ΤΑΛΑΝΤΩΣΕΙΣ (µερικές σηµειώσεις...) Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη διεύθυνση της κίνησης, µέτρο ανάλογο της αποµάκρυνσης από τη θέση ισορροπίας και φορά αντίθετη της αποµάκρυνσης. ΣFx=-D.x (0) Η ΣFx ονοµάζεται και δύναµη επαναφοράς, και έχει κατεύθυνση πάντα προς τη θέση ισορροπίας. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ ΣΤΗ Γ.Α.Τ. Αποµάκρυνση x Πλάτος A Περίοδος Τ Συχνότητα f Κυκλική συχνότητα ω Φάση φ Τ=1/f f=1/τ ω=2πf=2π/τ φ=ωt+φο όπου φο η αρχική φάση ΕΞΙΣΩΣΕΙΣ Γ.Α.Τ. Οι εξισώσεις της Γ.Α.Τ. µπορούν να προκύψουν από τον κύκλο αναφοράς. Θεωρούµε ότι σώµα Σ µάζας m εκτελεί Ο.Κ.Κ. σε κύκλο ακτίνας A µε σταθερή γωνιακή ταχύτητα ω. Η προβολή Π του Σ σε µια διάµετρο του κύκλου, εκτελεί Γ.Α.Τ.. Αποµάκρυνσης Ταχύτητας επιτάχυνσης δύναµης x=aηµωt (1) u=uοσυνωt (2) a=-aοηµωt (3) F=-maοηµωt (4) u=ωaσυνωt a=-ω²aηµωt F=-mω²Aηµωt u=uοηµ(ωt+π/2) a=aοηµ(ωt+π) F=maοηµ(ωt+π) u=ωaηµ(ωt+π/2) a=ω²aηµ(ωt+π) F=mω²Aηµ(ωt+π) Οι παραπάνω σχέσεις ισχύουν όταν φο=0, δηλαδή όταν η αρχική φάση είναι µηδέν. Αν υπάρχει αρχική φάση, τότε πρέπει να την προσθέσουµε στη φάση ωt, οπότε οι παραπάνω σχέσεις παίρνουν τη µορφή: x=aηµ(ωt+φο) u=uοσυν(ωt+φο) a=-aοηµ(ωt+φο) F=-maοηµ(ωt+φο) Από τις παραπάνω σχέσεις παρατηρούµε ότι: Βαγγέλης Κολτσάκης Σελίδα 1 από 6
Η διαφορά φάσης ταχύτητας - αποµάκρυνσης είναι φ=π/2 Η διαφορά φάσης επιτάχυνσης - ταχύτητας είναι φ=π/2 Η διαφορά φάσης επιτάχυνσης -αποµάκρυνσης είναι φ=π Από τις (1) και (2) προκύπτει: u=±ω (A²-x²) (5) Από τις (2) και (3) προκύπτει: a=±ω (uο²-u²), (6) άρα και F=±mω (uο²-u²) (7) Από τις (1) και (3) προκύπτει: a=-ω²x Από τις (1) και (4) προκύπτει: F=-mω²x (8) Από τις (0) και (8) προκύπτει: D=mω² (9) Από την (9) προκύπτει: Τ=2π (m/d) (10) Η D ονοµάζεται σταθερά επαναφοράς (µονάδα µέτρησης: N/m). (Παρατηρούµε από την σχ. 10 ότι η περίοδος της Γ.Α.Τ. εξαρτάται από τη σταθερά επαναφοράς D και από τη µάζα m του ταλαντωτή, ενώ είναι ανεξάρτητη από το πλάτος A της ταλάντωσης). ΕΥΡΕΣΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΜΕΓΕΘΩΝ ΣΤΗΝ Γ.Α.Τ. Όταν γνωρίζουµε την εξίσωση της αποµάκρυνσης: αντιστοιχούµε την εξίσωση που µας δίνεται µε την γενική εξίσωση x=aηµ(ωt+φο). Αν η εξίσωση που έχουµε δεν έχει τέτοια µορφή, τη µετασχηµατίζουµε έτσι ώστε να πάρει τη µορφή αυτή. Με ανάλογο τρόπο δουλεύουµε όταν µας δίνεται όχι η εξίσωση της αποµάκρυνσης, αλλά η εξίσωση κάποιου άλλου χαρακτηριστικού µεγέθους (πχ ταχύτητας, επιτάχυνσης, δύναµης). ΕΛΕΓΧΟΣ ΚΑΙ ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΑΡΧΙΚΗΣ ΦΑΣΗΣ φο. Η αρχική φάση παίρνει τιµές 0 φο 2π. Πιθανώς να αναφέρεται άµεσα ή έµµεσα στην εκφώνηση αν υπάρχει αρχική φάση. Μπορούµε να διαπιστώσουµε ότι υπάρχει αρχική φάση και να την υπολογίσουµε, αν συµβαίνει ένα από τα ακόλουθα: Αναφέρεται άµεσα στην εκφώνηση ότι υπάρχει αρχική φάση. Η εξίσωση κάποιου χαρακτηριστικού µεγέθους σε συνάρτηση µε το χρόνο δεν έχει ακριβώς την ίδια µορφή µε τη γενική µορφή της εξίσωσης του µεγέθους αυτού. Βαγγέλης Κολτσάκης Σελίδα 2 από 6
Η αποµάκρυνση δεν είναι µηδέν τη χρονική στιγµή t=0. Στην περίπτωση αυτή µπορεί να δίνεται περιορισµός για κάποιο άλλο µέγεθος, ή ακόµη και κάποια στιγµιαία τιµή κάποιου άλλου µεγέθους. Η επιτάχυνση δεν είναι µηδέν τη χρονική στιγµή µηδέν. Η ταχύτητα δεν είναι µέγιστη τη χρονική στιγµή µηδέν. Η δυναµική ενέργεια του ταλαντωτή δεν είναι µηδέν τη χρονική στιγµή µηδέν. Η κινητική ενέργεια του ταλαντωτή δεν είναι µέγιστη τη χρονική στιγµή µηδέν. Μπορούµε να δουλέψουµε µε δυο τρόπους: α' τρόπος: µε τριγωνοµετρικές εξισώσεις Χρησιµοποιούµε την εξίσωση κάποιου µεγέθους που µας δίνεται η αλγεβρική του τιµή για τη χρονική στιγµή t=0. Προκύπτει έτσι µια τριγωνοµετρική εξίσωση, που µας δίνει όλες τις δυνατές τιµές της αρχικής φάσης φο. Συνήθως υπάρχουν και κάποιοι περιορισµοί (όπως πχ πρόσηµο κάποιου χαρακτηριστικού µεγέθους), τους οποίους λαµβάνουµε υπόψη. Απορρίπτουµε έτσι κάποιες από τις τιµές τις φο και βρίσκουµε µια δεκτή τιµή. Αν δεν υπάρχει περιορισµός για κάποιο άλλο µέγεθος, πρέπει να κάνουµε δεκτές όλες τις τιµές τις φο, και να δουλέψουµε στη συνέχει µε πάνω από µια περιπτώσεις. Μπορεί επίσης να δίνονται οι τιµές δυο χαρακτηριστικών µεγεθών για τη χρονική στιγµή t=0. ουλεύοντας όπως παραπάνω, βρίσκουµε τιµές για τη φο από δυο τριγωνοµετρικές εξισώσεις, οπότε δεκτή τιµή είναι αυτή για την οποία οι δυο εξισώσεις συναληθεύουν. β' τρόπος: µε τον κύκλο αναφοράς Μπορούµε να εφαρµόσουµε τα δεδοµένα στον κύκλο αναφοράς, ως εξής: από µια εξίσωση που µας δίνεται, τοποθετούµε όλες τις πιθανές φο στον κύκλο αναφοράς, και σε συνδυασµό µε τα υπόλοιπα δεδοµένα, απορρίπτουµε κάποιες από αυτές και βρίσκουµε µια δεκτή. ΕΝΕΡΓΕΙΑ ΣΤΗ Γ.Α.Τ. υναµική ενέργεια ταλάντωσης: U=1/2 Dx²=1/2 muο²-1/2 mu²=1/2 DA²ηµ²ωt Κινητική ενέργεια ταλάντωσης: Βαγγέλης Κολτσάκης Σελίδα 3 από 6
