ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.



Σχετικά έγγραφα
Εκφώνηση 1. α). β). γ). Επιλέξτε τη σωστή πρόταση και αιτιολογείστε.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α.

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Στ.

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΥΓΟΥΣΤΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί,

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

1.1 Κινηματική προσέγγιση

Κρούσεις. Ομάδα Γ. Κρούσεις Ενέργεια Ταλάντωσης και Ελαστική κρούση Κρούση και τριβές Κεντρική ανελαστική κρούση

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια.

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων)

Θέμα Α(25 Μονάδες) Α1. (5 μονάδες) Α2. (5 μονάδες) Α3. (5 μονάδες) Α4. (5 μονάδες)

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια;

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος Διαγώνισμα Κρούσεις - Ταλαντώσεις. Δευτέρα 3 Σεπτεμβρίου Θέμα Α

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

Κριτήριο αξιολόγησης: Κρούσεις Αμείωτες Μηχανικές Ταλαντώσεις

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ / Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ ΒΡΙΛΗΣΣΙΑ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

Μάθημα: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Ονοματεπώνυμο: Τμήμα: Β ΘΕΜΑΤΑ: Θέμα 1. (5Χ5=25 μον)

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%]

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 02/10/2016 ΔΙΑΡΚΕΙΑ: 3 ΩΡΕΣ ΘΕΜΑ Α

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

1. Ένα σώμα A μάζας, κινούμενο με ταχύτητα πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική κατεύθυνση του άξονα x Ox, συγκρούεται με ακίνητο σώμα Β.

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

ΤΑΛΑΝΤΩΣΕΙΣ. . Ερωτήσεις αντιστοίχισης. Σχήμα 2 από τη θέση ισορροπίας του δίνεται από την εξίσωση x = Aημωt.

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος.

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5)

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις

ΘΕΜΑ Β Β1. Ένας ταλαντωτής εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται εκθετικά με το

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΡΟΥΣΕΙΣ-ΤΑΛΑΝΤΩΣΕΙΣ

ΦάσμαGroup. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΕΡΙΟΔΟΥ ΟΚΤΩΒΡΙΟΥ-ΝΟΕΜΒΡΙΟΥ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Κρούσεις. 1 ο ΘΕΜΑ. Φυσική Γ Θετ. και Τεχν/κης Κατ/σης. Θέματα εξετάσεων

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

α. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων.

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ. Θέμα Α (5X5=25μον) Α1. Σώμα μάζας m που είναι προσδεμένο σε οριζόντιο ελατήριο σταθεράς k, όταν. Α2. Όταν δυο σώματα συγκρούονται πλαστικά:

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ.

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.

4.1.α. Κρούσεις. Κρούσεις Ενέργεια Ταλάντωσης και Ελαστική κρούση Κρούση και τριβές Κεντρική ανελαστική κρούση

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

α. να υπολογίσετε το πλάτος της ταλάντωσης K=25N/m

των δύο σφαιρών είναι. γ.

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ Λ ΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 27/11/2016. Θέμα A Στις ερωτήσεις Α1-Α4 επιλέξτε την σωστή απάντηση

Θέμα 1 ο (Μονάδες 25)

Επανάληψη: Κρούσεις και φαινόμενο Doppler (Φ24) 4. α. β. ii. iii. 6. α.

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι:

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΚΕΜΒΡΙΟΣ 2018 ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΑΙ ΣΤΙΣ ΚΡΟΥΣΕΙΣ

1.1. Μηχανικές Ταλαντώσεις.

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Κρούσεις. 1 ο ΘΕΜΑ.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ)

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6)

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΦΥΣΙΚΗ Ο.Π. Αν η κρούση της σφαίρας με τον κατακόρυφο τοίχο είναι ελαστική, τότε ισχύει:. = και =.. < και =. γ. < και <. δ. = και <.

