Θεωρία Συνόλων - Set Theory



Σχετικά έγγραφα
Εὐκλείδεια Γεωµετρία

Κατάλογος τῶν Συγκερασµῶν ὅλων τῶν Βυζαντινῶν ιατονικῶν Κλιµάκων µέχρι καὶ σὲ 1200 µουσικὰ διαστήµατα (κόµµατα)

Εὐκλείδεια Γεωµετρία

HY118- ιακριτά Μαθηµατικά

Σύνολα, Σχέσεις, Συναρτήσεις

HY118-Διακριτά Μαθηματικά

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας

Α. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Στήν Σελίδα Παρατηρήσεις στὸ κάτω μέρος καταγράφονται / ἐμφανίζονται τυχόν ἐντοπισθέντα περιουσιακά στοιχεῖα (IX, άκίνητα, ἀγροτεμάχια κλπ)

Έγκατάσταση καὶ Χρήση Πολυτονικοῦ Πληκτρολογίου σὲ Περιβάλλον Ubuntu Linux.

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Παραθέτουμε απόσπασμα του άρθρου: ΟΡΘΟΔΟΞΟΣ ΤΥΠΟΣ ΑΠΙΣΤΕΥΤΟΝ- Οι Ιεχωβάδες και οι Μασόνοι κεφάλαια εις το βιβλίον των θρ

Ἐγκατάστασις ICAMSoft Law Applications' Application Server ἔκδοση 3.x (Rel 1.1-6ος 2009) 1

Η Θεωρια Αριθμων στην Εκπαιδευση

11η Πανελλήνια Σύναξη Νεότητος της Ενωμένης Ρωμηοσύνης (Φώτο Ρεπορτάζ)

Στους κήπους της Θεολογικής Σχολής της Χάλκης

ODBC Install and Use. Κατεβάζετε καὶ ἐγκαθιστᾶτε εἴτε τήν ἔκδοση 32bit εἴτε 64 bit

ICAMLaw Application Server Χειροκίνηση Ἀναβάθμιση

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 2 : Σύνολα & Σχέσεις (2/2) Αλέξανδρος Τζάλλας

ΕΓΚΥΚΛΙΟΣ ὑπ ἀριθμ. 17

Υπολογιστικά & Διακριτά Μαθηματικά

Εκεί όπου όντως ήθελε ο Θεός

Εἰσαγωγὴ. Αὐτόματη Δημιουργία Οἰκονομικῶν Κινήσεων Ἀμοιβῶν. Αὐτόματη Δημιουργία Οἰκονομικῶν Κινήσεων Ἀμοιβῶν. ICAMSoft Law Applications Σημειώ σεις

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο

Περιεχόμενα. Πρόλογος 3

Σχέσεις, Ιδιότητες, Κλειστότητες

ΕΓΚΥΚΛΙΟΣ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2017 Ο ΜΗΤΡΟΠΟΛΙΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΘΙΜΟΣ

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Ὄχι στὴν ρινόκερη σκέψη τοῦ ρινόκερου Κοινοβουλίου μας! (ε ) Tὸ Παγκόσμιο Οἰκονομικὸ Φόρουμ προωθεῖ τὴν ὁμοφυλοφιλία*

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Ἑλληνικὰ σταυρόλεξα μὲ τὸ L A T E X

Η KΑΚΟΜΕΤΑΧΕΙΡΗΣΗ ΤΩΝ ΑΠΟΨΕΩΝ ΤΟΥ ΕΥΓΕΝΙΟΥ ΒΟΥΛΓΑΡΗ ΠΕΡΙ ΥΛΗΣ ΑΠΟ ΤΟΝ ΓΙΑΝΝΗ ΚΑΡΑ. Μιχαήλ Μανωλόπουλος

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

Στὴν ἀρχὴ ἦταν ὁ Λόγος. Ὁ Λόγος ἦταν μαζὶ μὲ

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

Παρέλαση-Μαντήλα-Δωδεκάποντα*

Θέμα: «Περὶ τοῦ προσώπου τοῦ Ἀναδόχου εἰς τὸ Μυστήριον τοῦ Βαπτίσματος».

