552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(

Σχετικά έγγραφα
Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Research on Economics and Management

High order interpolation function for surface contact problem

Buried Markov Model Pairwise

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Bayesian., 2016, 31(2): : (heterogeneity) Bayesian. . Gibbs : O212.8 : A : (2016)

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Lecture 7: Overdispersion in Poisson regression

ΔΙΑΓΩΝΙΣΜΟΣ ΥΠΟΨΉΦΙΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΣΕΠ (2002).ΜΕΛΕΤΗ ΕΠΙΔΟΣΕΩΝ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΓΙΑ ΤΟΝ ΚΛΑΔΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Bayesian modeling of inseparable space-time variation in disease risk

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

DOI /J. 1SSN

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Βιογραφικό Σημείωμα. Διεύθυνση επικοινωνίας: Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών

Κύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

ΠΑΡΑΡΤΗΜΑ 1 (4 ου ΜΑΘΗΜΑΤΟΣ): ΠΑΡΑ ΕΙΓΜΑΤΑ ΕΛΕΓΧΩΝ ΥΠΟΘΕΣΕΩΝ, ΕΠΙΛΟΓΗΣ ΜΟΝΤΕΛΩΝ ΚΑΙ ΜΕΤΑΒΛΗΤΩΝ

Congruence Classes of Invertible Matrices of Order 3 over F 2

Prey-Taxis Holling-Tanner

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Multilevel models for analyzing people s daily moving behaviour

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Summary of the model specified

Supplementary Appendix

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Γ.Α. ΠΝΕΥΜΑΤΙΚΟΥ ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ 1980 ΑΘΗΝΑ A. O. MORRIS

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Mantel & Haenzel (1959) Mantel-Haenszel

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Παναγιώτης Μερκούρης ΕΚΠΑΙΔΕΥΣΗ

Sparse Modeling and Model Selection

Η ΚΑΤΑΝΟΜΗ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΚΜΕΤΑΛΛΕΥΣΕΩΝ ΣΕ ΚΛΑΣΕΙΣ ΜΕΓΕΘΟΥΣ ΚΑΙ Η ΠΡΟΒΛΕΨΗ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΤΗΣ ΣΕ ΣΥΝΑΡΤΗΣΗ ΜΕ ΤΟ ΧΡΟΝΟ

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Biostatistics for Health Sciences Review Sheet

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Βιογραφικό Σημείωμα. Διδακτορικό Δίπλωμα, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης, Πανεπιστήμιο Πειραιά, 3/2009

FORMULAS FOR STATISTICS 1

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

Supporting Information

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.


[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

, -.

HMY 795: Αναγνώριση Προτύπων

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Applying Markov Decision Processes to Role-playing Game

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

ADT

Arbitrage Analysis of Futures Market with Frictions

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

5.1 logistic regresssion Chris Parrish July 3, 2016

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Research on model of early2warning of enterprise crisis based on entropy

MATHACHij = γ00 + u0j + rij

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Βιογραφικό Σημείωμα. Πατησίων 76, 10434, Αθήνα. Αριθμός Τηλεφώνου Γραφείου Ηλεκτρονικό Ταχυδρομείο

Kyriakou, Eupraxia. Neapolis University. þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

OLS. University of New South Wales, Australia

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Bayesian Discriminant Feature Selection

Zero Inflated Poisson Mixture Distributions

ΑΝΑΛΥΟΜΕΝΟ ΠΡΟΤΥΠΟ ΑΝΑΠΤΥΞΗΣ ΗΑΕΚΤΡΟΝΙΚΟΥ ΕΜΠΟΡΙΟΥ ΠΑ ΤΑ ΤΑΞΙΔΙΩΤΙΚΑ ΓΡΑΦΕΙΑ ΤΗΣ ΑΝΑΤΟΑΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

Quick algorithm f or computing core attribute

Η Διδακτική Ενότητα «Γνωρίζω τον Υπολογιστή», στα πλαίσια των Προγραμμάτων Σπουδών της Πληροφορικής: μια Μελέτη Περίπτωσης.

Stabilization of stock price prediction by cross entropy optimization

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

Transcript:

2012 10 Chinese Journal of Applied Probability and Statistics Vol.28 No.5 Oct. 2012 (,, 675000) Poisson,,, Gibbs, BIC.,. :,, Gibbs, BIC. : O212.8. 1. (count data), Poisson Poisson., (zeroinflation).,.,, ;,,.,, Fahrmeir Echavarría (2006) ; Yip Yau (2005) ; Xie (2009, 2008) Poisson Score ; Ghosh (2006).,.,,,,. [6]-[10],,,. (10BTJ001) (11171105). 2012 4 9, 2012 5 2.

