L p approach to free boundary problems of the Navier-Stokes equation

Σχετικά έγγραφα
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

High order interpolation function for surface contact problem

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

On a free boundary problem of magnetohydrodynamics in multi-connected domains

Free boundary problem for the Navier-Stokes equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation

Dispersive estimates for rotating fluids and stably stratified fluids

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D

D Alembert s Solution to the Wave Equation

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

A REGULARIZED TRACE FORMULA FOR A DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH DELAYED ARGUMENT

Sharp Interface Limit for the Navier Stokes Korteweg Equations

On the maximal L p -L q regularity of the Stokes problem with first order boundary condition; model problems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

An Essay on A Statistical Theory of Turbulence

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Fourier Analysis of Waves

Spherical Coordinates

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

On Lie Reduction of the MHD Equations to Ordinary Differential Equations

Eulerian Simulation of Large Deformations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Minimal Surfaces PDE as a Monge Ampère Type Equation

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Boundary value problems in complex analysis II

chatzipa

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Homework 8 Model Solution Section

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Linearized Lifting Surface Theory Thin-Wing Theory

3-dimensional motion simulation of a ship in waves using composite grid method

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Single-value extension property for anti-diagonal operator matrices and their square

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Tridiagonal matrices. Gérard MEURANT. October, 2008

Lifting Entry (continued)

Phase-Field Force Convergence

3.5 - Boundary Conditions for Potential Flow

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Homomorphism in Intuitionistic Fuzzy Automata

Parametrized Surfaces

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

X x C(t) description lagrangienne ( X , t t t X x description eulérienne X x 1 1 v x t

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Example Sheet 3 Solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

On the Galois Group of Linear Difference-Differential Equations

Space-Time Symmetries

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

W, W, W(r) = (1/4)(r 2 1), W (r) = r 3 r

Wishart α-determinant, α-hafnian

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Heisenberg Uniqueness pairs

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

arxiv: v1 [math-ph] 4 Jun 2016

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Regularization of the Cauchy Problem for the System of Elasticity Theory in R m

LOW REGULARITY SOLUTIONS OF THE CHERN-SIMONS-HIGGS EQUATIONS IN THE LORENTZ GAUGE

Forced Pendulum Numerical approach

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Second Order Partial Differential Equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

A summation formula ramified with hypergeometric function and involving recurrence relation

Oscillatory Gap Damping

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Prey-Taxis Holling-Tanner

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Computing the Gradient

Reminders: linear functions

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A DIRECT METHOD FOR BOUNDARY INTEGRAL EQUATIONS ON A CONTOUR WITH A PEAK

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

3+1 Splitting of the Generalized Harmonic Equations

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

..,.,

Transcript:

L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer, perturbed half-space. t > Ω t, Navier-Stokes t v + (v )v Div S(v, θ) = f(x, t) in Ω t, t >, div v = in Ω t, t >, S(v, θ)ν t = σhν t p ν t on Γ t, t >, v = on Γ b, t >, v t= = v in Ω, (1) v(x, t) = t (v 1,..., v n ) θ(x, t) (x Ω t ) Ω t = Γ t Γ b. ν t is the unit outward normal to Γ t, S(v, θ) = µd(v) θi is the stress tensor, D(v) = (D(v)) ij = v i / x j + v j / x i is the deformention tensor, H is the mean curvature: Hν t = Γ(t) x, µ > is the vicsous coefficient, σ > is the coefficient of surface tension, p > is the atmospheric pressure. 28 2 9

(1). Ω Γ b =, (1) drop. Ω x n perturbed infinite layer f(x, t) = g a x n (g a > ), (1) ocean. If Ω x n perturbed half-space f(x, t) = g a x n, Γ b =, (1) ocean. (1). drop, Solonnikov [11, 13, 14, 15] (1) W 2+l,1+l/2 2 (1/2 < l < 1, n = 3). Moglilevskiĭ-Solonnikov [3], Solonnikov [15] Hölder. σ =,, Solonnikov [12], Mucha and W. Zaj aczkowski [4, 5] Wq 2,1 (n < q < ), - [7, 8] Wq,p 2,1 (2 < p <, n < q < ). ocean, Allain [1] 2, [16], W 2+l,1+l/2 2 (1/2 < l < 1, n = 3). ocean, Prüss-Simonett[6] height function η η Wp 2,1 (p > n + 2)., drop, ocean, ocean (1),, W 2,1 q,p ( 2 < p <, n < q < ). Ω = Ω, Γ = Γ., u(ξ, t) Lagrange Euler Lagrange x = ξ + u(ξ, τ) dτ = X u (ξ, t) (2) f(x, t) = g a x n (1) Lagrange : t u Div S(u, π) = Div Q(u) + R(π) in Ω, t >, div u = E(u) = divẽ(u) in Ω, t >, (S(u, π) + Q(u))ν tu σhν tu = on Γ, t >, u = on Γ b, t >, u t= = u (ξ) in Ω. (3) θ(x u (ξ, t), t) = π(ξ, t), u (ξ) = v (x). ν tu = t A 1 ν / t A 1 ν A (2)

