x xn w(x) = 0 ( n N)

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Asymptotics for Christoel functions

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

A General Note on δ-quasi Monotone and Increasing Sequence

The Spiral of Theodorus, Numerical Analysis, and Special Functions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))


Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

The circle theorem and related theorems for Gauss-type quadrature rules

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Single-value extension property for anti-diagonal operator matrices and their square

Computing the Macdonald function for complex orders

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

The k-α-exponential Function

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Wishart α-determinant, α-hafnian

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Homomorphism in Intuitionistic Fuzzy Automata

On the Galois Group of Linear Difference-Differential Equations

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Example Sheet 3 Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

ST5224: Advanced Statistical Theory II

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο

X g 1990 g PSRB

Heisenberg Uniqueness pairs

Congruence Classes of Invertible Matrices of Order 3 over F 2

A summation formula ramified with hypergeometric function and involving recurrence relation

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets


Markov chains model reduction

Local Approximation with Kernels

D Alembert s Solution to the Wave Equation

Approximation of Entire Functions of Slow Growth 1

Wavelet based matrix compression for boundary integral equations on complex geometries

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Το ϑεώρηµα του Muntz

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Orthogonal systems and semigroups

arxiv: v1 [math.ca] 16 Dec 2018

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The k-bessel Function of the First Kind

Inverse trigonometric functions & General Solution of Trigonometric Equations

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Stabilization of stock price prediction by cross entropy optimization

Homework for 1/27 Due 2/5

Θέματα Αρμονικής Ανάλυσης

Θεωρία μέτρου και ολοκλήρωσης

Divergence for log concave functions

Statistical Inference I Locally most powerful tests

Introduction to Risk Parity and Budgeting

PROPERTIES OF SCALES OF KATO CLASSES, BESSEL POTENTIALS, MORREY SPACES, AND A WEAK HARNACK INEQUALITY FOR NON-NEGATIVE SOLUTIONS OF ELLIPTIC EQUATIONS

Riemann Hypothesis and Euler Function

Fractional Colorings and Zykov Products of graphs

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

LTI Systems (1A) Young Won Lim 3/21/15

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Ψηφιακή Επεξεργασία Φωνής

= df. f (n) (x) = dn f dx n

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

High order interpolation function for surface contact problem

ECE 468: Digital Image Processing. Lecture 8


Uniform Convergence of Fourier Series Michael Taylor

SOME PROPERTIES OF FUZZY REAL NUMBERS

Numerical Analysis FMN011

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Probabilistic Approach to Robust Optimization

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Supplementary Materials: Proofs

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Other Test Constructions: Likelihood Ratio & Bayes Tests

F19MC2 Solutions 9 Complex Analysis

SPECIAL FUNCTIONS and POLYNOMIALS

Transcript:

( ). Wierstrass Bernstein ([]) lim x xn w(x) = 0 ( n N) R w fw C 0 (R) lim (f P n)w L n (R) = 0 {P n } w Bernstein 950 ([5], [8] ) 970 Freud Freud weights w α (x) = exp( x α ) ([3] ) α Bernstein w α Christoffel infinite-finite range inequality x n w α (x) q n = (n/α) /α Freud number α > n P n (.) P n w α L p (R) C P n w α L p (J n) J n := [ C 2 q n, C 2 q n ] C, C 2 n N p w F(C 2 +) ( ) 984 Rakhmanov ([4]) Mhaskar-Saff ([0], []) (.) w F(C 2 +) Q(x) := log(/w(x)) w(x) = exp( Q(x)) 2 Q n N (.2) 2 π 0 a n tq (a n t) dt = n t 2 ( :5K04939) 200 Mathematics Subject Classification: 4A0, 4A7, 30E0, 42C05, 3A5 polynomial approximation, Freud type weights, Erdös type weights, Favard inequality, Markov-Bernstein inequaliy, de la Vallée Poussin mean 468-8502 -50 e-mail: suzukin@meijo-u.ac.jp web: http://ccmath.meijo-u.ac.jp/~suzukin/ breakthrough randam matrix P. Deift, T. Kriecherbauer and K.T-R. MacLaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field, J. Approx. Theory, 95 (998), 388-475 2 Q external field( ) log z u log( z u w(z)w(u)) weighted potential theory Q potential theory with external field

