Discriminantal arrangement

Σχετικά έγγραφα
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

The q-commutators of braided groups

Congruence Classes of Invertible Matrices of Order 3 over F 2

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

A summation formula ramified with hypergeometric function and involving recurrence relation

IUTeich. [Pano] (2) IUTeich

a11 a A V = v 1 = a 11 w 1 + a 12 w 2 + a 13 w 3 + a 14 w 4 v 2 = a 21 w 1 + a 22 w 2 + a 23 w 3 + a 24 w 4 (A 12, A 13, A 14, A 23, A 24, A 34 ) A 6.

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Wishart α-determinant, α-hafnian

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Sho Matsumoto Graduate School of Mathematics, Nagoya University. Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University

( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =

Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p

Homomorphism in Intuitionistic Fuzzy Automata

Jordan Form of a Square Matrix

Distances in Sierpiński Triangle Graphs

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-


Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Cyclic or elementary abelian Covers of K 4

The Jordan Form of Complex Tridiagonal Matrices

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Single-value extension property for anti-diagonal operator matrices and their square

Prey-Taxis Holling-Tanner

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

L p approach to free boundary problems of the Navier-Stokes equation

High order interpolation function for surface contact problem

On the Galois Group of Linear Difference-Differential Equations

Θεοδώρα Θεοχάρη Αποστολίδη

Homomorphism of Intuitionistic Fuzzy Groups

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV

Wavelet based matrix compression for boundary integral equations on complex geometries

ACHILLES DRAMALIDIS CV

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

THE INTERIOR C 2 ESTIMATE FOR PRESCRIBED GAUSS CURVATURE EQUATION IN DIMENSION TWO

TMA4115 Matematikk 3

Intuitionistic Fuzzy Ideals of Near Rings

The k-α-exponential Function

w o = R 1 p. (1) R = p =. = 1

Monica PURCARU 1. Communicated to: Finsler Extensions of Relativity Theory, August 29 - September 4, 2011, Braşov, Romania

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Example Sheet 3 Solutions

On Inclusion Relation of Absolute Summability

1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

A General Note on δ-quasi Monotone and Increasing Sequence

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Heisenberg Uniqueness pairs

New bounds for spherical two-distance sets and equiangular lines

Divergence for log concave functions

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.


Dispersive estimates for rotating fluids and stably stratified fluids

arxiv: v1 [math.sp] 29 Mar 2010

Biostatistics for Health Sciences Review Sheet

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

2 4 Έστω A= , οι υπο-πίνακες 2x2 είναι: η ορίζουσα είναι det. --> µε διαγραφή της 2 ης γραµµής:,,

Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN

ΧΛΟΥΒΕΡΑΚΗ ΜΑΡΙΑ ΕΚΠΑΙΔΕΥΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΜΠΕΙΡΙΑ

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

(10/ /2007) 2012.

Hecke Operators on the q-analogue of Group Cohomology

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

A Lambda Model Characterizing Computational Behaviours of Terms

ΟΛΥΜΠΙΑ ΛΟΥΣΚΟΥ ΜΠΟΖΑΠΑΛΙ ΟΥ. ιδάκτωρ Μαθηµατικών Αναπληρώτρια Καθηγήτρια ΤΕΙ υτικής Μακεδονίας ΒΙΟΓΡΑΦΙΚΟ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Global energy use: Decoupling or convergence?

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

SOME PROPERTIES OF FUZZY REAL NUMBERS

A research on the influence of dummy activity on float in an AOA network and its amendments

Generating Set of the Complete Semigroups of Binary Relations

Computer & Applied Sciences Complete ΟΔΗΓΟΣ ΧΡΗΣΗΣ

arxiv: v1 [math-ph] 4 Jun 2016

Diderot (Paris VII) les caractères des groupes de Lie résolubles

ΑΘΑΝΑΣΙΟΣ Ι. ΠΑΠΙΣΤΑΣ

DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

de Rham Theorem May 10, 2016

Transcript:

Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement 1989 Manin Schctman Braid arrangement discriminantal arrangement [12] A = {H 0 1, H0 2,..., H0 n} C k n (generic arrangement) C n C n discriminantal arrangement B(n, k) B(n, k) B(n, 1) ( [14]) arrangement [12], [1], [3] Zamolodchikov equation [7] [15] [12] Z combinatorics ( combinatorics n k ) B(n, k) Z 1994 Falk [5] [13] sect. 8, [14] [9] A Z discriminantal arrangement combinatorics A B(n, k) combinatorics A = {H 0 1, H0 2,..., H0 n} 1997 Bayer Brandt [3] discriminantal arrangement very generic non very generic Email:so.yamagata.math@gmail.com. The author is supported by The Ministry of Education, Culture, Sports, Science and Technology through Program for Leading Graduate School (Hokkaido University Ambitious Leader s Program )

very generic discriminantal arrangement 1999 Athanasiadeis [1] non very generic combinatorics 2016 Libgober Settepanella [11] [11] [10] combinatorics 2 2.1 F V F k A = {H 1, H 2,..., H n } (arrangement of hyperplanes) F C V (k 1)- H α = (α 1, α 2,..., α k ) F k 0 H H = {v V α v = 0}, α v = (α 1, α 2,..., α k ) (v 1, v 2,..., v k ) = α i v i. J = {v V α v = a, a C} V C k+1 k- P(V) = (V \ {0})/C V C k+1 H k- H = {P = [U] P(V) U H} 1 i k A A B A A A = {H 1, H 2,..., H n } V P(V) A V P(V) A generic arrangement 1 p n {H i1, H i2,..., H ip } A, p k dim(h i1 H i2,..., H ip ) = k p, {H i1, H i2,..., H ip } A, p > k H i1 H i2,..., H ip =.

p 1234 p 1256 p 3456 8 8888888 8 l 12 8888888 l 56 l 34 8 8888888 8 8888888 H 1 H 2 H 3 88888888 H 4 H 5 H 6 8 C 3 1: Intersection semilattice of L(A) (intersection poset) L(A) = { H B H B A}, x < y x y x < y x y Combinatorics semilattice lattice C 3 generic arrangementa = {H 1, H 2,..., H 6 } 1 l i j = H i H j p i jkl = l i j l kl 2.2 Discriminantal arrangement A = {H 0 1, H0 2,..., H0 n} C k generic arrangement H 0 1, H0 2,..., H0 n S(H 0 1,..., H0 n) (Hi 0 S ) n- H 1,..., H n i = 1,..., n H i Hi 0 = H i = Hi 0 S = {(H 1, H 2,..., H n ) H i H 0 i = or H i = Hi 0 (i = 1, 2,..., n)}.

S C n A S ([11]). Generic arrangement A generic arrangement S L = {i 1,..., i k+1 } [n] := {1,..., n} D L = {(H 1, H 2,..., H n ) S i j L [n], L =k+1 H i j } Discriminantal arrangement L {D L } L [n], L =k+1 B(n, k, A) Mannin Schectman [12]. Discriminantal arrangement normal vector Bayer Brandt [3]. Definition 2.1 (Bayer and Brandt [3]). A = {H 0 1, H0 2,..., H0 n} C k generic arrangement α 1, α 2..., α n H 0 1, H0 2..., H0 n normal vector normal vector section 2.1 (α 1, α 2..., α n ) (v 1, v 2..., v n ) = n α i v i. Discriminantal arrangement B(n, k, A) C n normal vector i=1 k+1 α L = ( 1) i det(α s1,..., αˆ si,..., α sk+1 )e si, (1) i=1 {s 1 < s 2 < < s k+1 } [n] {e j } 1 j n C n α L 0. C k P k \ H H 0 i H 0 i C k generic arrangement A = {H 1, H 2,..., H n } arrangement A = {H,1, H,2,..., H,n } i (i = 1, 2,..., n) H,i = H 0 i H A P k n- S Generic arrangement A Discriminantal arrangement B(n, k, A ) Discrimnantal arrangement combinatorics A [11] B(n, k, A) B(n, k, A ) A generic arrangement B(n, k, A ) combinatorics A A very generic, non very generic 2.3 good 3s-partition A(A ) s 2 n 3s s, n T = {L 1, L 2, L 3 } L i [n] L i = 2s, L i L j = s(i j), L 1 L 2 L 3 = ( L i = 3s) L 1 = {i 1,..., i 2s }, L 2 = {i s+1,..., i 3s }, L 3 = {i 1,..., i s, i 2s+1..., i 3s }. T = {L 1, L 2, L 3 } good 3s-partition. Lemma

