Assignment 1 Solutions Complex Sinusoids

Σχετικά έγγραφα
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Sampling Basics (1B) Young Won Lim 9/21/13

Spectrum Representation (5A) Young Won Lim 11/3/16

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Second Order RLC Filters

Ψηφιακή Επεξεργασία Φωνής

CT Correlation (2B) Young Won Lim 8/15/14

LTI Systems (1A) Young Won Lim 3/21/15

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

Section 8.3 Trigonometric Equations

0 Τα ηλεκτρικά κυκλώματα ως συστήματα Παράδειγμα Ηλεκτρ. Συστήματος πρώτης τάξης: κύκλωμα «RC» με Εξοδο

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework 8 Model Solution Section

Example Sheet 3 Solutions


Probability and Random Processes (Part II)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

3 Frequency Domain Representation of Continuous Signals and Systems

Digital Signal Octave Codes (0B)

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

Επεξερασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #09

Numerical Analysis FMN011

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6.003: Signals and Systems. Modulation

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

10.7 Performance of Second-Order System (Unit Step Response)

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Εισαγωγή στην αναπαράσταση και επεξεργασία σημάτων συνεχούς και διακριτού χρόνου με Matlab

Lecture 12 Modulation and Sampling

Differential equations

Σήματα και Συστήματα ΙΙ

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Συστήματα Αυτομάτου Ελέγχου

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

= 0.927rad, t = 1.16ms

Matrices and Determinants

Αθανάσιος Σκόδρας /

The challenges of non-stable predicates

PARTIAL NOTES for 6.1 Trigonometric Identities

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Ηλεκτρονικοί Υπολογιστές IV

Chapter 6 BLM Answers

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Fundamentals of Signals, Systems and Filtering

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Reminders: linear functions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

Παρουσίαση 5 η : Εισαγωγή στα σήματα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

x j (t) = e λ jt v j, 1 j n

Oscillatory Gap Damping

Fourier Series. Fourier Series

Lifting Entry (continued)

Concrete Mathematics Exercises from 30 September 2016

Ψηφιακή Επεξεργασία Φωνής

2 Composition. Invertible Mappings

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Homework 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: ιαγράµµατα Nyquist & Nichols

Eight Examples of Linear and Nonlinear Least Squares


BandPass (4A) Young Won Lim 1/11/14

M files RCL Κυκλώματα

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Inverse trigonometric functions & General Solution of Trigonometric Equations

Approximation of distance between locations on earth given by latitude and longitude

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 17

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 14

ιασυνδέσεις Συστηµάτων µε το Πρόγραµµα MATLAB

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Γεράσιµος Ποταµιάνος. Αναπλ. Καθηγητής, Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Πανεπιστήµιο Θεσσαλίας

Math221: HW# 1 solutions

Srednicki Chapter 55

If we restrict the domain of y = sin x to [ π 2, π 2

The Simply Typed Lambda Calculus

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΚΑΙ ΣΥΝΕΛΙΞΗ ΣΤΟ ΠΕ ΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ

Forced Pendulum Numerical approach

Solutions to Exercise Sheet 5

Monolithic Crystal Filters (M.C.F.)

What happens when two or more waves overlap in a certain region of space at the same time?

Σήματα και Συστήματα στο Πεδίο της Συχνότητας

Transcript:

Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos( 2π n) No. 5 b. x[n] =5Yes. c. x(t) =e.3t cos(2πn) No. d. x(t) =e.3t Yes. e. x(t) =e.3t u(t) No. f. x(t) =e j.3t Yes. g. x[n] =e.3n u[n] No. h. x[n] =( ) n Yes. i. x(t) = sin(.3t) No. 2. Periodic Signals. Which of the following signals are periodic? For each of the periodic signals, solve for the fundamental period. a. x[n] =cos( 2π n) Yes, N =5. 5 b. x[n] =cos(π 8 n) Yes, N =3. 3 c. x[n] =cos(π 2 n) Yes, N =32. 64 d. x(t) =e.3t cos(2πt) No. e. x(t) =e.3t No. f. x(t) =e.3t u(t) No. g. x(t) = cos(.3t)u(t) No.

