Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης



Σχετικά έγγραφα
Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ σήµερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

Επίλυση προβληµάτων µε αναζήτηση

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Επίλυση προβλημάτων με αναζήτηση

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Τεχνητή Νοημοσύνη Ι. Ενότητα 3: Επίλυση Προβλημάτων με Αναζήτηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

Θεωρία Λήψης Αποφάσεων

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Αναζήτηση (Search) Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

Επίλυση Προβλημάτων 1

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Αλγόριθμοι Τυφλής Αναζήτησης

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

Περιγραφή Προβλημάτων

ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

Τεχνητή Νοημοσύνη. 2η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

ΤΕΧΝΗΤΉ ΝΟΗΜΟΣΎΝΗ ΚΑΙ ΕΜΠΕΙΡΑ ΣΥΣΤΉΜΑΤΑ

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Κεφάλαιο 10 Ψηφιακά Λεξικά

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Ε ανάληψη. Χρόνος και όροι. Ιεραρχία. ΠΛΗ 405 Τεχνητή Νοηµοσύνη χρονοπρογραµµατισµός εργασιών. ιεραρχικά δίκτυα εργασιών

Ευφυείς πράκτορες. Πράκτορες και Περιβάλλοντα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Δομές Δεδομένων και Αλγόριθμοι. Λουκάς Γεωργιάδης

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Ελαφρύτατες διαδρομές

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

(elementary graph algorithms)

Επίλυση Προβλημάτων 1

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Αλγόριθµοι και Πολυπλοκότητα

Διδάσκων: Κωνσταντίνος Κώστα

Θεωρία Γραφημάτων 6η Διάλεξη

Παναγιώτης Καρακώστας (mai1321) ΠΜΣ Εφαρμοσμένης Πληροφορικής Συστήματα Υπολογιστών Πανεπιστήμιο Μακεδονίας

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Επίλυση Προβλημάτων 1

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

Σχεδιασµός και δράση στον πραγµατικό κόσµο

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μηχανές Turing (T.M) I

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Εισαγωγή στην Επιστήμη των Υπολογιστών

Διδάσκων: Παναγιώτης Ανδρέου

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

ΠΛΗ111. Ανοιξη Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Περιεχόμενα Πρόλογος 1. Εισαγωγή 2. Τα Βασικά Μέρη ενός Προγράμματος Prolog

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Transcript:

ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης

Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956 σήµερα Πράκτορες χαρακτηριστικά στοιχεία και είδη πρακτόρων Περιβάλλοντα χαρακτηρισµοί και ιδιότητες

Σήµερα Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση δένδρο αναζήτησης γενικός αλγόριθµος µετρικές απόδοσης

Πράκτορες Ε ίλυσης Προβληµάτων Ε ίλυση ροβληµάτων η εύρεση κάποιας λύσης για κάποιο πρόβληµα ιατύ ωση ροβλήµατος (problem formulation) ορισµός καταστάσεων και ενεργειών προς εξέταση ιατύ ωση στόχου (goal formulation) ορισµός ενός υποσυνόλου καταστάσεων που αποτελούν λύση Ε ιλογή ενεργειών ακολουθίες ενεργειών αντί για άµεσες ενέργειες Αναζήτηση η διαδικασία εύρεσης µιας κατάλληλης ακολουθίας ενεργειών

Παράδειγµα: ιαδροµές στη Ρουµανία

functionsimple-problem-solving-agent( static: inputs: κατάσταση, στόχος, ακολουθία, αντίληψη, µια ακολουθία περιγραφή αντίληψηενεργειών, της τρέχουσας αντίληψη) αρχικά κατάστασης returnsενέργεια κενή του κόσµου Κώδικας ένας στόχος, Πράκτορα κατάσταση Update-State( ifη ακολουθίαείναι ρόβληµα, µια διατύπωση κατάσταση, αρχικά προβλήµατος κενός στόχος Formulate-Goal( ρόβληµα Formulate-Problem( κενή then do κατάσταση) αντίληψη) ενέργεια First( ακολουθία Rest( ακολουθία Search( ακολουθία) ρόβληµα) κατάσταση, στόχος) returnενέργεια

Παραδοχές Περιβάλλον στατικό (αµετάβλητο στη διάρκεια της αναζήτησης) παρατηρήσιµο (γνωστή αρχική κατάσταση) διακριτό (πεπερασµένος αριθµός ενεργειών) αιτιοκρατικό (προβλέψιµες µεταβάσεις) Πράκτορας έλεγχος ανοικτού βρόχου (open-loop control) εκτέλεση χωρίς χρήση αντιλήψεων (sensor-less) Αφαίρεση (abstraction) παράλειψη περιττών λεπτοµερειών από µια αναπαράσταση

Αναζήτηση Search

ιατύ ωση Προβληµάτων Αρχική κατάσταση (initial state) τρέχουσα κατάσταση περιβάλλοντος και πράκτορα Χώρος καταστάσεων (state space) όλες οι κατάστασεις που είναι προσπελάσιµες από την αρχική Συνάρτηση διαδοχής (successor function) για κάθε κατάσταση, οι έγκυρες ενέργειες και οι διάδοχες καταστάσεις Έλεγχος στόχου (goal test) αποφαίνεται για το αν επιτυγχάνεται ο στόχος σε κάποια κατάσταση Συνάρτηση κόστους (cost function) προσδιορίζει το κόστος για κάθε βήµα µιας ακολουθίας ενεργειών