Lemma 2.2 (Lemma 3.1 [11]). s 2, n = 3s, k = 2s 1 A = {H 0 1, H0 2,..., H0 n} C k generic arrangement [n] = [3s] good 3s-partition T = {L 1, L 2, L 3 } H s H,i, j = t L i L j H,t H,i, j H D L1 D L2 D L3 2. D Li B(n, k, A ) T = {L 1, L 2, L 3 } L 1 = {1, 2, 3, 4}, L 2 = {1, 2, 5, 6}, L 3 = {3, 4, 5, 6} good 6- partition I 1 = L 1 L 2, I 2 = L 2 L 3 I 3 = L 1 L 3 i I 1 H,i, j I 2 H,i k I 3 H,i H [11] dependent s 2, P 2s 2 generic arrangement A = {W,1,..., W,3s } [3s] partition I 1, I 2, I 3 P i = t I i W,t P 2s 2 A dependent {L 1, L 2, L 3 } good 3spartition I 1 = L 1 L 2, I 2 = L 1 L 3, I 3 = L 2 L 3 lemma 2.2 A dependent P k+1 ([n]) = {L [n] L = k + 1} k + 1 [n] A(A ) = (α L ) L Pk+1 ([n]) (2) D L normal vector α L A T (A ) α L, L T, T P k+1 ([n]) A(A ) 2.4 Gr(k, n) Gr(k, n) C n k- γ : Gr(k, n) P( k C n ) < v 1,..., v k > [v 1 v k ], [x] P( k C n ) γ(gr(k, n)) φ x : C n k+1 C n v v x k ker φ x =< v 1,..., v k > e 1,..., e n C n e I = e i1... e ik, I = {i 1,..., i k } [n], i 1 < < i k k C n x k C n x = β I e I = I [n] I =k 1 i 1 < <i k n β i1...i k (e i1 e ik ) (3)

β I C n e 1,..., e n P( k C n ) = P (n k) 1 φ x M x = (b i j ) ( n k+1) n I [n], I = k i I b i j = ( 1) i β I { j}\{i} b i j = 0 dim(ker φ x ) = k M x (n k + 1) (n k + 1) 0 ( [6]) (i 1,..., i k 1, j 0,..., j k ) k ( 1) l β i1...i k 1 j l β j0... ĵ l... j k = 0 (4) l=0 Remark 2.3. (1) α L M x I = L D L A(A ) = M x A(A ) det (α s1,..., αˆ si,..., α sk+1 ) β I, I = {s 1, s 2,..., s k+1 }\{s i } 2.5 C 3 generic arrangement A = {H 0 1, H0 2,..., H0 6 } normal vector α i = (a i1, a i2, a i3 ), 1 i 6 H t i i Hi 0 α i H t i i = Hi 0 + t i α i, t i C. T = {L 1, L 2, L 3 } [6] good 6-partition L 1 = {1, 2, 3, 4}, L 2 = {1, 2, 5, 6},L 3 = {3, 4, 5, 6} A T (A ) = α L1 α L2 α L3 β 234 β 134 β 124 β 123 0 0 = β 256 β 156 0 0 β 126 β 125, 0 0 β 456 β 356 β 346 β 345 a i1 a j1 a k1 β i jk = det a i2 a j2 a k2 a i3 a j3 a k3 A(A ) α 1 α 2 α i α j α i, α j (α i α i+1 ) α 3 α 4 α 5 α 6 α i α j H i H j α i α j H i H j ranka T (A ) = 2 rank(α i α i+1 ) = 2 ranka T (A ) = 2 codim (D L1 D L2 D L3 ) = 2 Lemma 2.2 H ti i H = H t 3 3 H t 4 4 H, H ti i H = H t 1 1 H t 2 2 H, H ti i H = H t 5 5 H t 6 6 H i L 1 L 2 i L 1 L 3 i L 2 L 3 H t i i Ht i+1 i+1 rank(α i α i+1 ) = 2 ( 2).