Σᾶς εὐαγγελίζομαι τὸ χαρμόσυνο ἄγγελμα τῆς γεννήσεως τοῦ. Χριστοῦ, ποὺ ἀποτελεῖ τὴν κορυφαία πράξη τοῦ Θεοῦ νὰ σώσει τὸν

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα:

EISGCGSG Dò. «Ἡ Εἰκόνα τοῦ Χριστοῦ: Χθὲς καὶ σήμερον ἡ αὐτὴ καὶ εἰς τοὺς αἰῶνας» Σάββατο, 22α Δεκεμβρίου 2012

Φροντιστηριακὸ Μάθημα Ἁγιογραφίας Β

Γενικὴ Ἐκκλησιαστικὴ Ἱστορία Α

Χρήση τῶν Στατιστικῶν / Ἐρευνητικῶν Ἐργαλείων τοῦ

ΙΕΡΑ ΜΗΤΡΟΠΟΛΙΣ ΘΕΣΣΑΛΟΝΙΚΗΣ. ΙΕΡΟΣ ΝΑΟΣ ΜΕΤΑΜΟΡΦΩΣΕΩΣ ΤΟΥ ΣΩΤΗΡΟΣ (Δελφῶν καί Μιαούλη) Τηλ: Ἡ Θεία Κοινωνία.

LAHGLATA ACIOCQAVIAS PEQIODOS Bò L hgla Aò

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Μαθηματική Ανάλυση Ι

Νὰ συγκαλέσει πανορθόδοξη Σύνοδο ή Σύναξη των Προκαθημένων καλεί τον Οικουμενικό Πατριάρχη η Κύπρος αν ο στόχος δεν επιτευχθεί

Ὁ νεο-δαρβινισμὸς καὶ ἡ ἀμφισβήτηση τοῦ Θεοῦ*

Μητροπολίτου Μόρφου Νεοφύτου

Ἀσκητὲς καὶ ἀσκητήρια στὴ νῆσο Σκόπελο

T ÓÈÎfi ŒÓÙ Ô HÏÂÎÙÚÔÎÈÓËÙ ÚˆÓ

Διαχείριση Συσχετισμένων Ἀρχείων & Εἰκόνων

μαθη ματικῶν, ἀλλὰ καὶ τὴ βαθιά του ἐκτίμηση γιὰ τὴ χαϊντεγκεριανὴ ἱστορικὴ κατανόηση τοῦ ἀνθρώπινου κόσμου. Καταγράφοντας ὅλες αὐτὲς τὶς ἐπιδράσεις,

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.

Θεµελιωδης Θεωρια Αριθµων

Θεωρία Υπολογισμού και Πολυπλοκότητα

Μαρτυρία Πίστεως καὶ Ζωῆς

Χριστιάνα Ἀβρααμίδου ΜΑΤΙΑ ΑΝΑΠΟΔΑ. Ποιήματα

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

ΠΡΟΛΟΓΟΣ ΣΤΗ ΓΑΛΛΙΚΗ ΕΚΔΟΣΗ

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων

Ἑλένη Γλύκατζη-Ἀρβελέρ. Γιατὶ τὸ Βυζάντιο. Ἐκδόσεις «Ἑλληνικὰ Γράμματα», Ἀθήνα 2009, σελίδες 292.

Περιεχόμενα. Πρόλογος 3

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΦΩΤΟΓΡΑΦΙΑΣ Εν Αθήναις e-book 2012

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Η ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΧΡΟΝΟΥ

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

Μὲ τὴν Χάρι τοῦ Κυρίου μας

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

Συγκρίσεις ιατονικής Κλίµακας ιδύµου µε άλλες διατονικές κλίµακες.

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «

Σκέψεις γιὰ τὴν διατροφὴ καὶ τὴ νηστεία

Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός. Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

ΠΟΙΜΑΝΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΚΑΙ ΧΡΙΣΤΙΑΝΙΚΕΣ ΑΞΙΕΣ ΣΤΗΝ ΕΥΡΩΠΗ

Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.

Σύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου:

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

Ἀπολογισμὸς «Ἐ.Ἐ.Ε.» καὶ Τμημάτων Ψηφιδωτοῦ, Ξυλογλυπτικῆς καὶ Πληροφορικῆς.

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

u v 4 w G 2 G 1 u v w x y z 4

ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

Η Α.Θ.Π. ο Οικουμενικός Πατριάρχης κ.κ. Βαρθολομαίος. τίμησε με την παρουσία του τις εκδηλώσεις για τον εορτασμό

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Ἑλένη Ἰωαννίδου. χωρὶς τὶς παροτρύνσεις, τῆς ὁποίας, δὲν θὰ ἔμπαινα, ποτέ, στὴν διαδικασία τῶν μεταπτυχιακῶν σπουδῶν.

5. 1 ΣΥΝΟΛΑ. Η έννοια του συνόλου

πολεμικὴ πείρα πρῶτα μὲ τὶς κινήσεις τῶν γυμνασίων, ποὺ εἶναι ἕνα εἶδος παιχνίδι. Ὕστερα, γνωρίζουν τὸν ἀληθινὸ πόλεμο. Ἔχουμε κι ἐμεῖς μπροστά μας μι

Χρήσιμες ὁδηγίες γιὰ τοὺς ἐνηλίκους ποὺ ἐπιθυμοῦν νὰ βαπτισθοῦν Χριστιανοὶ Ὀρθόδοξοι.

Transcript:

Θεωρία Συνόλων - Set Theory Ἐπισκόπηση γιὰ τὶς ἀνάγκες τῶν Πρωτοετῶν Φοιτητῶν τοῦ Τµήµατος Διοίκησης, στὸ µάθηµα Γενικὰ Μαθηµατικά. Ὑπὸ Γεωργίου Σπ. Κακαρελίδη, Στὸ Τµῆµα Διοίκησης ΤΕΙ Δυτικῆς Ἑλλάδος Παρουσίαση Βασισµένη στὸ Mathematical Analysis for Decision Making, by A.K.McAdams, 1970, Macmillan Co καὶ στὶς σηµειώσεις τῶν Α. Αργυροῦ & Μ. Παπαδοπούλη τοῦ Πανεπιστηµίου Κρήτης, 2013. Ἀκαδ. Ἔτος 2013-14 ΠΡΟΣΟΧΗ! ΣΕ ΚΑΜΜΙΑ ΠΕΡΙΠΤΩΣΗ ΤΟ ΠΑΡΟΝ ΔΕΝ ΥΠΟΚΑΘΙΣΤΑ ΒΙΒΛΙΑ, ΣΗΜΕΙΩΣΕΙΣ ἤ ΑΛΛΑ ΒΟΗΘΗΜΑΤΑ. ΑΠΟΤΕΛΕΙ ΕΝΔΕΙΚΤΙΚΗ ΚΑΙ ΜΟΝΟΝ ΠΕΡΙΛΗΨΗ ΤῼΝ ΟΣΩΝ ΕΛΕΧΘΗΚΑΝ ΚΑΤΑ ΤΗΝ ΘΕΩΡΙΑ. ΥΦΙΣΤΑΤΑΙ ΑΠΟΠΟΙΗΣΗ ΕΥΘΥΝΗΣ ΓΙΑ ΚΑΘΕ ΤΥΠΟΓΡΑΦΙΚΟ ἤ ΑΛΛΟ ΛΑΘΟΣ 1

Περὶ Συνόλων about SETS #1 Ἕνα σύνολο (Set) εἶναι µιὰ, ΚΑΛΑ ΟΡΙΣΜΕΝΗ, συλλογὴ ΞΕΧΩΡΙΣΤΩΝ (διακεκριµένων) ἀντικειµένων, ποὺ ὀνοµάζονται ΣΤΟΙΧΕΙΑ. Συµβολισµὸς: S = {6, 2, 8, 4} ἢ S={x: x εἶναι θετικὸς, ἅρτιος ἀκέραιος µικρότερος τοῦ 10} Ὁµοίως {{2, 1}, {3}, {3, 2, 1}, S}, {1, 2, 3, }, {x R -3 < x < 6}, { Τὰ πάγια στοιχεῖα τῆς Ἑταιρείας Τάδε} ΠΡΟΣΟΧΗ! {1,2} {{1,2}} ΠΡΟΣΟΧΗ!! Τὰ στοιχεῖα συνόλων ΔΕΝ εἶναι διατεταγµένα, ἐκτὸς ἄν ὁρισθεῖ διάταξη 2