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ

4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 10/7/2015

Transcript:

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική ταλάντωση είναι ίση με F. Το πηλίκο F/m : α) παραμένει σταθερό σε σχέση με το χρόνο β) μεταβάλλεται αρμονικά σε σχέση με το χρόνο γ) αυξάνεται γραμμικά σε σχέση με το χρόνο δ) γίνεται μέγιστο, όταν το σώμα διέρχεται από τη θέση ισορροπίας. 2. Το πλάτος ταλάντωσης ενός απλού αρμονικού ταλαντωτή διπλασιάζεται. Τότε α. η ολική ενέργεια διπλασιάζεται. β. η περίοδος παραμένει σταθερή. γ. η σταθερά επαναφοράς διπλασιάζεται. δ. η μέγιστη ταχύτητα τετραπλασιάζεται. 3. Σε μια απλή αρμονική ταλάντωση έχουν πάντα την ίδια φορά α. η ταχύτητα και η επιτάχυνση. β. η ταχύτητα και η απομάκρυνση. γ. η δύναμη επαναφοράς και η απομάκρυνση. δ. η δύναμη επαναφοράς και η επιτάχυνση. 4. Σε μια απλή αρμονική ταλάντωση η απομάκρυνση και η επιτάχυνση την ίδια χρονική στιγμή α. έχουν πάντα αντίθετο πρόσημο. β. έχουν πάντα το ίδιο πρόσημο. γ. θα έχουν το ίδιο ή αντίθετο πρόσημο, ανάλογα με την αρχική φάση της απλής αρμονικής ταλάντωσης. δ. μερικές φορές έχουν το ίδιο και άλλες φορές έχουν αντίθετο πρόσημο. 5. Σε μία απλή αρμονική ταλάντωση η ταχύτητα του σώματος που ταλαντώνεται δίνεται από τη σχέση υ = Aωημωt. Τότε η απομάκρυνση x από τη θέση ισορροπίας δίνεται από τη σχέση α. x = Aημωt. β. x = Aσυνωt. γ. x = Aημ(ωt+π). δ. x = Aημ(ωt+ 3π/2). 6. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με το χρόνο. Στην περίπτωση αυτή α. στα σημεία 1 και 5 το σώμα βρίσκεται στη μέγιστη απομάκρυνση. β. στα σημεία 2 και 4 το σώμα βρίσκεται στη μέγιστη απομάκρυνση. γ. στα σημεία 4 και 5 το σώμα βρίσκεται στη θέση ισορροπίας. δ. στα σημεία 3 και 4 το σώμα βρίσκεται στη θέση ισορροπίας. 7. Η εξίσωση μιας Α.Α.Τ. δίνεται από x = Aημ(ωt+ 3π/2). Η ταχύτητα και η επιτάχυνση έχουν ταυτόχρονα θετική τιμή κατά το χρονικό διάστημα α) Τ/2 έως 3Τ/4 β) 0 έως Τ/4 γ) Τ/4 έως Τ/2 δ) 3Τ/4 έως Τ