2: Picture of case B(6, 3, A 0 ) A T (A ) 2 A T (A ) 3 0. β i jk β 456 (β 134 β 256 β 234 β 156 ) = 0 β 156 (β 124 β 356 β 123 β 456 ) = 0 β 356 (β 134 β 256 β 234 β 156 ) = 0 (β 134 β 126 β 456 + β 124 β 156 β 346 ) = 0 β 346 (β 134 β 256 β 234 β 156 ) = 0 β 134 β 125 β 456 + β 124 β 156 β 345 = 0 β 345 (β 134 β 256 β 234 β 156 ) = 0 β 134 β 126 β 356 + β 123 β 156 β 346 = 0 β 256 (β 124 β 356 β 123 β 456 ) = 0 β 234 β 126 β 456 + β 124 β 256 β 346 = 0 and (β 134 β 125 β 356 + β 123 β 156 β 345 ) = 0 β 134 (β 125 β 346 β 126 β 345 ) = 0 (5) (β 234 β 125 β 456 + β 124 β 256 β 345 ) = 0 β 126 (β 124 β 356 β 123 β 456 ) = 0 (β 234 β 126 β 356 + β 123 β 256 β 346 ) = 0 β 125 (β 124 β 356 β 123 β 456 ) = 0 β 234 β 125 β 356 + β 123 β 256 β 345 = 0 β 234 (β 125 β 346 β 126 β 345 ) = 0 β 124 (β 125 β 346 β 126 β 345 ) = 0 β 123 (β 125 β 346 β 126 β 345 ) = 0 3 Gr(3, n) A section 2.5 C 3 6 generic arrangement a 11 a 12 a 13... A =... a 61 a 62 a 63 (6) Hi 0 A normal vector α i A generic A C 6 C 6 3

Gr(3, 6) A 0 3 β i jk A(A ) φ x : C 6 4 C 6 v v x, x = 1 i< j<k n β i jk (e i e j e k ). A dependent β i jk (5) : (d) : β 234 β 126 β 456 + β 124 β 256 β 346 = 0 (a) : β 134 β 256 β 234 β 156 = 0 (I) : (b) : β 124 β 356 β 123 β 456 = 0 (c) : β 125 β 346 β 126 β 345 = 0 (e) : β 234 β 125 β 456 + β 124 β 256 β 345 = 0 ( f ) : β 234 β 126 β 356 + β 123 β 256 β 346 = 0 (g) : β 234 β 125 β 356 + β 123 β 256 β 345 = 0 and (II) : (h) : β 134 β 126 β 456 + β 124 β 156 β 346 = 0 (i) : β 134 β 125 β 456 + β 124 β 156 β 345 = 0 ( j) : β 134 β 126 β 356 + β 123 β 156 β 346 = 0 (k) : β 134 β 125 β 356 + β 123 β 156 β 345 = 0. (a) (k) (a) β 134 β 256 β 234 β 156 = 0. (7) (a) Lemma Lemma 3.1 (Lemma 5.1 [10]). A C 3 n generic arrangement A(A ) {i 1, i 2,..., i 6 } [n] T = {L 1, L 2, L 3 } L 1 = {i 1, i 2, i 3, i 4 }, L 2 = {i 1, i 2, i 5, i 6 },L 3 = {i 3, i 4, i 5, i 6 } good 6-partition A(A ) β I ranka T (A ) = 2 A T (A ) 3 0 Remark 3.2. A C 3 n generic arrangement A(A ) ( n ) 4 n L = {s1 < s 2 < s 3 < s 4 } α L (x 1,..., x n ) x i j = ( 1) j β I j, I j = L \ {s j }, j = 1, 2, 3, 4 0 6 s 1 <... < s 6 [n] A(A ) ( 6 4) 6 α L, L {s 1,..., s 6 }, L = 4 s 1,..., s 6 ( (α L ) L {s1,...,s 6 }, L =4 j j {s 1,..., s 6 } 0. C 3 n n = 6 s 1 <... < s 6 [n] 6 T = {{s 1, s 2, s 3, s 4 }, {s 1, s 2, s 5, s 6 }, {s 3, s 4, s 5, s 6 }} good 6-partition {1,... 6}

