Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Σχετικά έγγραφα
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Κεφάλαιο 7: Η Θεωρία Πλεγμάτων στην Υπολογιστική Νοημοσύνη

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

Υπολογιστικά & Διακριτά Μαθηματικά

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

Θέματα Μεταγλωττιστών

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Μέρος ΙΙ. Τυχαίες Μεταβλητές

Κεφάλαιο 9: Αριθμοί Διαστημάτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Τάσσος Δήμου. Μεθοδολογίες και λυμένες ασκήσεις. Λυμένα θέματα συναρτήσεων-μέρος Α. Εύρεση μονοτονίας σε απλές συναρτήσεις

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Μαθηματική Ανάλυση Ι

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

Θεωρία Υπολογισμού και Πολυπλοκότητα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

x < A y f(x) < B f(y).

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

Περιεχόμενα. Πρόλογος 3

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

Y είναι τοπολογία. Αυτή περιέχει το και

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

f(x) = 2x+ 3 / Α f Α.

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

Υπολογιστικά & Διακριτά Μαθηματικά

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

HY118- ιακριτά Μαθηµατικά

ProapaitoÔmenec gn seic.

f I X i I f i X, για κάθεi I.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Συνδεσμολογίες αντιστάσεων. Αντιστάσεις σε σειρά Αντιστάσεις παράλληλα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

Περιεχόμενα. Πρόλογος 3

Υπολογιστικά & Διακριτά Μαθηματικά

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στοχαστικές Στρατηγικές

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Υπολογιστικά & Διακριτά Μαθηματικά

ΜΟΝΟΤΟΝΙΑ. Λυμένα Παραδείγματα. Παράδειγμα 1

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Κεφάλαιο 0: Εισαγωγή

Δομή της παρουσίασης

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

T Ш. κεφαλαιο1. οριο - συνεχεια συναρτησης. τ κεφαλαιο 1. κεφαλαιο 1. γ λυκειου. κεφαλαιο 1. κεφαλαιο 1. κεφαλαιο 1

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

Ω = { ω 1, ω 2,, ω ν } Δηλαδή το ενδεχόμενο Α είναι ένα υποσύνολο του δειγματικού χώρου Ω. Α Ω

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

5 Σύγκλιση σε τοπολογικούς χώρους

Υπολογιστικά & Διακριτά Μαθηματικά

Γενικά Μαθηματικά ΙΙ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

οριο - συνεχεια συναρτησης

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Να χαρακτηρίσετε ως σωστές (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις :

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Αλγεβρικές Υπερομάδες και Διαδρομές Ελαχίστου Μήκους σε Γραφήματα

Transcript:

Μάθημα 7β Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018

Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες σε Πλέγματα. Αριθμοί Διαστημάτων. 2

o Ασαφή Πλέγματα. o Επεκτάσεις σε Ιεραρχίες Πλεγμάτων. o Ενοποίηση Ανόμοιων Τύπων Δεδομένων.

Ασαφές πλέγμα (fuzzy lattice) καλείται μια τριάδα (L,, ), όπου (L, ) είναι ένα πλέγμα και (L L, ) είναι ένα ασαφές σύνολο τέτοιο, ώστε μ(x,y)=1, εάν και μόνο εάν x y. Tο ασαφές πλέγμα (L,, ) ασαφοποιεί τη δυαδική σχέση της διάταξης στο πλέγμα (L, ). 4

Έστω ένα πλέγμα (L, ). Ως (ασαφής) βαθμός διάταξης (fuzzy order) ορίζεται μια συνάρτηση : L L [0,1] η οποία ικανοποιεί τις παρακάτω δύο ιδιότητες: C1. u w (u,w) = 1. C2. u w (x,u) (x,w). (Συνέπεια) 5

Έστω ένα πλέγμα (L, ) με βαθμό διάταξης : L L [0,1]. Τότε η τριάδα (L,, ) είναι ένα ασαφές πλέγμα. Η χρησιμότητα της ύπαρξης ενός βαθμού διάταξης (σ) στο πλέγμα (L, ) είναι ότι μετασχηματίζει το (L, ) σε ασαφές πλέγμα. Έτσι επιτρέπει την ποσοτικοποιημένη σύγκριση δύο οποιονδήποτε στοιχείων του (L, ), είτε αυτά είναι συγκρίσιμα στοιχεία (δηλ., x y ή y x) είτε είναι μη-συγκρίσιμα στοιχεία (δηλ., παράλληλα, x y). 6