Παράδειγµα: ιαδροµές στη Ρουµανία

Ο Μικρόκοσµος της Σκού ας

3x3 Puzzle Πλακιδίων γενική κλάση NP-πλήρων προβληµάτων 4x4 puzzle: 16!/2 = 1,300,000,000,000 καταστάσεις (εύκολο) 5x5 puzzle: 25!/2 = 1025καταστάσεις (δύσκολο)

Το Πρόβληµα των 8 Βασιλισσών αυξητική διατύπωση (incremental formulation) διατύπωση µε πλήρεις καταστάσεις (full-state formulation) γενικό πρόβληµα: n βασίλισσες σε n n σκακιέρα

Προβλήµατα Πραγµατικού Κόσµου Πρόβληµα εύρεσης δροµολογίου (routing problem) Πρόβληµα εριήγησης (touring problem) Πρόβληµα λανόδιου ωλητή (traveling salesman) ιάταξη κυκλώµατος VLSI (VLSPI layout) Πλοήγηση ροµ ότ (robot navigation) Αυτόµατη συναρµολόγηση (automatic assembly) Σύνθεση ρωτεϊνών (protein synthesis) Αναζήτηση στο διαδίκτυο (internet search)

ένδρο Αναζήτησης ένδρο αναζήτησης (search tree) συστηµατική δηµιουργία διαδροµών στο χώρο καταστάσεων κόµβος αναζήτησης (search node): αντιστοιχεί σε µία κατάσταση ρίζα (root) : ο κόµβος της αρχικής κατάστασης επέκταση (expansion): δηµιουργία απογόνων κάποιου κόµβου µέθοδος παραγωγής (generation): συνάρτηση διαδοχής στρατηγική αναζήτησης (search strategy): επιλογή επέκτασης Παρατηρήσεις άλλο κόµβος, άλλο κατάσταση το δένδρο µπορεί να γίνει γράφηµα σε κάποια προβλήµατα

ένδρο Αναζήτησης

σύνολο τα Κόµβος Αναζήτησης υλοποίηση φύλλα κόµβων της µε αναζήτησης ουρά υπό αναµονή Σύνορο (fringe) κατάσταση γονικός ενέργεια κόστος βάθοςακολουθίας κόµβος MakeQueue EmptyQueue FirstNode RemoveFirstNode Λειτουργίες InsertNodes οµή δεδοµένων

functiontree-search( αρχικοποίηση Άτυ ος loop doifδεν της αρχικής ρόβληµα, του δένδρου κατάστασης στρατηγική) αναζήτησης του returnsµια ροβλήµατος µε χρήση λύση ή αποτυχία υπάρχουν Αλγόριθµος υποψήφιοι για επέκταση Αναζήτησης επιλογή ενός κόµβου-φύλλου then returnαποτυχία ifο κόµβος περιέχει thenreturnτην µια κατάσταση για να επεκταθεί, αντίστοιχη στόχου σύµφωνα λύση µε τη στρατηγική elseο κόµβος επεκτείνεται προστίθενται και οι στο κόµβοι δένδρο που αναζήτησης προκύπτουν

functiontree-search( σύνορο InsertNode( ρόβληµα, σύνορο) returnsµια λύση ή αποτυχία Τυ ικός loop doifemptyqueue( MakeNode( InitialState[ ρόβληµα]), σύνορο) Αλγόριθµος Αναζήτησης (I) κόµβος RemoveFirstNode( σύνορο) then σύνορο) returnαποτυχία ifgoaltest[ ρόβληµα] σύνορο InsertNodes( then returnsolution( που Expand( εφαρµόστηκε κόµβος) κόµβος, στην ρόβληµα), State[κόµβος] σύνορο) επιτύχει

functionexpand( διάδοχοι κενό Τυ ικός for each ενέργεια, κόµβος, σύνολο ρόβληµα) returnsένα σύνολο κόµβων Αλγόριθµος α οτέλεσµα in Successor-Fn[ ρόβληµα]( Αναζήτησης State[κόµβος]) (II) State[s] Parent-Node[s] s νέος α οτέλεσµα κόµβος κόµβος Node do Depth[s] προσθήκη Path-Cost[s] Action[s] Depth[κόµβος] ενέργεια του Path-Cost[κόµβος] sστο σύνολο + διάδοχοι 1 + Step-Cost(κόµβος,ενέργεια,s) returnδιάδοχοι

Μέτρηση Α όδοσης Αναζήτησης Πληρότητα (completeness) θα βρει εγγυηµένα κάποια λύση, αν υπάρχει; Βελτιστότητα (optimality) θα βρει µια βέλτιστη λύση; Χρονική ολυ λοκότητα (time complexity) πόσο χρόνο χρειάζεται για να βρει λύση; Χωρική ολυ λοκότητα (space complexity) πόσο χώρο (µνήµη) χρειάζεται για να βρει λύση; Μέγεθος ροβλήµατος παράγοντας διακλάδωσης (branching factor) b βάθος της πιο κοντινής λύσης d µέγιστο µήκος οποιασδήποτε διαδροµής m

Σύγγραµµα Ενότητα 3.1 3.3 Μελέτη