{{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}} {s 1,..., s 6 } good 6-partition σ.t = {{i 1, i 2, i 3, i 4 }, {i 1, i 2, i 5, i 6 }, {i 3, i 4, i 5, i 6 }} (8) i j = σ(s j ), σ S 6 S 6 {s 1,..., s 6 } i j i j > i j+1 Lemma Lemma 3.3 (Lemma 5.3 [10]). A C 3 n generic arrangement σ.t = {{i 1, i 2, i 3, i 4 }, {i 1, i 2, i 5, i 6 }, {i 3, i 4, i 5, i 6 }} s 1 <... < s 6 [n] good 6-partition ranka σ.t (A ) = 2 A β i1 i 3 i 4 β i2 i 5 i 6 β i2 i 3 i 4 β i1 i 5 i 6 = 0. (9) Remark 3.2 Lemma 3.3 Theorem 3.4 (Theorem 5.4 [10]). C 3 dependent generic arrangement Gr(3, n) [1] C. A. Athanasiadis. The Largest Intersection Lattice of a Discriminantal Arrangement, Beiträge Algebra Geom., 40 (1999), no. 2, 283 289. [2] A. Bachemand and W. Kern, Adjoints of oriented matroids, Combinatorica 6 (1986) 299 308. [3] M. Bayer and K.Brandt, Discriminantal arrangements, fiber polytopes and formality, J. Algebraic Combin. 6 (1997), 229 246. [4] H.Crapo, Concurrence geometries, Adv. in Math., 54 (1984), no. 3, 278 301. [5] M. Falk, A note on discriminantal arrangements, Proc. Amer. Math. Soc., 122 (1994), no.4, 1221-1227. [6] Joe Harris, Algebraic Geometry: A First Course, Springer-Verlag. [7] M. Kapranov, V.Voevodsky, Braided monoidal 2-categories and Manin-Schechtman higher braid groups, Journal of Pure and Applied Algebra, 92 (1994), no. 3, 241 267. [8] Y. Kawamata, Shaeikukannokikagaku (Geometry in projective space), Asakura Publishing Co., Ltd. [9] R.J. Lawrence, A presentation for Manin and Schechtman s higher braid groups, MSRI pre-print (1991): http://www.ma.huji.ac.il/ ruthel/papers/premsh.html.

[10] S. Sawada, S. Settepanella and S. Yamagata, Discriminantal arrangement, 3 3minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n), C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1111-1120. [11] A. Libgober and S. Settepanella, Strata of discriminantal arrangements, arxiv:1601.06475. [12] Yu. I. Manin and V. V. Schectman, Arrangements of Hyperplanes, Higher Braid Groups and Higher Bruhat Orders, Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory in honor K. Iwasawa pp. 289-308. [13] P. Orlik, Introduction to arrangements, CBMS Regional Conf. Ser. in Math., 72, Amer. Math. Soc., Providence, RI, (1989). [14] P.Orlik,H.Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 300, Springer-Verlag, Berlin, (1992). [15] M. Perling, Divisorial Cohomology Vanishing on Toric Varieties, Documenta Math. 16 (2011), 209 251.