552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp( λ)λ y /y!, y > 0, 0 < φ < 1,, φ = 0, ZIP Poisson. (2.1),, Y, y, i j, x, z, i = 1, 2,..., m, j = 1, 2,..., n i, N = m n i, Y ZIP(φ, λ ),, i=1 φ λ : ξ = log(λ ) = x T β + u i; ( φ ) η = log = z T 1 φ γ + v i, (2.2) β γ x z, u i v i,, u i v i, 0, σ 2 u, σ 2 v.,,, Lee (2006),, ZIP ξ = log(λ ) = β 0i + x T β 1i + ε (1), (2.3) β 0i = α 00 + wi T α 01 + u 0i, β 1i = α 10 + wi T α 11 + u 1i, (2.4) η = logit(φ ) = γ 0i + z T γ 1i + ε (2), (2.5)

: 553 γ 0i = δ 00 + wi T δ 01 + v 0i, γ 1i = δ 10 + wi T δ 11 + v 1i, (2.6) (2.3) (2.5), β 0i, γ 0i β 1i, γ 1i, ε (1), ε(2), N(0, σ2 1 ) N(0, σ2 2 ), (2.4) (2.6),, wi T = (w 1i,..., w pi ),,, u T i = (u 0i, u 1i ), v T i = (v 0i, v 1i ), u i N(0, Σ u ), v i N(0, Σ v ), Σ u Σ v. δ T 1 α = (α T 0, αt 1 ), αt 0 = (α 00, α 01 ), α T 1 = (α 10, α 11 ); δ = (δ T 0, δt 1 ), δt 0 = (δ 00, δ 01 ), = (δ 10, δ 11 ), (2.3)-(2.6) : ξ = Xβ + ε (1) ; η = Zγ + ε (2), β = W α + u; γ = W δ + v, ξ, η (2.3) (2.5),. 3. (2.7),,.,. 3.1 Ghosh (2006), Y Y = D (1 B ), B φ, D λ Poisson, Y (D, B ), (D, B ). Y = y, (D, B ) : y > 0, P (D = y, B = 0 Y = y ) = 1, y > 0, φ P (D = d ) P (D = d, B = 1 Y = y ) = φ + (1 φ )P (D = 0), (1 φ )P (D = 0) P (D = 0, B = 0 Y = y ) = φ + (1 φ )P (D = 0),

554 {Y = y : i = 1,..., m, j = 1,..., n i }, {D, B }, (D, B). 3.2 θ = (α, δ, σ 2, Σ), α, δ, σ 2 = (σ 2 1, σ2 2 ), Σ = (Σ u, Σ v ),,, π(θ) = π(α)π(δ)π(σ 2 )π(σ), π(α) N(0, Ω α ), π(δ) N(0, Ω δ ), Ω α = diag(σ 2 α), Ω δ = diag(σ 2 δ ), σ2 α σ 2 δ. π(σ2 ) Gamma, π(σ) Wishart, σ 2 1 Gamma(a 1, b 1 ), σ 2 2 Gamma(a 2, b 2 ), Σ 1 u Wishart(ρ, (ρr u ) 1 ), Σ 1 v Wishart(ρ, (ρr v ) 1 ), a 1, b 1, a 2, b 2, ρ, R u, R v.,, σ 2 α = σ 2 δ = 1000, a i = b i = 0.001 (i = 1, 2), R u = R v = I, I, ρ = 2. 3.3 Gibbs M-H, Gibbs : : (θ (0), u (0), v (0), ε (0) ), η (0) (2.5). φ (0) ) = exp(η(0) 1 + exp(η (0) ), : (θ (t), u (t), v (t), ε (t) ), (2.3) (2.5) φ (t) {y : i = 1,..., m, j = 1,..., n i }, (D (0), B(0) ) : D (t) y = 0, B (t) Poisson(λ (t) ); y > 0, B (t) = 0 D (t) = y. Bernoulli(φ (t) ), B(t) = 0, D (t) λ(t),, = 0;,