h. x(t) =e j.3t Yes, T = 2π..3 i. x[n] =e.3n u[n] No. j. x[n] =e j.3n u[n] No. k. x[n] =e j.3n No. l. x[n] =e j.3πn Yes, N = 2. m. x(t) = sin(.3t) Yes, T = 2π..3 n. x[n] =cos(.3n) No. 3. Complex Sinusoids. Use Euler s identity to express each of the following signals as a sum of complex sinusoids. a. x[n] =3+2cos(.πn)+4sin(.2πn) x[n] =3+e j.πn +e j.πn 2je j.2πn +2je j.2πn. b. x(t) = 3 + 2 cos(53t) + 4 cos(7t) x(t) =3+e j53t +e j53t +2e j7t +2e j7t. 4. LTI System Processing with Complex Sinusoids. Suppose the impulse response of a system is given by h(t) =e.3t u(t). a. What is the transfer function H(s) of this system? H(s) = s +.3 b. Plot the magnitude and phase response (Bode plot) of this system with MATLAB. Magnitude (db) 3 2 Phase (degrees) 2 4 6 8 3 2 Frequency (rad/sec) 2

c. What steady-state output of this system when the input signal x(t) =e j2πt is applied? y(t) =e j2πt H(s) s=j2π =.53e j(2πt.58) d. What is the fundamental period of the input signal? T =ms. e. Plot the real and imaginary parts of the output signal with MATLAB..5 Real (unitless).5.2.4.6.8. Imaginary (unitless).5.5.2.4.6.8. Time (s) f. What is the steady-state output of this system when the input signal x(t) =3+2cos(53t) + 4 cos(7t) is applied? y(t) = 3H() + 2 H(j53) cos (53t + H(j53)) + 4 H(j7) cos (7t + H(j7)) =3+.38 cos (53t.552) +.37 cos (7t.56) g. Plot the output signal with MATLAB. 3

Input 8 6 4 2..2.3.4.5 3.5 Output 3 2.95..2.3.4.5 Time (s) h. Is the output signal a scaled version of the input signal, y(t) =αx(t)? Why or why not? No, because the input signal is not an eigenfunction (complex exponential or sinusoid). function [] = LTISystems() sys = tf(,[.3]); % Create a MATLAB representation of the system % Bode Plot omega = logspace(log(.3)-2,log(.3)+2); [magnitude,phase,omega] = bode(sys,omega); magnitude = squeeze(magnitude); phase = squeeze(phase); FigureSet(,5); subplot(2,,); h = loglog(omega,magnitude, r ); set(h, LineWidth,.5); xlim([ omega(end)]); ylim([.5*min(magnitude) 2*max(magnitude)]); ylabel( Magnitude (db) ); subplot(2,,2); h = semilogx(omega,phase, r ); set(h, LineWidth,.5); xlim([ omega(end)]); ylim([min(phase)- max(phase)+]); ylabel( Phase (degrees) ); xlabel( Frequency (rad/sec) ); AxisSet; print( LtiSystems-BodePlot, -depsc ); % Response to a Complex Sinusoid t = :.:.; omega = 2*pi; 4

x = exp(j*omega*t); H = /(+.3*j*omega); y = H*x; fprintf( Frequency:%5.3f rad/s Magnitude:%5.3f Angle:%5.3f\n,omega,abs(H),angle(H)); FigureSet(,5); subplot(2,,); h = plot(t,real(y)); set(h, LineWidth,.); xlim([t() t(end)]); ylim([min(real(y)) max(real(y))]); ylabel( Real (unitless) ); subplot(2,,2); h = plot(t,imag(y)); set(h, LineWidth,.); xlim([t() t(end)]); ylim([min(imag(y)) max(imag(y))]); ylabel( Imaginary (unitless) ); xlabel( Time (s) ); AxisSet; print( LtiSystems-ComplexSinusoidResponse, -depsc ); % Response to a Linear Combination of Real Sinusoids t = linspace(,5*2*pi/53,) ; % Include 5 periods of the lowest non-zero frequency omega = [ 53 7]; % Vector of frequencies amplitude = [3 2 4]; % Vector of amplitudes H =./(+j*omega); x = zeros(length(t),); y = zeros(length(t),); for c=:length(omega) HMagnitude = abs(h(c)); HPhase = angle(h(c)); x = x + amplitude(c) *cos(omega(c)*t ); y = y + amplitude(c)*hmagnitude*cos(omega(c)*t+hphase); fprintf( Output Frequency:%5.3f Amplitude:%5.3f Phase:%5.3f\n,omega(c),amplitude(c)*HMagnitude,HPhase); end FigureSet(,5); subplot(2,,); h = plot(t,x, b ); set(h, LineWidth,.); xlim([t() t(end)]); ylim([min(x) max(x)]); ylabel( Input ); subplot(2,,2); h = plot(t,y, b ); set(h, LineWidth,.); xlim([t() t(end)]); ylim([min(y) max(y)]); ylabel( Output ); xlabel( Time (s) ); AxisSet; print( LtiSystems-SinusoidsResponse, -depsc ); 5. Discrete-Time Harmonics. a. Plot the real and imaginary parts of e jk 2π 7 n for k =,,...,4. 5

