + = ω4 ad R c = + l + + dx = 3ω 4 ; c R c = + dx = 3ω + 4 ; c R 3 c 3 = d = 4 + + = 4 3ω + 4 ; c R 4 c 4 = b = = 4 3ω 4, c R + + cf 74 fom the coespodg Lemma 5 We tu ext to I case 5 we may ow assume whch by Lemma 5 mples Note that α p c τ + c K K Now 6 follows, uless α p = o ad ε,l = o fo l, J τ u α α p+ K θ α p + o = Θ p θ K s modulo scalg the uque ad o-degeeate maxmum of α α α = α,, α q α p+ = p+ K α p+ θ p+ = Θ p θ K + o ad thee holds J τ u α θ Θ p K + o I case = 4 we may ewte Lemma 5 up to some o wth costat gve below as 68 J τ uφ, = α α `c α α p+ K `c K K K θ α p + `d H K + `b + α K α `c K K + `d G g a, a γ K K H K + `b G g a, a l γ K K l l l 69 usg 6 ad θ τ τ = + O l Moeove, up to a eo o thee holds α = α α α K α K = α 3 αk α α K K = K,
ad due to 66 ad c K K + c 3 c K K H K + c 4 + c 3 H K l + c 4 G g a, a l γ K K l l = M a,,a q G g a, a γ K K = M a,,a q q q e q = c = c up to some o We may theefoe cacel out the teacto tems 69 ad obta τ K τ K J τ uφ, = α α `c α + α p+ K θ α p K `c `b c K c 4 K `b `c c K c 4 K K + `d `b c 3 c 4 + `d `b c 3 H c 4 K H K 6 Checg costats fo = 4, e wth c = R dx + = ω4 `c = 8 dx R + = 6 3ω 4, `c = 8 + = 4 3ω 4 ; c R `d = 8 + = 4 3ω + 4, `b = 8 + = 44 3ω 4, c R cf 79 fom the coespodg Lemma 5, we the fd J τ u α K α p α p+ + K 8 K 6 H Note that settg θ E = 8 K K 6 H K c K K K R + + 6 H K 6 H K K K, + o thee holds E = O, o-degeeate maxmum of E K =, ad α p = Θ p θ K + E s modulo scalg the uque ad ad satsfes α = α,, α q α α p+ K +E,τ p+ = α, K θ +Eαp+ p+ α α p+ due to θ K p = K K θ α p =Θ p = θ α α p+ K p + θ K p + p+ p [ θ K + E = + E ] p + E K [ θ θ K + E ] p+ p p θ K p E + E θ = + E + o K p E 3 + O l Thus 6 follows uless, up to some o, J τ u α Θ p θ + K 8 K K 6 H K K 6 H K K 6 3
We have theefoe poved -v, whch wll be used fo showg the secod statemet of the poposto I ths case the eo tems Lemmata 5, 5 ad 53 ae of type o 3 + O J τ u Ths follows mmedately case 5, whle the tems ε +,s 3 case = 4, fo whch howeve the udelyg estmates ca be mpoved to deve a quadatc eo ε,s, cf [37] Let us fst teat the lowe bouds asg fom Lemma 53 I case 5 we fd fom the latte lemma K K Ka Kx J τ u č 3 + č 4 K K 3 č 3 + č 4 3 up to some o 3 ad theefoe, wtg a = exp gx ā, that J τ u ā + č4 Kx Kx + o č 3 3 Smlaly case = 4 we fd up to some o 3 K K J τ u č 3 + č 4 K K 3 + ˇb α a G g a, a 3 α γ Fom we have α = Θ θ p + O, whch by θ = τ ad τ due to v becomes α = Θ K + O l Thus, stll up to some o 3 J τ u Ka + č4 Kx č 3 3 + ˇb 3 K 3 x x G g x, x č 3 Kx γ K ā + č4 Kx Kx č 3 3 + ˇb 3 č 3 3 K 3 x Kx Kx x G g x, x γ, ad checg costats fom Lemma 53, cf 7, we have 4 dx dx č 3 = R + = 3ω 4, č 4 = + = ω 4, ˇb 8 dx 3 = = 4ω + + 4 We coclude that, up to some o 3 R ā + 3 Kx Kx + 8 K3 x J τ u 3 Kx Kx x Gg x,x γ fo = 4 6 ā + č4 č 3 Kx Kx fo 5 By ths, e ā = O, ad α = J τ u c τ + c Kx Kx 3 Θ K + O l we the fe fom Lemma 5 that up to some o 3 + b Kx Kx wth costats, cf above, gve fo = 4, 5 espectvely by c c = R + + dx R + + l c 3 c = d c = 4 b 3 c = c4 c = + dx =, 9 ; R + + + dx R + + l + R dx + + R + + l + 33 R G g x, x γ 9π ; dx =, 5 9π, dx =, 5 + d Hx