8. Σε μια Α.Α.Τ. η κινητική ενέργεια του σώματος γίνεται ιση με την δυναμική ενέργεια της ταλάντωσης α. 1 φορά β. 2 φορές γ. 3 φορές δ. 4 φορές. 9. Σύστημα ελατηρίου μάζας εκτελεί Α.Α.Τ. σε κατακόρυφη διεύθυνση. Τότε α) η θέση ισορροπίας ταυτίζεται με το φυσικό μήκος του ελατηρίου β) η δύναμη επαναφοράς είναι η δύναμη που ασκεί το ελατήριο στο σώμα γ) η μέγιστη ενέργεια ταλάντωσης δεν είναι ιση με την μέγιστη δυναμική ενέργεια του ελατηρίου δ) το σώμα αποκτά τη μέγιστη ταχύτητα όταν διέρχεται από τη θέση φυσικού μήκους του ελατηρίου 10. Σύστημα μάζας ελατηρίου εκτελεί Α.Α.Τ. σε λείο οριζόντιο επίπεδο πλάτους Α. Διπλασιάζουμε τη μάζα του σώματος διατηρώντας το ίδιο πλάτος ταλάντωσης. Για τη νέα ταλάντωση ισχύει α) η περίοδος διπλασιάζεται β) η μέγιστη ταχύτητα υποδιπλασιάζεται γ) η ολική ενέργεια ταλάντωσης δεν μεταβάλλεται δ) η μέγιστη κινητική ενέργεια υποδιπλασιάζεται ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 11. Δύο σώματα Σ1 και Σ2 με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k1 και k2 αντίστοιχα, που συνδέονται με τη σχέση k1= k2/2 Απομακρύνουμε τα σώματα Σ1 και Σ2 από τη θέση ισορροπίας τους κατακόρυφα προς τα κάτω κατά x και 2x αντίστοιχα και τα αφήνουμε ελεύθερα την ίδια χρονική στιγμή, οπότε εκτελούν απλή αρμονική ταλάντωση. Τα σώματα διέρχονται για πρώτη φορά από τη θέση ισορροπίας τους: α. ταυτόχρονα. β. σε διαφορετικές χρονικές στιγμές με πρώτο το Σ1. γ. σε διαφορετικές χρονικές στιγμές με πρώτο το Σ2. 12. Στα κάτω άκρα δύο κατακόρυφων ελατηρίων Α και Β των οποίων τα άλλα άκρα είναι ακλόνητα στερεωμένα, ισορροπούν δύο σώματα με ίσες μάζες. Απομακρύνουμε και τα δύο σώματα προς τα κάτω κατά d και τα αφήνουμε ελεύθερα, ώστε αυτά να εκτελούν απλή αρμονικήταλάντωση. Αν η σταθερά του ελατηρίου Α είναι τετραπλάσια από τη σταθερά του ελατηρίου Β, ποιος είναι τότε ο λόγος των μέγιστων ταχυτήτων των δύο σωμάτων; υmaxα/ υmaxβ,, α. 1/2. β. 1. γ. 2. 13. Στην κάτω άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς Κ, η πάνω άκρη του οποίου είναι στερεωμένη σε ακλόνητο σημείο, σώμα μάζας m εκτελεί απλή αρμονική ταλάντωση πλάτους d/2, όπως φαίνεται στο σχήμα. Όταν το σώμα διέρχεται από τη θέση ισορροπίας, η επιμήκυνση του ελατηρίου είναι d. Στην κατώτερη θέση της ταλάντωσης του σώματος, ο λόγος της δύναμης του ελατηρίου προς τη δύναμη επαναφοράς είναι α) 1/3 β) 3 γ)2

14. Σύστημα εκτελεί απλή αρμονική ταλάντωση ενέργειας Ε. Τις στιγμές που η επιτάχυνση είναι το μισό της μέγιστης (α=αmax/2) η κινητική ενέργεια είναι ιση με α) Ε/4 β) Ε/2 γ) 3Ε/4 15. Το σώμα Σ1 του παρακάτω σχήματος είναι δεμένο στο ελεύθερο άκρο οριζόντιου ιδανικού ελατηρίου του οποίου το άλλο άκρο είναι ακλόνητο. Το σώμα Σ1 εκτελεί απλή αρμονική ταλάντωση πλάτους Α σε λείο οριζόντιο δάπεδο. Το μέτρο της μέγιστης επιτάχυνσης του Σ1 είναι α1max. Το σώμα Σ1 αντικαθίσταται από άλλο σώμα Σ2 διπλάσιας μάζας, το οποίο εκτελεί απλή αρμονική ταλάντωση ίδιου πλάτους Α. Για το μέτρο α2max της μέγιστης επιτάχυνσης του Σ2, ισχύει: α. α2max = α1max/2. β. α2max = α1max γ. α2max = 2α1max. 16. Τα δύο σώματα Σ1 και Σ2 με μάζες m και 2m αντίστοιχα είναι δεμένα στα άκρα δύο ελατηρίων με σταθερές K και K/2, όπως φαίνεται στο σχήμα, και εκτελούν απλές αρμονικές ταλαντώσεις με ίσες ενέργειες ταλάντωσης. Οι τριβές θεωρούνται αμελητέες. Το πλάτος ταλάντωσης Α1 του σώματος Σ1 είναι α. μικρότερo. β. ίσo. γ. μεγαλύτερo από το πλάτος ταλάντωσης Α2 του σώματος Σ2. 17.α) Σώμα εκτελεί Α.Α.Τ. πλάτους Α. Κάποια στιγμή που η κινητική ενέργεια του είναι τριπλάσια της δυναμικής ενέργειας ταλάντωσης και το σώμα βρίσκεται στον αρνητικό ημάξονα, η απομάκρυνσή του είναι: α) x= - Α/2 β) x= - Α 2/2 γ) x= - A δ) x= - A 3/2 β).έστω οτι η παραπάνω στιγμή είναι η t=0 και το σώμα κινείται προς τη θέση ισορροπίας. Η φάση της ταλάντωσης όταν το σώμα έχει ολοκληρώσει μια πλήρη ταλάντωση είναι: α) 8π/3 rad β) 23π/6 rad γ) 19π/6 rad δ) 2π rad 18. Δύο όμοια σώματα, ίσων μαζών m το καθένα, συνδέονται με όμοια ιδανικά ελατήρια σταθεράς k το καθένα, των οποίων τα άλλα άκρα είναι συνδεδεμένα σε ακλόνητα σημεία, όπως στο σχήμα. Οι άξονες των δύο ελατηρίων βρίσκονται στην ίδια ευθεία, τα ελατήρια βρίσκονται στο φυσικό τους μήκος l0 και το οριζόντιο επίπεδο στο οποίο βρίσκονται είναι λείο. Μετακινούμε το σώμα 1 προς τα αριστερά κατά d και στη συνέχεια το αφήνουμε ελεύθερο να κινηθεί. Το σώμα 1 συγκρούεται πλαστικά με το σώμα 2. Το συσσωμάτωμα που προκύπτει εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς D = 2k. Αν Α1 το πλάτος της ταλάντωσης του σώματος 1 πριν τη κρούση και Α2 το πλάτος ταλάντωσης του συσσωματώματος μετά την κρούση, τότε ο λόγος είναι: i) 1 ii) 1/2 iii) 2 19. Σε μια Α.Α.Τ. αν κάποια χρονική στιγμή ισχύει x = A/3, τότε ο λόγος της δυναμικής ενέργειας ταλάντωσης προς την κινητική ενέργεια είναι: α. 1/8 β. 1/3 γ. 3