Περὶ Συνόλων #2 Καλὰ Ὁρισµένη: Δοθέντος στοιχείου x µία καὶ µόνον µία ἀπὸ τὶς ἀκόλουθες, εἶναι ὀρθὴ: εἲτε τὸ στοιχεῖο x ἀνήκει στὸ σύνολο (x S ), ἤ τὸ στοιχεῖο x δὲν ἀνήκει στὸ σύνολο ( x S) Διακεκριµένων : δὲν ὑπάρχουν δύο ἴδια στοιχεῖα στὸ σύνολο 3

Περὶ Συνόλων #3, Ἰσχύς, Ἰσότητα Συνόλων S : πληθικὸς ἀριθµὸς ἢ ἰσχύς τοῦ S (cardinal number) εἶναι τὸ πλῆθος τῶν στοιχείων τοῦ S. π.χ. =0, {1,2,3} = 3, {a,b} = 2, {{1,2,3},{4,5}} = 2 Ἰσότητα Συνόλων: Δύο (µὴ διατεταγµένα) σύνολα λέγονται ΙΣΑ, ἐὰν καὶ µόνον ἐὰν ἐµπεριέχουν ΑΚΡΙΒΩΣ τὰ ἴδια στοιχεῖα. 4

Εἰδικὰ σύνολα #1, Κενὸ σύνολο (Empty, Null Set) Ἕνα Σύνολο ΧΩΡΙΣ στοιχεῖα, ὀνοµάζεται ΚΕΝΟΝ καὶ συµβολίζεται µὲ ἤ { } ΠΡΟΣΟΧΗ! { 0 } { }, { 0 }, 0 καὶ 0 5

Εἰδικὰ σύνολα #2, Ὑποσύνολο (SUBSET) Σύνολο A εἶναι ὑποσύνολο συνόλου B, (καὶ γράφεται A B, ὅταν x, x A x B. A εἶναι γνήσιο ὑποσύνολο B, ὅταν A εἶναι ὑποσύνολο τοῦ B καὶ x B γιὰ τὸ ὁποῖο x A. Ὁπτικὴ ἀναπαράσταση: µέσῳ διαγραµµάτων Venn. Προσοχὴ στὰ (ἐµπεριέχεσθαι) καὶ (ἀνήκειν). 6

Εἰδικὰ σύνολα #3 Δυναµοσύνολο, Powerset Τό Δυναµοσύνολο τοῦ A, συµβολίζεται µὲ P (A), εἶναι τὸ σύνολο ὉΛΩΝ τῶν ὑποσυνόλων τοῦ A. P(Α) : {x xα} Θεώρηµα: Ἄν A B, τότε P (A) P (B). Θεώρηµα: Ἄν τὸ σύνολο A ἔχει n στοιχεῖα, τότε τὸ P (A) ἔχει 2 n στοιχεῖα. Προσοχη! Περιλαµβάνονται καὶ τὸ Α καὶ τὸ Προκύπτει ότια: P(Α) > Α, e.g. P(N) > N. Υπάρχουν άπειρα σύνολα µε διαφορετικά µεγέθη! 7

Εἰδικὰ σύνολα #3 Δειγµατικὸς Χῶρος, Ὑπερσύνολο, Universe ἤ Population Set Ὁρίζεται ὡς τὸ σύνολο ΟΛΩΝ τῶν στοιχείων, σχετικῶν µὲ ἑνα πρόβληµα, συζήτηση, ἔρευνα. Σηµαίνει τὴν ὁλικότητα τῶν ὑπὸ θεώρησιν στοιχείων. Μπορεῖ νὰ εἶναι ἐξαιρετικὰ µεγάλο, ὁπὸτε ἐνασχόληση µὲ ὑποσύνολὸ του ἤ δεῖγµα εἶναι προσφορότερη. Συµβολίζεται µὲ U 8

Πράξεις Συνόλων #1 Ὁρισµοὶ Ἔστω A & B ὑποσύνολα of a universal set U. Ἕνωση Συνὀλων (Union Set) A B = {x U x A ἤ x B } ὅπου ἤ = or = Τοµὴ Συνόλων (Intersection Set) A B = {x U x A καὶ x B } ὅπου καὶ=and= Διαφορὰ Συνόλων (Difference Set) : B A = {x U x B and x A } Συµµετρικὴ διαφορὰ A B : (AUB) (A B) (ἕνωση µεῖον τοµὴ) Συµπλήρωµα Συνόλου ((Complement Set) A c = {x U x A } (συµβολίζεται καὶ Α ) Ἱσότητα Δύο Συνόλων (Equal Sets) A = B A B and B A 9