we coclude τ + J τ u τ + 9 Kx Kx Kx Kx + [ Hx + 5 9π [ Hx 3 τ + c c By smla easog, usg ā = O ad α = α K α p α p+ θ J τ u α K α p α p+ θ Kx G g x,x Kx Kx G g x,x Kx γ 3 + γ ] fo = 4 + ] fo = 5 63 fo 6 K K + 8 K K 6 H 9 K K Θ K + O l we fally have, up to some o 3 + 86 H π 3 α K α p α p+ θ K K 6 H K fo = 4 K K K + 86 H π K 3 fo = 5 K fo 6 Ths follows case 6 mmedately fom Lemma 5 ad fo = 4 by epeatg the agumets leadg to 69 ad 6, whle the case = 5 follows by agug as case = 4 usg 63 to cacel out the teacto tems whe passg fom 69 to 6 The agug as fo the passage fom 6 to 6 we fally obta that up to some o 3 α Θ p J τ u α Θ p θ K + 8 K K 6 H θ K 9 K K + 86 H π 3 α Θ p θ K K 6 H K fo = 4 K K K + 86 H π K 3 fo = 5 64 K K fo 6 Thus the secod statemet of the theoem follows fom combg 6, 63 ad 64 I [35] the ext esult wll be eeded Lemma 6 Fo evey u V q, ε thee holds J τ u τ + s K + + + α α p+ K θ α p + ε +,s + v Poof Recallg 4 we ca fd β, β = O ad ν H u p, ε, ν = such that J τ u β, J τ uφ, + β J τ uν, J τ uφ, + J τ uν Fom Lemmata 5, 5 ad 53 we the fd J τ uφ, τ +, q = K + + + α α p+ K θ α p + ε,s + J τ u, s wheeas fom Lemma 4 we have J τ uν = J τ α ϕ ν + O v = Oτ + Fom ths the clam follows K + + + s ε +,s + v 34
7 Appedx 7 Iteactos Poof of Lemma follows usg staghtfowadly the expesso of φ, α Case = We have φ, = ϕ fo =, ad thus fo c > small ϕ τ dµ g = u τ B ca a + γ G a O B c a oe has u τ a = + Oτ x a, ad by 7 3 fo = 3 γ G 4 fo = 4 a = + O 5 fo = 5 6 l fo = 6, 6 fo 7 θ dµ + O ga θ whece passg to omal coodates at a fo = 3 ϕ τ θ +θ dx dµ g = + θ + O fo = 4 +θ fo = 5 l 3+θ B c fo = 6 4+θ fo 7 4+θ β γ up to some eo O τ +θ, whece the clam follows wth c = R dx + Case = The poof wos aalogously to the oe of case = above Case = 3 We have φ, = u γ a Ga a + γg a ϕ + a ua ϕ, whece γ a G a x = x + O, 3, 4, 5 l, 5 fo = 3,, 6 ad 7 Moeove u a = + O a, mples a u a = O a Thus ϕ 4 τ φ, dµ g = R θ dx + + θ + O +θ θ fo = 3 θ fo = 4 + O 3 θ fo = 5 l fo = 6 4+θ 4 θ fo 7 Fom ths the clam follows We ust pove the case = ad stat showg that θ ϕ + τ ϕ dµ g = θ ϕ τ ϕ + dµ g 7 up to some O τ + θ 4 + +ε +,, so we may evaluate ethe of these tegals Clealy ϕ + τ ϕ dµ g = θ ϕ + τ B ca ϕ dµ g 35
up to a eo O up to O + θ, whece usg Lemma we fd ϕ + τ ϕ dµ g = θ B ca + ε +, Ideed we clealy have +, ad the dffeece fom L g ϕ to 4 ϕ + B ca α a ϕ β ϕ dµ g = B ca ϕ τ ϕ L g ϕ 4 dµ g = O ε +, ca be estmated by Lemma va quattes of the type α a ϕ + β ϕ + ϕ dµ g = O ε +, α ϕ + β, L +, thas to case v Passg bac to tegatg o the whole mafold M we fd, estmatg also mxed poducts of gadets of ϕ ad ϕ, θ + ϕ τ ϕ dµ g = + Oτ θ + O θ By dect calculato g ϕ τ = Oτϕ 4 θ ϕ + τ ϕ dµ g = θ ϕ g ϕ τ ϕ dµ g + O τ, whece B ca ϕ τ L g ϕ + + ε, ϕ τ L gϕ 4 dµ g + Oτ + Now applyg Lemma as befoe, but dffeetated fom, 7 follows Let R, = O τ + 4 + + ε +, deote a quatty such ode We ow assume the o-exclusve alteatve 4 dµ g + ε +, ε, ε, d a, a 7 Fo c > small ad fxed we have by the expesso 7 θ ϕ + τ ϕ dµ g = θ B ca + γ G a + θ u a u +τ a + γ G a whece passg to g a -omal coodates ad ecallg 7 we fd γ G a γ G a + dµ ga + R,, θ ϕ + τ ϕ dµ g = B c u a a + + θ γ G x a exp ga γ G a exp ga x + + γ G x a exp ga dµga 73 up to the eo R, Ideed fo eg 7 7 tells us that o B c + γ G a + θ = + θ 4 + + O = θ + + + + 36
cofomal omal coodates, whece by Hölde s equalty ad Lemma B ca a ϕ + τ Due to 7 we have that ethe ϕ dµ ga ϕ + ε, γ G ad fo ɛ > suffcetly small may expad o { } x A = ɛ γ G a a the tegad 73 as + γ G x a exp ga = + γ G a + + γ G a a a x + γ G a a + γ G a a τ, L + + a, a o ε, ε +,, ε+, = O +θ { } x ɛ B c γ G a exp ga x γ G a exp ga x + γ G a a γ G a a + γ G γ G a a γ G a a + a a x + γ G a a Usg adal symmety we the get, wth b = θ ϕ + ϕ dµ g = R b u a a + γ G a + dx + + O x + γ G a a a = b, up to eos of the fom R, ad I A c, whee I A c + + θ + γ G x a exp ga A c I case ε,, we obvously have I A c C + θ = oε +, γ G a a γ G a a + dµ ga Othewse we may assume A c, thus da, a, ad wte A c B B, whee { B = ɛ γ G a x } { E γ G a a ad B = E γ G a a x } c a fo a suffcetly lage costat E > We the may estmate I B = dµ + + θ B + γ G ga x a exp ga C + + γ G a a + θ { } x E γ Ga a + γ G a exp ga x dµ ga 37