Κάθε χρήση μιας συνάρτησης βαθμού διάταξης (σ) ονομάζεται συλλογιστική ασαφών πλεγμάτων (ΣΑΠ) (fuzzy lattice reasoning (FLR)). Μια συνάρτηση βαθμού διάταξης (σ) υποστηρίζει δύο τύπους συλλογιστικής: τον γενικευμένο τρόπο που θέτει και τη συλλογιστική κατ αναλογία. 7

H συλλογιστική κατ αναλογία είναι ένας τύπος προσεγγιστικής συλλογιστικής (approximate reasoning) κατάλληλος για χειρισμό ελλιπούς γνώσης. Δοθέντων: (α) ενός συνόλου κανόνων ai ci, i {1,,L}, και (β) ενός αιτίου a0 τέτοιο ώστε a0 ai, i {1,,L}, επιλέγεται εκείνος ο κανόνας aj cj, ο οποίος μεγιστοποιεί τη συνάρτηση βαθμού διάταξης J = arg maxi {1,,L}σ(a0 ai). Έπεται το αποτέλεσμα cj. 8

Συνάρτηση τιμοδότησης στο πλέγμα (L, ) είναι μια πραγματική συνάρτηση v: L R που ικανοποιεί: v(x) + v(y) = v(x y) + v(x y) Μια συνάρτηση τιμοδότησης καλείται: μονότονη (monotone), αν και μόνον αν x y v(x) v(y) θετική (positive) αν και μόνον αν x y v(x) < v(y) 9

Εάν η συνάρτηση v: L [0,+ ) είναι θετικής τιμοδότησης στο πλέγμα (L, ) τότε οι συναρτήσεις: (α) σίγμα-συνένωση (sigma-join): (x,u) = v(u) / v(x u) (β) σίγμα-διατομή (sigma-meet): (x,u) = v(x u) / v(u) είναι (συναρτήσεις) βαθμού διάταξης. 10

Από συναρτήσεις θετικής τιμοδότησης σε (βασικά) πλέγματα προκύπτουν μετρικές καθώς και συναρτήσεις βαθμού διάταξης. Αν η συνάρτηση v: L R είναι θετικής τιμοδότησης σε ένα πλέγμα (L, ), τότε η συνάρτηση d: L L [0,+ ) με d(x,y) = v(x y) - v(x y) είναι μια μετρική. [Σημείωση: αν η συνάρτηση v είναι μονότονης τιμοδότησης τότε η συνάρτηση d είναι μια ψευδομετρική]. 11

Ένα πλέγμα (L, ) μπορεί να ισούται με το Καρτεσιανό γινόμενο Ν ενδεχομένως ανόμοιων βασικών (constituent) πλεγμάτων (L i, ), i=1,,n. Δηλαδή, μπορεί να είναι (L, ) = (L 1, ) (L N, ) όπου κάθε βασικό πλέγμα (L i, ), i=1,,n χαρακτηρίζεται από τη δική του σχέση διάταξης. 12

Πλέγματα Διαστημάτων Έστω [a,b], [c,d] δύο γενικευμένα διαστήματα (generalized intervals). Η διατομή και η συνένωση στο πλήρες πλέγμα (L L, ) υπολογίζονται, αντίστοιχα, ως: [a,b] [c,d]= [a c, b d] και [a,b] [c,d]= [a c, b d] 13

(Πλέγματα Διαστημάτων) Μετρική: Η συνάρτηση d:(l L, ) (L L, ) [0,+ ) με τύπο: d([a,b], [c,d])= v 1 ([a,b] [c,d])- v 1 ([a,b] [c,d]) =v(θ(a c))+v(b d)- v(θ(a c))-v(b d) = v(θ(a) θ(c))+v(b d)- v(θ(a) θ(c))-v(b d) Όπου, η σύνθετη συνάρτηση v ο θ είναι θετικής τιμοδότησης στο πλέγμα (L, ) και η συνάρτηση v 1 ([x,y])= v(θ(x))+ v(y) είναι θετικής τιμοδότησης στο πλέγμα (L L, ) των γενικευμένων διαστημάτων. 14