20. ΑΣΚΗΣΕΙΣ 1. 2.

3. 4. 5.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. Σώμα Σ1 μάζας m1=1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 0. Το σώμα Σ1 είναι δεμένο στην άκρη ιδανικού ελατηρίου σταθεράς Κ= 100 N/m το άλλο άκρο του οποίου στερεώνεται στη βάση του κεκλιμένου επιπέδου, όπως φαίνεται στο σχήμα. Μετακινούμε το σώμα Σ1 προς τα κάτω κατά μήκος του κεκλιμένου επιπέδου μέχρι το ελατήριο να συμπιεστεί από το φυσικό του μήκος κατά Δl=0,3m. Τοποθετούμε ένα δεύτερο σώμα Σ2 μάζας m2=1kg στο κεκλιμένο επίπεδο, ώστε να είναι σε επαφή με το σώμα Σ1, και ύστερα αφήνουμε τα σώματα ελεύθερα. α. Να υπολογίσετε τη σταθερά επαναφοράς του σώματος Σ2 κατά τη διάρκεια της ταλάντωσής του. β. Να υπολογίσετε σε πόση απόσταση από τη θέση που αφήσαμε ελεύθερα τα σώματα χάνεται η επαφή μεταξύ τους. γ.πόση ταχύτητα έχει το σύστημα των 2 μαζών στη θέση που χάνεται η επαφή; δ. σε πόση απόσταση από τη θέση που χάνεται η επαφή θα ακινητοποιηθεί στιγμιαία το Σ2; 17. Σώμα μάζας m1=3kg είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου σταθεράς Κ=400N/m, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. Το σώμα εκτελεί απλή αρμονική ταλάντωση σε λείο οριζόντιο επίπεδο με περίοδο Τ και πλάτος Α=0,4m. Τη χρονική στιγμή t0=0 το σώμα βρίσκεται στη θέση της μέγιστης θετικής απομάκρυνσης. Τη χρονική στιγμή t= T/6, ένα σώμα μάζας m2=1kg που κινείται στην ίδια κατεύθυνση με το σώμα μάζας m1 και έχει ταχύτητα μέτρο υ2=8 m/s συγκρούεται κεντρικά και πλαστικά με αυτό. Να υπολογίσετε : α. την αρχική φάση της ταλάντωσης του σώματος μάζας m1 β. τη θέση στην οποία βρίσκεται το σώμα μάζας m1 τη στιγμή της σύγκρουσης γ. την περίοδο ταλάντωσης του συσσωματώματος δ. την ενέργεια της ταλάντωσης μετά την κρούση.