a n w Mhaskar-Rakhanov-Saff number (MRS number) {a n } n P n (.3) P n w L (R) P n w L ( x a n ) p < (.4) P n w L p (R) 2 P n w L p ( x a n ) Freud weight w α MRS number ( ) /α α 2 Γ(α/2)2 a n = 2 n /α Γ(α) F(C 2 +) w(x) = exp( Q(x)) (.5) T (x) := xq (x) Q(x) Freud Erdös Freud weight w α (α > ) Freud Erdös w(x) = exp( x α (e x )) P n n p fw L p (R) (.6) E p,n (w, f) := inf P P n (f P )w L p (R) Freud (.7) E p,n (w, f) C a n n E p,n (w, f ) (Jackson-Favard ) (.8) P w L p (R) C n a n P w L p ( x a n) ( P P n ) (Markov-Bernstein ) (.9) (f v n (f))w L p (R) CE p,n (w, f) (v n (f) de la Vallée Poussin ) ([9] ) Erdös T w Erdös (.7) (.8) (.9) P w C n P w L L p (R) a p ( x a n), (f v n(f)) w CE p,n (w, f). n L p (R) T /2 C C 0 {a n }, {b n } C a n b n Ca n a n b n f g R C f(x) g(x) Cf(x) T /4

2. R w(x) = exp( Q(x)) Q w F(C 2 +) (0) Q Q(0) = 0 () Q (2) Q (x) x 0 (3) lim x Q(x) =. (4) T (x) := xq (x)/q(x) (x 0) (0, ) quasi-increasing 3 T (x) Λ Λ > (5) C Q (x) Q (x) C Q (x) Q(x), a.e. x R (6) C 2 > 0 J Q (x) Q (x) C 2 R \ J Q (x) Q(x), a.e. x λ > 0 w F(C 2 +) Q C 3 (R) K x K Q (x) (2.) Q (x) C Q (x) Q (x), Q (x) Q(x) C λ w F λ (C 3 +) w {p n } 4 p n P n R p n (x)p m (x)w 2 (x)dx = δ nm fw L p (R) Fourier s m (f)(x) = R K m (x, t)f(t)w 2 (t)dt ( K m (x, t) := m k=0 p k (x)p k (t) f de la Vallée Poussin v n (f) 2n v n (f)(x) := n 2n m=n+ s m (f)(x). K n Christoffel-Darboux formura (2.2) K n (x, t) = γ n γ n ( ) pn (x)p n (t) p n (t)p n (x). x t γ n p n n p n (x) = γ n x n + /K(x, x) Christoffel (2.3) K n (x, x) = inf P (t)w(t) 2 dt P P n P (x) 2 R 3 f : (0, ) (0, ) c > 0 0 < x < y f(x) cf(y) quasi-increasing 4 Freud weight w 2 (x) = exp( x 2 ) Hermite )

w MRS number a n a n γ n /γ n (2.4) K n (x, x) C n a n T /2 (x) w 2 (x) (2.5) a 2n a n, T (a 2n ) T (a n ), a 2n a n a n T (a n ) a n (2.6) lim n n = 0 a n = O(n /Λ ) w Erdös η > 0 a n = O(n η ) 3. (.3) ([7], [9], [7] ) C µ Uµ(z) := log z t dµ(t) w = exp( Q) F(C 2 +) I w (µ) I w (µ) := log z t w(t)w(t) dµ(z)dµ(t) = log z t dµ(z)dµ(t) + 2 Q(z)dµ(z) R M(R) (3.) V w := inf{i w (µ); µ M(R)} Q(x) log x ( x ) V w = I w (µ w ) < µ w M(R) supp(µ w ) w Uµ w R c w := V w Qdµ w (3.2) { Uµw (x) + Q(x) c w ( x R) Uµ w (x) + Q(x) = c w ( x supp(µ w )) µ w w c w w Robin 5 I := supp(µ w ) 6 Uµ w I (a, b) R \ I (a, b I) (Uµ w (x)) = (x 5 (w ) R Frostman 6 K K outer boundary R R