Πράξεις Συνόλων#2 Venn Diagrams A B A B A B A B 10

Πράξεις Συνόλων #3- Πορίσµατα Ἔστω A & B ὑποσύνολα of a universal set U. ἡ ἕνωση AB δύο συνόλων Α, Β ἀποτελεῖ ὑπερσύνολο καὶ τοῦ A καὶ τοῦ B (εἶναι τὸ µικρότερο δυνατὸ) : A, B: (AB A) (AB B) ὅπου = καὶ ἡ τοµὴ A B δύο συνόλων Α, Β εἶναι ἓνα ὑποσύνολο καὶ τοῦ A καὶ τοῦ B (τὸ µέγιστο τέτοιο ὑποσύνολο) : A, B: (A B A) (A B B) Μεταβατικότητα ὑποσυνόλων: (A B B C) A C Σηµαντικό: AB = A + B A B 11

Ταυτότητες, νόµοι Συνόλων #1 Άντιµεταθετικὴ: A B = B A καὶ A B = B A Προσεταιριστικὴ: (A B) C = A (B C) καὶ (A B) C = A (B C) Ἐπιµεριστικὴ: A (B C) = (A B) (A C) καὶ A (B C) = (A B) (A C) Τοµὴ, Ἕνωση µὲ τὸ Ὑπερσύνολο: A U = A καὶ A U = U 12

Ταυτότητες, νόµοι Συνόλων #2 Συµπλήρωµα Συµπληρώµατος: (A c ) c = A Αὐτοδυναµίας: A A = A καὶ A A = A Νόµος DeMorgan s: (A B) c = A c B c καὶ (A B) c = A c B c Νόµος Ἀπορρόφησης: A (A B) = A καὶ A (A B) = A Ἐναλλακτικὴ διατύπωση διαφορᾶς: A B = A B c Τοµὴ & Ἕνωση µὲ ὑποσύνολο: ἄν A B, τότε A B = A καὶ A B = B 13

Περὶ κενοῦ συνόλου (συνέχεια) S = {x R x 2 = -1}. X = {1, 3}, Y = {2, 4}, C = X Y. Τὸ κενὸν σύνολο δὲν ἔχει στοιχεῖα. Τὸ { } εἶναι ὑποσύνολο παντὸς συνόλου. Θεώρηµα: Ὑπάρχει ἀκριβῶς 1 κενὸ σύνολο. Ἰδιότητες τοῦ κενοῦ συνόλου: A = A, A = A A c =, A A c = U U c =, c = U 14

Διαµέριση Συνόλων- Partinioning Δύο σύνολα λέγονται ΞΕΝΑ ἤ διαζευγµένα ἐὰν δὲν ἔχουν κοινὰ στοιχεῖα ἤτοι (A B= ) πχ {a,b,c} {2,3} = Θεώρηµα: τὰ A B καὶ B εἶναι ξένα. Αν Α, Β ξένα σύνολα, τότε: AB = A + B Μία συλλογὴ συνόλων A 1, A 2,, A n καλεῖται ἀµοιβαἰως ξὲνη ὅταν οἱοδήποτε ζεῦγος στοιχείων (συνόλων) αὐτῆς, αὐτὰ εἶναι ξένα. Μία συλλογὴ µή-κενῶν συνόλων {A 1, A 2,, A n } καλεῖται διαµέριση συνόλου A ἄν ἡ ἕνωση αὐτῶν τῶν συνόλων δίδει τὸ A καὶ ἡ συλλογὴ αὐτὴ ἀποτελεῖται ἀπὸ ἀµοιβαίως ξένα σύνολα. 15

Διατεταγµένα Σύνολα Ordered Sets Ὁρισµὸς: Τὸ σύνολο Α καλεῖται διατεταγµένο ἐάν, γιὰ κάθε δύο στοιχεῖα x καὶ y στὸ Α, καθορίζεται ἐπακριβῶς ὅτι: εἴτε τὸ x προηγεῖται τοῦ y, εἴτε τὸ y προηγεῖται τοῦ x Ἐὰν ἔνδιαφέρει ἡ διάταξη τότε τὸ διατεταγµένο σύνολο ἀπεικονίζεται µὲ παρενθέσεις Πχ S={3,2,4,1}, S={1,2,3,4}, ἀλλὰ S=(1,2,3,4) 16