18. Λείο κεκλιμένο επίπεδο έχει γωνία κλίσης φ =30 0. Στα σημεία Α και Β στερεώνουμε τα άκρα δύο ιδανικών ελατηρίων με σταθερές k1 = 60 N/m και k2 =140 N/m, αντίστοιχα. Στα ελεύθερα άκρα των ελατηρίων, δένουμε σώμα Σ1, μάζας m1 = 2 kg και το κρατάμε στη θέση όπου τα ελατήρια έχουν το φυσικό τους μήκος ( όπως φαίνεται στο σχήμα ). Τη χρονική στιγμή t0 = 0 αφήνουμε το σώμα Σ1 ελεύθερο. Δ1. Να αποδείξετε ότι το σώμα Σ1 εκτελεί απλή αρμονική ταλάντωση. Δ2. Να γράψετε τη σχέση που δίνει την απομάκρυνση του σώματος Σ1 από τη θέση ισορροπίας του σε συνάρτηση με το χρόνο. Να θεωρήσετε θετική φορά τη φορά από το Α προς το Β. Κάποια χρονική στιγμή που το σώμα Σ1 βρίσκεται στην αρχική του θέση, τοποθετούμε πάνω του (χωρίς αρχική ταχύτητα ) ένα άλλο σώμα Σ2 μικρών διαστάσεων μάζας m2 = 6 kg. Το σώμα Σ2 δεν ολισθαίνει πάνω στο σώμα Σ1 λόγω της τριβής που δέχεται από αυτό. Το σύστημα των δύο σωμάτων κάνει απλή αρμονική ταλάντωση. Δ3. Να βρείτε τη σταθερά επαναφοράς της ταλάντωσης του σώματος Σ2. Δ4. Να βρείτε τον ελάχιστο συντελεστή οριακής στατικής τριβής που πρέπει να υπάρχει μεταξύ των σωμάτων Σ1 και Σ2, ώστε το Σ2 να μην ολισθαίνει σε σχέση με το Σ1. 19. Σώμα μάζας M=3kg ισορροπεί δεμένο στο άκρο ελατηρίου, σταθεράς k, που βρίσκεται σε οριζόντιο επίπεδο. Το ελατήριο βρίσκεται στη θέση του φυσικού του μήκους. Η σφαίρα μάζας m1=1kg, κινούμενη οριζόντια με ταχύτητα υ1=2m/s, σφηνώνεται στο σώμα Μ. Α). Να βρείτε τη μεταβολή της κινητικής ενέργειας του συστήματος των σωμάτων (Μ,m1) κατά την κρούση. Β). Αν ο συντελεστής τριβής μεταξύ συσσωματώματος (Μ,m1) και οριζοντίου επιπέδου είναι μ=0,6 και η μέγιστη συσπείρωση του ελατηρίου μετά την κρούση είναι xmax=0,02m, να βρεθεί η σταθερά k του ελατηρίου. γ) Το ίδιο σώμα μάζας M, τώρα ισορροπεί δεμένο στο άκρο του ίδιου ελατηρίου, που βρίσκεται κατά μήκος λείου κεκλιμένου επιπέδου γωνίας θ =30, όπως στο σχήμα. Η ίδια σφαίρα, μάζας m1 κινούμενη οριζόντια με την ταχύτητα υ1=2m/s, σφηνώνεται στο σώμα Μ. Δ). Να βρείτε τη μεταβολή της κινητικής ενέργειας του συστήματος των σωμάτων (Μ,m1) κατά την κρούση. Ε). Δεδομένου ότι το συσσωμάτωμα (Μ,m1) μετά την κρούση εκτελεί απλή αρμονική ταλάντωση, να βρείτε το πλάτος Α της ταλάντωσης αυτής και γράψτε την εξίσωση δύναμης ελατηρίου συναρτήσει χρόνου αν η θετική φορά είναι προς τα πάνω. 20. Σε σώμα μάζας m = 2 kg που ηρεμεί σε λείο οριζόντιο επίπεδο δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθερά k = 200 N/m, όπως στο σχήμα, ασκούμε σταθερή δύναμη F μέτρου 40 N έτσι ώστε το ελατήριο να επιμηκύνεται, μέχρι την θέση x1 = 0,1m και μετά η σταθερή δύναμη καταργείται. Ως χρονική στιγμή t0 = 0, λαμβάνουμε την στιγμή κατάργησης της δύναμης F. Να βρείτε: Γ.1.. την ταχύτητα της στιγμή κατάργησης της δύναμης Γ.2.. Το πλάτος της ταλάντωσης Γ.3.. την χρονική εξίσωση της απομάκρυνσης θεωρώντας θετική τη φορά της δύναμης Γ.4.. το ρυθμό μεταβολής κινητικής ενέργειας του σώματος στη θέση όπου ο ρυθμός μεταβολής της ορμής ισούται με το μισό της μεγιστης τιμής του.