t) 2 dµ w (t) > 0 Uµ w I Q (a, b) Uµ w (x) + Q(x) < Uµ w (a) + Q(a) = c w (3.2) Q I = [ a, a] Mhaskar-Saff x > 0 F (x) := log x 2 2 π x 0 Q(t) x2 t 2 dt x = a 7 F (a) = 0 a 2 atq (at) (3.3) π dt = 0 t 2 (.3) ω n (x) := exp( Q(x) n ) ω n R µ ωn (.2) (3.3) supp(µ ωn ) = [ a n, a n ] P P n P monic P (z) = z n + P (3.4) w(x)p (x) = ω n n(x)p (x) M, x [ a n, a n ] (3.5) P (z) M exp(n( Uµ ωn (z) + c ωn )) C log(/ P (z) ) = nuν(z) ν 8 (3.4) µ ωn (3.2) Uµ ωn (x) c ωn = Q(x) log M Uν(x) + n n supp(µ ωn ) 9 (3.5) (3.2) R Q(x)/n Uµ ωn (x)+c ωn (3.5) w(x)p (x) M ( x R) M = P w L ( x a n) (.3) Fekete Chebyshev ( [5]) E R ( E C w = exp( Q) E ). µ E,w w E cap(e, w) := e Vw(E), V w (E) = I w (µ E,w ) δ n (E, w) := max z i z j w(z i )w(z j ) z,,z n E i<j n t n (E, w) := min p P n w n (z)(z n p(z)) L (E) 2/n(n ) 7 K = [ x, x] F (x) = log cap(k) Q(t)dν K (t) cap(k) ν K (w ) K R Uµ w (t) Q(t) + c w ν K ( ) Uν K (t) log(/cap(k)) F (x) c w = F (a) 8 P (z) = (z z ) (z z n ) nν = δ z + + δ zn (Dirac ) log(/ P (z) ) 9 µ, ν dν dµ µ Uµ Uν + c (c ) supp(µ) C

cap(e, w) w δ(e, w) = lim n δ n (E, w), t(e, w) := lim n t n (E, w) Chebyshev ( ) (3.6) cap(e, w) = δ(e, w) = t(e, w) exp Q(x)dµ E,w (x) R ([6], [0]) δ n (E, w) {z (n),, z n (n) } Fekete monic Fekete n δ (n) z + + δ (n) z n µ E,w ( ) n 4. w F(C 2 +), p. ([8]) C f f w L p (R) (4.) E p,n (w, f) C a n n E p,n (w, f ) ( n N) (Jackson-Favard ) Freud Mhasker [9] Erdös Lubinsky [7] E p,n (w, f) η n E p,n (w, f ), lim n η n = 0 {η n } w (4.) w F(C 2 +) η n = Ca n /n 2. ([9]) C n N P P n (4.2) P w T /2 C n P w L L p (R) a p ( x a n ) n (Markov-Bernstein ) 0 < λ < 3/2 w F λ (C 3 +) C 0 (4.3) P w L p (R) C n a n P T /2 w L p ( x a C0 n) w Freud T (4.2) (.8) 0 (4.3) 3 w (4.2) (4.3) [6, p.294] P w L p (R) CnT /2 (a n )/a n P w L p (R) 0 < x a n T (x) CT (a n ) (4.3) T /2 3 w F λ (C 3 +) P (k) w L p (R) C(n/a n ) k P T k/2 w L p (R) ([4, Lemma 2.5]) 0 (4.3) C 0 = T /2 w (4.2) T /2 w F(C 2 +)