(Πλέγματα Διαστημάτων) Συναρτήσεις βαθμού διάταξης: Η συνάρτηση : (L L, ) (L L, ) [0,1] με τύπο ([a,b], [c,d]) = v1([c,d]) / v1([a,b] [c,d]) = [v(θ(c))+v(d)] / [v(θ(a c))+v(b d)] Για v1([a,b] [c,d]=0 [a,b]= =[c,d] είναι ([a,b],[c,d])=1 εξορισμού. 15

(Πλέγματα Διαστημάτων) Συναρτήσεις βαθμού διάταξης: Η συνάρτηση : (L L, ) (L L, ) [0,1] με τύπο ([a,b], [c,d]) = v1([a,b] [c,d]) / v1([a,b]) = [v(θ(a c))+v(b d)] / [v(θ(a))+v(b)] Για v1([a,b])=0 [a,b]= θεωρούμε ([a,b],[c,d])=1 εξορισμού. 16

Παράδειγμα 1 Παραδείγματα συνόλων που είναι πλέγματα: Πραγματικοί Αριθμοί. [Σημείωση: Μια γνησίως αύξουσα συνάρτηση v: R R είναι συνάρτηση θετικής τιμοδότησης στο πλέγμα (R, ). Μια γνησίως φθίνουσα συνάρτηση θ: R R είναι συνάρτηση δυικού ισομορφισμού στο (R, )]. Το μερικώς διατεταγμένο πλέγμα (F, ) όλων των πραγματικών συναρτήσεων που ορίζονται πάνω στο σύνολο R των πραγματικών αριθμών, όπου η σχέση f g ερμηνεύεται ως f(x) g(x), για κάθε x R. 17

Χώροι Μέτρου (Ω,Σ Ω,m ΣΩ ), όπου είναι ένα σύνολο, Σ Ω είναι μια -άλγεβρα του συνόλου και m ΣΩ είναι ένα μέτρο πάνω στη Σ Ω. Ένας Χώρος Πιθανότητας είναι μια ειδική περίπτωση Χώρου Μέτρου με m ΣΩ (Ω) = 1. 18

Έστω Ω το σύνολο των (αληθών/ψευδών) προτάσεων που ενδιαφέρουν σε μια συγκεκριμένη εφαρμογή και έστω Σ Ω το δυναμοσύνολό του. Μπορούμε να ορίσουμε ένα μέτρο, δηλ. μια συνάρτηση m ΣΩ : Σ Ω [0,+ ). Η τριάδα (Ω, Σ Ω, m ΣΩ ) είναι ένας χώρος μέτρου. 19

Άλγεβρα Boole (ή Β-άλγεβρα) είναι ένα πλέγμα μερικώς διατεταγμένο, πλήρες, φραγμένο, συμπληρωματικό και επιμεριστικό. (Σημείωση: Εδώ ο όρος άλγεβρα χρησιμοποιείται με την ευρεία έννοια μιας αλγεβρικής δομής). 20

Παράδειγμα 2 : Β-άλγεβρα Προτάσεις. Το σύνολο των (αληθών/ψευδών) προτάσεων. σύνολο {0,1} εφοδιασμένο με τις πράξεις,,, είναι η γνωστή άλγεβρα Boole ({0,1},,,,0,1), που χρησιμοποιείται στα λογικά κυκλώματα. Το Η δομή (2Ω,,,',, Ω), όπου Ω είναι ο πεπερασμένος δειγματικός χώρος ενός πειράματος τύχης και 2Ω το δυναμοσύνολο του Ω (το οποίο καλείται και άλγεβρα των ενδεχομένων). 21

Ένα δένδρο αναπαριστά ένα πλέγμα συνένωσης (join lattice), όπου κάθε ζεύγος κόμβων x και y έχει συνένωση x y, αλλά όχι διατομή x y. 22

c 15 επίπεδο-0 (ρίζα) c 13 c 14 επίπεδο-1 c 9 c 10 c 11 c 12 επίπεδο-2 επίπεδο-3 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 23

email: hatzane@teiemt.gr Τηλ. 693-815-1768 24