21. Τα σώματα m1= 1kg και m2= 3kg συνδέονται με αβαρές και μη έκτατο νήμα, το m1 είναι δεμένο στο κάτω άκρο κατακόρυφου ελατήριου Κ=100Ν/m και το σύστημα ισορροπεί ακίνητο. Δ1. Υπολογίστε δυναμική ενέργεια ελατήριου. Δ2. Την t=0 κόβουμε το νήμα, όποτε το σώμα m1 αρχίζει Α.Α.Τ. με θετική φορά προς τα πάνω. Αφού υπολογίσετε πλάτος, κυκλική συχνότητα και αρχική φάση ταλάντωσης, γράψτε την εξίσωση της κινητικής ενέργειας του σώματος Σ1 συναρτήσει χρόνου. Δ3. Γράψτε σχέση δύναμης ελατηρίου συναρτήσει απομάκρυνσης και σχεδιάστε διάγραμμα. Δ4. Γράψτε σχέση δύναμης ελατηρίου συναρτήσει χρόνου Δ5. Υπολογίστε έργο δύναμης επαναφοράς και έργο δύναμης ελατηρίου από την t=0 μέχρι τη στιγμή που αποκτά μέγιστη ταχύτητα για πρώτη φορά. Δίνεται g=10m/s 2 22. Τα σώματα Σ1 και Σ2, του σχήματος 4, με μάζες m1 = 1 kg και m2 = 4 kg αντίστοιχα, βρίσκονται ακίνητα σε λείο οριζόντιο επίπεδο και εφάπτονται μεταξύ τους. Τα σώματα είναι δεμένα στην άκρη δύο όμοιων ιδανικών ελατηρίων σταθερός k = 100 N/m, που βρίσκονται στο φυσικό τους μήκος και των οποίων η άλλη άκρη είναι σταθερά στερεωμένη. Μετακινούμε τα σώματα Σ1 και Σ2 έτσι ώστε τα ελατήρια να συσπειρωθούν κατά d = 0,2 m το καθένα (σχήμα 5) και στη συνέχεια τη χρονική στιγμή t = 0 αφήνονται ελεύθερα να ταλαντωθούν. Γ1. Να γράψετε τις εξισώσεις των απομακρύνσεων x1 και x2 των σωμάτων Σι και Σ2 συναρτήσει του χρόνου. Ως θετική φορά ορίζεται η από το Σ2 προς Σ1 και ως x = 0 ορίζεται η θέση που εφάπτονται αρχικά τα σώματα στο σχήμα 4. Γ2. Τα σώματα Σι και Σ2 κινούμενα με αντίθετη φορά συγκρούονται στη θέση x=- d/2. Να υπολογίσετε τα μέτρα των ταχυτήτων τους ελάχιστα πριν από την κρούση. Γ3. Η κρούση που ακολουθεί είναι πλαστική. Να αποδείξετε ότι το συσσωμάτωμα μετά την κρούση θα εκτελέσει απλή αρμονική ταλάντωση. Γ4. Να βρείτε το μέτρο του μέγιστου ρυθμού μεταβολής της ορμής του συσσωματώματος μετά την κρούση. 23. Σώμα μάζας m2 ισορροπεί δεμένο στο κάτω άκρο κατακορύφου ελατηρίου σταθεράς k=100n/m και απέχει h=1.2m από το έδαφος. Δεύτερο σώμα μάζας m1=1kg εκτοξεύεται κατακόρυφα από το έδαφος προς τα πάνω με αρχική ταχύτητα υ0=6m/s. Δ.1) υπολογίστε ταχύτητα του m1 μόλις πριν τη κρούση με το m2. Δ.2) Αν η κρούση των σωματων είναι μετωπική και ελαστική και τα σώματα αμέσως μετά την κρούση αποκτούν αντίθετες ταχύτητες, υπολογίστε μάζα m2. Δ.3) Με την τιμή της m2 που υπολογίσατε, αν η κρούση είναι πλαστική, βρείτε ταχύτητα συσσωματώματος μόλις μετά την πλαστική κρούση. Δ.4) Μετά τη πλαστική κρούση το συσσωμάτωμα αρχίζει Α.Α.Τ. Υπολογίστε πλάτος ταλάντωσης, περίοδο ταλάντωσης και αρχική φάση αν t=0 είναι η στιγμή της κρούσης και θετική φορά προς τα πάνω. Δ.5) Γράψτε εξίσωση δύναμης ελατηρίου συναρτήσει χρόνου. Δ.6) Ποια χρονική στιγμή το συσσωμάτωμα ακινητοποιείται στιγμιαία για δεύτερη φορά και πόση είναι η δυναμική ενέργεια του ελατηρίου τη στιγμή αυτή. Δίνεται g=10m/s 2