Ἀρίθµηση Νὰ ὁρισθῇ ὁ ἀριθµὸς τῶν στοιχείων συνόλου Α. Τρόπος: Ἐκκινοῦµε ἀπὸ ἕνα στοιχεῖο τοῦ Α,στὸ ὁποῖο ἀντιστοιχοῦµε τὸν ἀριθµὸ 1 Έπιλέγουµε ἑπὸµενο καὶ ἀντιστοιχοῦµε τὸν ἀριθµὸ 2 Συνεχίζουµε ἕως ὅτου ἐξαντληθοῦν ὅλα τὰ στοιχεῖα τοῦ συνόλου Α. Ἡ διαδικασία αὐτὴ περιγράφεται µὲ δύο σύνολα: τὸ Α καὶ τὸ σύνολο τῶν θετικῶν ἀκεραίων Ι + 17

Αντιστοίχιση Ἑνὸς πρὸς Ἕνα - One to One Correspondence Ὁρισµός: Δύο σύνολα εὑρίσκονται σὲ ἀντιστοιχία ἑνὸς πρὸς ἕνα, ἐὰν τὰ στοιχεῖα τους συνδυἀζονται κατὰ τέτοιο τρόπο ὥστε κάθε στοιχεῖο τοῦ πρώτου συνόλου συνδυάζεται µὲ ἕν καὶ µόνον ἓν στοιχεῖο τοῦ δευτέρου καὶ κάθε στοιχεῖο τοῦ δευτέρου συνόλου συνδυάζεται µὲ ἕν καὶ µόνον ἓν στοιχεῖο τοῦ πρώτου. Ισοδυναµία Συνόλων: Α<->B Δύο σύνολα εἲναι ἰσοδύναµα ἐὰν µποροῦν νὰ τεθοῦν σὲ ἀντιστοιχία ἑνὸς πρὸς ἕνα. 18

Ζεύγη Pairs, Καρτεσιανὸ Γινόµενο, Ὁρισµός: Ζεῦγος εἶναι ἓνα σύνολο ἐκ ΔΥΟ στοιχείων Καρτεσιανὸ Γινόµενο Σύνολο ἐκ δύο συνόλων: Τὸ Καρτεσιανὸ Γινόµενο (παραγόµενο) δύο συνόλων Α καὶ Β, εἶναι τὸ σύνολο ὃλων τῶν διατεταγµένων ζευγῶν (x, y), διὰ τὰ ὁποῖα x A καὶ x B Τὸ Καρτεσιανὸ Γινόµενο (Cartesian Product Set of two sets) εἶναι σύνολο καὶ συµβολίζεται ὡς A B : {(a, b) aabb}. π.χ. {a,b} {1,2} = {(a,1),(a,2),(b,1),(b,2)} Σηµείωση: A B = A B ἀλλὰ A,B: A B B A 19

Σχέσεις - Relations Ὁρισµός: Ἕνα ὑποσύνολο τοῦ καρτεσιανοῦ γινοµένου καλεῖται ΣΧΕΣΗ Πχ τὸ πραγµατικὸ ἐπίπεδο εἶναι τὸ καρτεσιανὸ γινόµενο RxR τοῦ συνόλου τῶν πραγµατικῶν άριθµῶν R. Τὸ 1 ο τεταρτηµόριο, ὥς ὑποσύνολο ὃλου τοῦ πραγµατικοῦ ἐπιπέδου ἀποτελεῖ σχέση. Σηµείωση: ἡ σχέση εἶναι σύνολο! 20

Συναρτήσεις - Functions Ὁρισµός: Δοθέντων δύο συνόλων Α καὶ Β καὶ, ἑνὸς κανόνος, ὁ ὁποῖος ἀντιστοιχεῖ γιὰ κάθε ἓνα στοιχεῖο x τοῦ Α, ἕνα µοναδικὰ προσδιοριζόµενο στοιχεῖο y τοῦ Β, τότε αὐτὸς ὁ κανὼν καθορίζει ἓνα σύνολο, f, ἀπὸ διατεταγµένα ζεύγη καὶ αὐτὸ τὸ σύνολο καλεῖται συνάρτηση ἀπὸ τὸ Α στὸ Β. Ἡ συνάρτηση f γράφεται ὡς f = { (x,y) } : γιὰ ὂλα τὰ x Α ὑπάρχει µοναδικὸ y B 21