: 555 : (θ (t), u (t), v (t), ε (t) ) (D (t), B (t) ),, { P ((ε (1) ) (t+1) 1 } rest) exp 2(σ1 2)(t) (ξ(t) Xβ (t) ) T (ξ (t) Xβ (t) ), rest ε (1) θ u, v., { m P (β (t+1) rest) exp n i [D (t) i=1 j=1 ξ(t) exp(ξ(t) )] 1 2 (β(t) W α (t) ) T [Σ (t) u ] 1 (β (t) W α (t) ) P (u (t+1) rest) N(β (t) W α (t), Σ (t) u ), N ( P ((σ1 2 )(t+1) rest) Gamma( 2 + a 1, b 1 1 + 1 ) 1 ) 2 (ε(1) ) (t), ( ( m ) P (Σ (t+1) u rest) Wishart m + ρ, u (t) 1 i u (t)t i + ρr u ). { P ((ε (2) ) (t+1) 1 } rest) exp 2(σ2 2)(t) (η(t) Zγ (t) ) T (η (t) Zγ (t) ), { m P (γ (t+1) n i rest) exp [B (t) η(t) exp(η(t) )] i=1 j=1 i=1 1 2 (γ(t) W δ (t) ) T [Σ (t) v ] 1 (γ (t) W δ (t) ) P (v (t+1) rest) N(γ (t) W δ (t), Σ (t) v ), N ( P ((σ2 2 )(t+1) rest) Gamma( 2 + a 2, b 1 2 + 1 ) 1 ) 2 (ε(2) ) (t), ( ( m ) P (Σ (t+1) v rest) Wishart m + ρ, v (t) 1 i v (t)t i + ρr v )., P (ε (1) rest), P (ε (2) rest), P (β rest), P (γ rest), M-H, Gelman Rubin (1992),, α (t+1) δ (t+1) (2.7),, (θ (t+1), u (t+1), v (t+1), ε (t+1) ). :,. i=1 }, }, 3.4, Gelman & Rubin ( Gelman Rubin (1992)),,, Gibbs Bayes,,

556 {(θ (j), u (j), v (j), ε (j) ) : j = 1,..., J} ( Geyer (1992)), θ = 1 T T t=1 θ (t), Σu = 1 T t = 1,..., T. T t=1 u (t) u (t)t, Σv = 1 T,. 4.1 4. T v (t) v (t)t,, Johnson (2004), G( θ) = K [m k ( θ) Np k ] 2 /Np k, k=1 K, N, p k = 1/K, m k ( θ) k, θ. m k ( θ) : : {y : i = 1,..., m, j = 1,..., n i }, θ F (y θ), y [φ + (1 φ )e λ ] I(l=0)[ (1 φ )e λ λl l! l=0 t=1 ] I(l>0). : {y : i = 1,..., m, j = 1,..., n i }, u : y = 0, u U(0, F (0 θ)); y > 0, u U(F (y 1 θ), F (y θ)). : { k 1 m k ( θ) = K < u < k }, K i = 1,..., m, j = 1,..., n i, k = 1,..., K., K N 0.4., p-, P[χ 2 K 1 G( θ)], p- (K 1) χ 2, p-. 4.2 BIC : BIC = 2 log l( θ Y ) + log N Par,

: 557 log l( θ Y ) θ, Par. BIC,,., ZIP, ZIP, ZIP, Poisson (Hurdle Poisson Model), p- BIC. 5. McCullagh Nelder (1989),. 5.1 Lloyd 34 5,,,,..,, ZIP :, [y φ, λ ] ZIP(φ, λ ) log(λ ) = β 0i + β 1i t + ε (1) logit(φ ) = γ 0i + γ 1i t + ε (2), β mi = α m0 + 5 k=1 γ mi = δ m0 + 5 k=1 i = 1,..., 34, j = 1, 2,..., n i. x (1) ki α(1) mk + 4 x (2) li α (2) ml + 2 x (3) si α(3) ms + u mi l=1 s=1 m = 0, 1. x (1) ki δ(1) mk + 4 x (2) li δ (2) ml + 2 x (3) si δ(3) ms + v mi l=1 s=1 y i 5 j, t log, x (1) ki, x(2) li, x (3) si (k = 1,..., 5, l = 1,..., 4, s = 1, 2) 0 1, i (A, B, C, D, E), (Y 1,..., Y 4 ) (S 1, S 2 ). 5.2 ZIP, ZIP, ZIP, Poisson ( HPM), BIC, 1.