Jacobi a jk = x j u j = δ jk + dτ ξ k ξ k. Q(u), R(π), E(u) Ẽ(u) V j() = (j = 1, 2, 3, 4) : Q(u) = µv 1 ( E(u) = V 3 (. u dτ) u, R(π) = V 2 ( u dτ) u, Ẽ(u) = V 4 ( u dτ) π, u dτ)u. Theorem 1. Ω R n,,,, perturbed infinite layer, perturbed half-space. Γ Wq 3, Γ b Wq 2. 2 < p <, n < q <, 2(1 1/p) > 1 + 1/q. : div u = in Ω, D(u ) (D(u )ν, ν )ν = on Γ, u = on Γ b u Bq,p 2(1 1/p) (Ω) n = [L q (Ω), Wq 2 (Ω)] n 1 1/p,p, T > (3) u L p ((, T ), W 2 q (Ω)) n W 1 p ((, T ), L q (Ω)) n, π L p ((, T ), Ŵ 1 q (Ω)). π Γ = π Γ. π Hp 1/2 ((, T ), L q (Ω)) L p ((, T ), Wq 1 (Ω)) Remark 2. p, q. 2 < p < W 1 q ((, T ), L q (Ω)) L p ((, T ), W 2 q (Ω)) BUC ( (, T ), [L q (Ω), W 2 q (Ω)] 1 1/p,p ) (e.g. Amann [2]). [L q (Ω), Wq 2 (Ω)] 1 1/p,p = Bq,p 2(1 1/p) (Ω). 2 < p < Bq,p 2(1 1/p) (Ω) Wq 1 (Ω) W 1 q ((, T ), L q (Ω)) L p ((, T ), W 2 q (Ω)) BUC ( (, T ), W 1 q (Ω) )..

n < q < W 1 q (Ω) L (Ω). 2(1 1/p) > 1 + 1/q D(u ) (D(u )ν, ν )ν Γ. Γ η, (3) : t u µ u + π = f x Ω, t >, div u = f d = div f d x Ω, t >, t η ν u = d x Γ, t >, S(u, π)ν σ(m Γ )η ν = h x Γ, t >, u = x Γ b, t >, u t= =, η t= =. (4) m Γ. Theorem 1, (4) L p -L q. Theorem 3. Ω R n,,,, perturbed infinite layer, perturbed half-space. Γ W 3 q, Γ b W 2 q. 1 < p <, n 1 < q < (n 3 ), 2 q < (n = 2 ). : f d t= =, h t= =, f L p ((, T ), L q (Ω)) n, f d L p ((, T ), Wq 1 (Ω)), fd Wp 1 ((, T ), L q (Ω)) n, d L p ((, T ), Wq 2 (1/q) (Γ)), h Hp 1/2 ((, T ), L q (Ω)) n L p ((, T ), Wq 1 (Ω)) n (4) (u, π, η) u W 1 q ((, T ), L q (Ω)) n L p ((, T ), W 2 q (Ω)) n, π L p ((, T ), Ŵ 1 q (Ω)),. π Γ = π Γ. η W 1 p ((, T ), W 2 1/q q (Γ)) L p ((, T ), Wq 3 1/q (Γ)). π Hp 1/2 ((, T ), L q (Ω)) L p ((, T ), Wq 1 (Ω)). [1] G. Allain, Small-time existence for the Navier-Stokes equations with a free surface, Appl. Math. Optim., 16 (1987) 37 5.

[2] H. Amann, Linear and Quasilinear Parabolic Problems Vol. I Abstract Linear Theory, Monographs in Math., Vol 89, 1995, Birkhäuser Verlag, Basel Boston Berlin [3] I. Sh. Mogilevskiĭ and V. A. Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder spaces of functions, Nonlinear Analysis. A Tribute in Honour of Giovanni Prodi, Quaderni, Pisa (1991) 257 272. [4] P. B. Mucha and W. Zaj aczkowski, On the existence for the Cauchy-Neumann problem for the Stokes system in the L p -framework, Studia Mathematica, 143 (2) 75 11. [5] P. B. Mucha and W. Zaj aczkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion, Applicationes Mathematicae, 27 (2) 319 333. [6] J. Prüss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension, preprint. [7] Y. Shibata and S. Shimizu, On some free boundary problem for the Navier-Stokes equations, Differential Integral Equations, 2 (27), 241 276. [8] Y. Shibata and S. Shimizu, A On the L p -L q maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math. (Crelles Journal) 615 (28), 157 29. [9] V. A. Solonnikov, On the solvability of the second initial-boundary value problem for the linear nonstationary Navier-Stokes system, Zap. Nauchn. Sem. (LOMI), 69 (1977), 1388 1424 (in Russian); English transl.: J. Soviet Math., 1 (1978) 141 193. [1] V. A. Solonnikov, Solvability of a problem on the motion of a viscous incompressible fluid bounded by a free surface, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1388 1424 (in Russian); English transl.: Math. USSR Izv., 11 (1977) 1323 1358. [11] V. A. Solonnikov, Solvability of the evolution problem for an isolated mass of a viscous incompressible capillary liquid, Zap. Nauchn. Sem. (LOMI), 14 (1984) 179 186 (in Russian); English transl.: J. Soviet Math., 32 (1986) 223 238. [12] V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987) 165 187 (in Russian); English transl.: Math. USSR Izv., 31 (1988) 381 45. [13] V. A. Solonnikov, On nonstationary motion of a finite isolated mass of self-gravitating fluid, Algebra i Analiz, 1 (1989) 27 249 (in Russian); English transl.: Leningrad Math. J., 1 (199) 227 276. [14] V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval, Algebra i Analiz, 3 (1991) 222 257 (in Russian); English transl.: St. Petersburg Math. J., 3 (1992) 189 22. [15] V. A. Solonnikov, Lectures on evolution free boundary problems: classical solutions, L. Ambrosio et al.: LNM 1812, P.Colli and J.F.Rodrigues (Eds.), (23) 123-175, Springer-

Verlag, Berlin, Heidelberg. [16] A. Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface, Arch. Rat. Mech. Anal., 133 (1996) 299 331.