3. ([9]) 0 < λ < 3/2 w F λ (C 3 +) α R w F(C 2 ) w T α w T T a n/c0 a n a C0 n T a n w (.2) (.5) 4. ([3]) w F(C 2 +) T (a n ) C 0 (n/a n ) 2/3 C fw L p (R) n N (4.4) (f v n(f)) w CE p,n (w, f). L p (R) ft /4 w L p (R) T /4 (4.5) (f v n (f))w L p (R) CE p,n(t /4 w, f). f f w L p (R) (4.6) (f v n(f)) w T /4 L p (R) C a n n f w L p (R) Christoffel (2.3) (2.4) p = v n (f)w/t /4 L p (R) C fw L p (R) v n (f) L p (R) C ft /4 w L p (R) p = p = Riesz-Torin p v n (P ) = P ( P P n ) (4.4) (4.5) (4.6) (4.) (4.4) 2 v n(f)w/t /2 L p (R) Cn/a n ft /4 w L p (R) 5. ([20]) 0 < p fw L p (R) (4.7) ρ p (f) := lim sup n n log n log(/e p,n (f, w)) f λ a.e. ρ p (f) < ρ p (f) = 0 λ = 0 ρ p (f) 0 (4.8) λ A ρ p (f) λ B A := lim inf x T (x), B = lim sup x T (x) [2] [2] Mhaskar Freud Freud weight w α (x) = exp( x α ) /λ /α = /ρ p (f) ([9, p.77]). Erdös A = B = λ = ρ p (f) Cesaro de la Vallée Poussin

[] S. N. Bernstein, Le problem de la approximation des fonctions continus sur tout l axe reel et l une de ses applications, Bull. Math. Soc. France, 52 (924), 399-40. [2] S. N. Bernstein, Leçon sur les propriétés extrémales et la meilleure approximation des function analytiques d une variable réell, Gauthier-Villars, Paris, 926. [3] K. Itoh, R. Sakai and N. Suzuki, The de la Vallée Poussin mean and polynomial approximation for exponential weights, International J. of Analysis, 205, ID 706930, 8p. [4] K. Itoh, R. Sakai and N. Suzuki, An estimate for derivative of the de la Vallée Poussin mean, to appear. [5] P. Koosis, The logarithmic integral I, Cambridge Univ. Press, Cambridge 988. [6] A. L. Levin and D. S. Lubinsky, Orthogonal polynomials for exponential weights, Springer, New York, 200. [7] D. S. Lubinsky, Which weights on R admit Jackson theorem?, Israel J. of Math. 55 (2006), 253-280. [8] D. S. Lubinsky, A survey of weights polynomial approximation with exponential weights, Surv. Approx. Theory, 3 (2007), -05. [9] H. N. Mhaskar, Introduction to the theory of weighted polynomial approximation, World Scientific, Singapore, 996. [0] H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc., 285 (984), 204-234. [] H. N. Mhaskar and E. B. Saff, Where does the sup norm of a weighted polynomial live?, Constr. Approx., (985), 7-9. [2] H. N. Mhaskar and E. B. Saff, Where does the L p norm of a weighted polynomial live?, Trans. Amer. Math. Soc., 303 (987), 09-24. [3] P. Navai, Geza Freud, orthgonal polynomials and Christoffel functions: a case study, J. Approx. Theory, 48 (986), 3-67. [4] E. A. Rakhmanov, On asymptotic properties of polynomials orthogonal on the real axis, Math. USSR. Sbornik, 47 (984), 55-93. [5] T. Ransford, Potential theory in the complex plane, Cambridge Univ. Press, Cambridge, 995. [6] E. B. Saff, Logarithmic potential theory with applications to approximation theory, Surv. Approx. Theory, 5 (200), 65-200. [7] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Springer, New York, 997. [8] R. Sakai and N. Suzuki, Favard-type inequalities for exponential weights, Pioneer J. Math. and Math. Sci., 3 (20), -6. [9] R. Sakai and N. Suzuki, Mollification of exponential weights and its application to Markov-Bernstein inequality, Pioneer J. Math. and Math. Sci., 7 (203), 83-0. [20] R. Sakai and N. Suzuki, A characterization of real entire functions by polynomial approximation for exponential weights,, B43 (203), 279-305. [2] R. S. Varga, On an extension of a result of S.N.Bernstein, J. Approx. Theory, (968), 76-79.