558 1 p- BIC ZIP ZIP ZIP HPM p- 0.673 0.198 0.519 0.028 BIC 12443.17 13209.08 13141.26 14532.83 1, ZIP p- BIC,, ZIP, ZIP HPM. ZIP 2. 2 ZIP Poisson logistic 2.116 0.180-3.472 0.163-1.565 0.214-10112 0.113 A 0.869 0.144 0.817 0.192 0.382 0.057 1.047 0.236 B -0.289 0.125 0.370 0.038-0.218 0.013 0.403 0.019 C -1.360 0.140 1.313 0.096 0.378 0.049 0.951 0.045 D -1.195 0.141-0.525 0.040 0.384 0.092 1.462 0.131 E 0.367 0.121 0.457 0.095-0.457 0.074 1.471 0.097 Y 1 1.504 0.129 1.462 0.269-0.767 0.165 0.645 0.042 Y 2 0.749 0.182 1.741 0.214 1.535 0.103 0.417 0.051 Y 3 1.623 0.142 0.658 0.254 0.292 0.083 0.499 0.156 Y 4-0.292 0.082 1.316 0.169-0.901 0.125 1.242 0.069 S 1 2.793 0.181 0.535 0.013-0.862 0.043 0.939 0.171 S 2-1.676 0.201 0.471 0.025 0.832 0.033 1.432 0.149 5.3 2, 0.2624 (φ 10,3 ) 0.1035 (φ 24,2 ), 0,,,. 2, 2 A, Y 2, S 1,, Poisson

: 559 β 02 = 2.116 + 0.869x (1) 0.749x (2) + 2.793x (3) = 5.029, β 12 = 3.472 + 0.817x (1) + 1.741x (2) + 0.471x (3) = 0.443. logist γ 02 = 1.721, γ 12 = 0.341, [ 1. 1 1 + exp( 1.721 + 0.341 1.2) ] exp(5.029 0.443 1.2) = 19.051. [1] Fahrmeir, L. and Echavarría, L.O., Structured additive regression for overdispersed and zero-inflated count data, Applied Stochastic Models in Business and Industry, 22(4)(2006), 351 369. [2] Yip, K.C.H. and Yau, K.K.W., On modeling claim frequency data in general insurance with extra zeros, Insurance: Mathematics and Economics, 36(2)(2005), 153 163. [3] Xie, F.C., Wei, B.C. and Lin, J.G., Score test for zero-inflated generalized Poisson mixed regression models, Computational Statistics & Data Analysis, 53(9)(2009), 3478 3489. [4] Xie, F.C., Wei, B.C. and Lin, J.G., Assessing influence for pharmaceutical data in zero-inflated generalized Poisson mixed models, Statistics in Medicine, 27(8)(2008), 3656 3673. [5] Ghosh, S.K., Mukhopadhyay, P. and Lu, J.C., Bayesian analysis of zero-inflated regression models, Journal of Statistical Planning and Inference, 136(4)(2006), 1360 1375. [6] Afshartous, D. and Michailidis, G., Distributed multilevel modeling, Journal of Computational and Graphical Statistics, 16(4)(2007), 901 924. [7] Gelman, A., Multilevel (hierarchical) modeling, Technometrics, 48(3)(2006), 432 435. [8] Crainiceanu, C.M., Staicu, A.M. and Di, C.Z., Generalized multilevel functional regression, Journal of the American Statistics Association, 104(488)(2009), 1550 1561. [9] Dunson, D.B., Bayesian nonparametric hierarchical modeling, Biometrical Journal, 51(2)(2009), 273 284. [10] Di, C.Z. and Roche, K.B., Multilevel latent class models with dirichlet mixing distribution, Biometrics, 67(1)(2011), 86-96. [11] Lee, A.H., Wang, K., Scott, J.A., Yau, K.K.W. and Mclachlan, G.J., Multi-level zero-inflated Poisson regression modeling of correlated count data with excess zeros, Statistical Methods in Medical research, 15(1)(2006), 47 61. [12] Gelman, A. and Rubin, G.O., Inference from iterative simulation using multiple sequences, Statistical Science, 7(4)(1992), 457 472. [13] Geyer, C.J., Practical Markov chain Monte Carlo, Statistical Science, 7(4)(1992), 473 483. [14] Johnson, V.E., A Bayesian χ 2 test for goodness-of-fit, The Annals of Statistics, 32(6)(2004), 2361 2384.

560 [15] McCullagh, P. and Nelder, J.A., Generalized Linear Models (2nd Edition), Chapman and Hall, 1989. Bayesian Inference of Hierarchical Regression Model for Zero-Inflated Clustered Count Data Shi Hongxing (School of Primary Education, Chuxiong Normal University, Chuxiong, 675000 ) Zero-inflated Poisson (ZIP) regression model is a popular tool for analyzing count data with excess zeros. In this paper, a flexible hierarchical ZIP regression model is proposed to handle with such data with cluster and Bayesian approach is develop. A Gibbs sampler is employed to produce the Bayesian estimate, a goodness-of-fit and a Bayesian information criterion (BIC) are used for model comparison and selection. Finally, an application of data from a ship damage incident study illustrates the proposed method. Keywords: Zero-inflation, hierarchical regression model, Gibbs sampler, BIC. AMS Subject Classification: 62F15.