24. 25.

26. Στο κάτω άκρο κατακόρυφου ελατηρίου, του οποίου το άλλο άκρο είναι στερεωμένο σε ακλόνητο σημείο της οροφής, είναι δεμένο σώμα Σ μάζας m = 1 kg. Το ελατήριο είναι ιδανικό και έχει σταθερά k = 100 N/m. To σώμα ισορροπεί με τη βοήθεια κατακόρυφου νήματος το οποίο ασκεί δύναμη F = 20 N στο σώμα, όπως φαίνεται στο σχήμα. Γ1. Να υπολογίσετε την επιμήκυνση του ελατηρίου σε σχέση με το φυσικό του μήκος. Την χρονική στιγμή t=0 κόβεται το νήμα στο σημείο Γ. Γ2. Να υπολογίσετε το πλάτος της ταλάντωσης του σώματος Σ. Γ3. Να γράψετε τη σχέση που δίνει την απομάκρυνση του σώματος Σ σε συνάρτηση με το χρόνο. Θετική φορά θεωρείται η φορά του βάρους. Γ4. Να υπολογίσετε το μέτρο της ταχύτητας του σώματος όταν η δυναμική ενέργεια της ταλάντωσης είναι ίση με 4/5 της ολικής ενέργειας ταλάντωσης. Δίνεται ότι η επιτάχυνση της βαρύτητας είναι g = 10 m/s 2. 27. Ένας κύβος μάζας M =10 kg ισορροπεί τοποθετημένος πάνω σε λείο οριζόντιο επίπεδο. Στη μια κατακόρυφη έδρα του κύβου είναι δεμένη η μια άκρη ιδανικού οριζόντιου ελατηρίου σταθεράς k = 250 N / m, του οποίου η άλλη άκρη είναι δεμένη σε ακλόνητο σημείο κατακόρυφου τοίχου. Το ελατήριο βρίσκεται στο φυσικό του μήκος. Στην απέναντι κατακόρυφη έδρα του κύβου είναι δεμένο μη ελαστικό και αβαρές νήμα το οποίο έχει όριο θραύσεως Fθ= 120Ν. Μέσω του νήματος ασκούμε στο σώμα δύναμη κατά τη διεύθυνση του άξονα του ελατηρίου και με φορά τέτοια ώστε το ελατήριο να επιμηκύνεται. Το μέτρο της δύναμης μεταβάλλεται σε συνάρτηση με την επιμήκυνση x του ελατηρίου σύμφωνα με την εξίσωση F = 80 + 200x (SI). α) Να βρείτε τη δυναμική ενέργεια του ελατηρίου τη στιγμή που κόβεται το νήμα. β. Να βρείτε την ταχύτητα του κύβου τη στιγμή που κόβεται το νήμα. γ) Να γράψετε την εξίσωση της απομάκρυνσης y = f (t). Να θεωρήσετε t = 0 τη στιγμή που κόβεται το νήμα και άξονα x x με αρχή τη θέση ισορροπίας του κύβου και θετική φορά εκείνη κατά την οποία το ελατήριο επιμηκύνεται. δ) Να βρείτε μετά από πόσο χρόνο από τη στιγμή t = 0 που κόβεται το νήμα, θα περάσει ο κύβος από τη θέση ισορροπίας του για πρώτη φορά.