Re. Im. 5 5 5 5 Re. Im. 5 5 5 5 Re. 2 Im. 2 5 5 5 5 Re. 3 Im. 3 5 5 5 5 Re. 4 Im. 4 5 5 5 5 Re. 5 Im. 5 5 5 5 5 Re. 6 Im. 6 5 5 5 5 Re. 7 Im. 7 5 5 5 5 Re. 8 Im. 8 5 5 5 5 Re. 9 Im. 9 5 5 5 5 Re. 5 5 Im. 5 5 Re. 5 5 Im. 5 5 Re. 2 5 5 Im. 2 5 5 Re. 3 5 5 Im. 3 5 5 Re. 4 5 5 Im. 4 5 5 b. Which harmonics are the same? k = {, 7, 4}, {, 8}, {2, 9}, {3, }, {4, }, {5, 2}, {6, 3} c. Repeat for e jk 2π 7 t for k =,,...,4 6

Re. Im. 5 5 5 5 Re. Im. 5 5 5 5 Re. 2 Im. 2 5 5 5 5 Re. 3 Im. 3 5 5 5 5 Re. 4 Im. 4 5 5 5 5 Re. 5 Im. 5 5 5 5 5 Re. 6 Im. 6 5 5 5 5 Re. 7 Im. 7 5 5 5 5 Re. 8 Im. 8 5 5 5 5 Re. 9 Im. 9 5 5 5 5 Re. 5 5 Im. 5 5 Re. 5 5 Im. 5 5 Re. 2 5 5 Im. 2 5 5 Re. 3 5 5 Im. 3 5 5 Re. 4 5 5 Im. 4 5 5 d. Which harmonics are the same? None. Continuous-time complex sinusoidal harmonics are all distinct from one another. function [] = ComplexSinusoidHarmonics N = 7; % Fundamental period 7

K = 4; % Highest harmonic n = -2*N:2*N; FigureSet(,7,9); for c=:k x = exp(j*c*2*pi/n*n); hold on; subplot(k+,2,2*c+); h = stem(n,real(x)); set(h, Marker,. ); xlim([n()-.5 n(end)+.5]); ylim([-.5.5]); ylabel(sprintf( Re. %d,c)); subplot(k+,2,2*c+2); h = stem(n,imag(x)); set(h, Marker,. ); xlim([n()-.5 n(end)+.5]); ylim([-.5.5]); ylabel(sprintf( Im. %d,c)); end hold off; AxisSet(6); print( ComplexSinusoidHarmonics-DiscreteTime, -depsc ); t = linspace(-2*n,2*n,); FigureSet(2,7,9); for c=:k x = exp(j*c*2*pi/n*t); hold on; subplot(k+,2,2*c+); plot(t,real(x)); xlim([t() t(end)]); ylim([-.5.5]); ylabel(sprintf( Re. %d,c)); subplot(k+,2,2*c+2); plot(t,imag(x)); xlim([t() t(end)]); ylim([-.5.5]); ylabel(sprintf( Im. %d,c)); end hold off; AxisSet(6); print( ComplexSinusoidHarmonics-ContinuousTime, -depsc ); 8