Συναρτήσεις..συνέχεια 1η Μία συνάρτηση εἶναι σύνολο. Συµβολίζεται µὲ f ὅταν ἡ ἔµφαση εἶναι στὰ συναρτησιακὰ χαρακτηριστικὰ καὶ µὲ F στὰ τῶν συνόλων Τὸ στοιχεῖο y µπορεῖ νὰ ἀποδοθῇ καὶ ὡς f(χ) Τὸ σύνολο Α καλεῖται πεδίο Ὁρισµοῦ (Domain) τῆς f. Τὸ σύνολο B καλεῖται πεδίο Τιµῶν (Range) τῆς f Ἡ διαδικασία δηµιουργίας µιᾶς ἀντιστοιχίας, δηλαδὴ τῶν διατεταγµένων ζευγῶν, λέγεται ἀπεικόνιση (mapping) ἤ µετασχηµατισµὸς τοῦ Α στὸ Β καὶ συµβολίζεται A B Ἄν ἡ ἀπεικόνιση αὐτὴ ἐξαντλῇ ὅλα τὰ στοιχεῖα τοῦ Β, τότε τὸ Α εἶναι συνάρτηση Ἐπὶ τοῦ Β. 22

Συναρτήσεις..συνέχεια 2α Τὸ καρτεσιανὸ γινόµενο SXT δύο συνόλων S, T, ὅπου τὸ S περιέχει n στοιχεῖα καὶ τὸ Τ m, ἀποτελεῖται ἀπὸ n x m διατεταγµένα ζεύγη Μία σχέση εἶναι ὑποσύνολο τοῦ καρτεσιανοῦ γινοµένου. Μπορεῖ νὰ διατρέχη ἤ µἠ, ὅλα τὰ στοιχεὶα τοῦ S καὶ ὅποιο στοιχεῖο του µπορεῖ νὰ διαταχθῆ µὲ ἕνα ἠ περισσότερα στὸ Τ. Μία συνάρτηση εἶναι ἐπίσης ὑποσύνολο τοῦ καρτεσιανοῦ γινοµένου. Πρέπει ὅµως νὰ ἐξαντλήση ὅλο τὸ πεδίο ὁρισµοῦ της, ὄχι ὅµως κατ ἀνάγκην καὶ τὸ τιµῶν. Στὴν τελευταία περίπτωση καλεῖται ἀµφιµονοσήµανρη (ἕν πρὸς ἕν) συνάρτηση 23

Συναρτήσεις..συνέχεια 3η Προσοχὴ: ὁ κανών µιᾶς συνάρτησης µπορεῖ νὰ ἐκφρασθῆ ὥς ἐξίσωση. Ἡ ἐξίσωση ὅµως ΔΕΝ εἶναι ἡ συνάρτηση. Ἡ έξίσωση παρέχει τὸ στοιχεῖο στὸ πεδίο Τιµῶν ποὺ ταιριάζει σὲ µία συγκεκριµένη τιµὴ ἀπὸ τὸ πεδίο ὁρισµοῦ. Μπορεῖ ὅµως νὰ ὑποδεικνύη καὶ τιµὲς ποὺ δὲν ἀποτελοῦν τµῆµα τῆς συνάρτησης. Δεδοµένου ὅτι ἡ συνἀρτηση εἶναι σύνολο διατεταγµὲνων ζευγῶν, αὐτὸ µπορεῖ νὰ ἐπιτευχθῇ καὶ µὲ γράφηµα, πίνακες, διαγράµµατα, προφορικοὺς κανὀνες κτλ. 24

Συναρτήσεις..συνέχεια 4η Συνάρτηση σηµείου : ὃταν ὁ κανών µιᾶς συνάρτησης εἶναι τῆς µορφῆς y=f(x). Συνάρτηση συνόλου : ὃταν τὰ στοιχεῖα στὸ πεδίο ὁρισµοῦ εἶναι σύνολα. 25

Ἀσκήσεις Εἶναι ἀληθὲς ὅτι (A B) (B C) = A C? Δεῖξτε ὅτι (A B) C = (A C) (B C) Εἶναι ἀληθὲς ὅτι A (B C) = (A B) C? Εἶναι ἀληθὲς ὅτι (A B) (A B) = A? 26