K=1/2 mu²=1/2 DA²-1/2 Dx²=1/2 muο²συν²ωt Ολική (µηχανική) ενέργεια ταλάντωσης: Εολική (ταλάντωσης) = Εσε τυχαία θέση = Εσε ακραία θέση = Εστη Θ.Ι. = ΣΤΑΘΕΡΗ δηλ. Εολ=U+K=Umax=Kmax = ΣΤΑΘΕΡΗ δηλ. Εολ=1/2 Dx² + 1/2 mu² = 1/2 DA² = 1/2 muο² = ΣΤΑΘΕΡΗ Ρυθµός µεταβολής κινητικής ενέργειας: K/ t=σfu=-dxu Ρυθµός µεταβολής δυναµικής ενέργειας: U/ t=- Εκιν/ t=-σfu=dxu ηλ. Οι δυο ρυθµοί είναι αντίθετοι, αφού U+K=ΣΤΑΘ. Παρατήρηση: η ολική µηχανική ενέργεια ενός σώµατος που εκτελεί Γ.Α.Τ. δεν ταυτίζεται πάντα µε την ενέργεια ταλάντωσης του σώµατος. Η ολική µηχανική ενέργεια µπορεί να είναι µεταβλητή, λόγω της βαρύτητας, ενώ η ενέργεια ταλάντωσης παραµένει σταθερή. Χαρακτηριστικό παράδειγµα είναι το σώµα που ταλαντώνεται κατακόρυφα ενωµένο σε ελατήριο. Η ενέργεια ταλάντωσης του συστήµατος σώµα - ελατήριο παραµένει σταθερή, ενώ η ολική µηχανική ενέργεια του σώµατος µεταβάλλεται, επειδή µεταβάλλεται η λόγω βαρύτητας δυναµική του ενέργεια. Προσοχή, δεν πρέπει να συγχέουµε την δυναµική ενέργεια ταλάντωσης ½ Dx² µε την δυναµική ενέργεια ελατηρίου 1/2K l², αφού αυτές δεν ταυτίζονται πάντα. Στην πρώτη περίπτωση, µε x παριστάνεται η αποµάκρυνση, δηλαδή η απόσταση από τη Θ.Ι, ενώ στην δεύτερη περίπτωση µε l παριστάνεται η επιµήκυνση ή η συσπείρωση του ελατηρίου (διαφορά από το φυσικό του µήκος). Στις ασκήσεις που δουλεύουµε µε Α..Ε. Στις ασκήσεις αυτές χρησιµοποιούµε την Α..Ε. εννοώντας ως ενέργεια την ενέργεια ταλάντωσης (δηλαδή δεν λαµβάνουµε υπόψη άλλες τυχόν µορφές ενέργειας που έχει το ταλαντούµενο σώµα, εκτός και αν µας ζητείται κάτι τέτοιο). Εντοπίζουµε τη Θ.Ι. του σώµατος. Εφαρµόζουµε τη σχέση Εσε τυχαία θέση = Εσε ακραία θέση = Εστη Θ.Ι. Βαγγέλης Κολτσάκης Σελίδα 4 από 6
ΠΩΣ ΑΠΟ ΕΙΚΝΥΟΥΜΕ ΟΤΙ ΕΝΑ ΣΩΜΑ ΕΚΤΕΛΕΙ Γ.Α.Τ. (ΚΑΙ ΠΩΣ ΒΡΙΣΚΟΥΜΕ ΤΗΝ ΠΕΡΙΟ Ο) 1. Κάνουµε ένα σχήµα, µε το σώµα σε δυο θέσεις: στη θέση ισορροπίας της ταλάντωσης (Θ.Ι.Τ.) και σε τυχαία θέση, όπου το σώµα που ταλαντώνεται έχει αποµάκρυνση x. Σηµειώνουµε τις δυνάµεις που ασκούνται στο σώµα στη θέση ισορροπίας της ταλάντωσης και στην τυχαία θέση. 2. Αναλύουµε τις δυνάµεις σε άξονες, έτσι ώστε ο άξονας x να έχει τη διεύθυνση της ταλάντωσης (παράλληλος στην τροχιά του σώµατος) και θετική φορά ίδια µε τη φορά της αποµάκρυνσης. 3. Εφαρµόζοντας τη συνθήκη ΣFx=0 στη Θ.Ι.Τ. συνήθως προκύπτει µια σχέση δυνάµεων που τη χρησιµοποιούµε στη συνέχεια. 4. Στην τυχαία θέση προσπαθούµε να δείξουµε ότι ΣFx=-Dx (χρησιµοποιώντας ίσως και τη σχέση που βρήκαµε παραπάνω), όπου D είναι συνάρτηση σταθερών µεγεθών. 5. Έχοντας πλέον αποδείξει ότι το σώµα εκτελεί Γ.Α.Τ., έχουµε συγχρόνως βρει και την σταθερά ταλάντωσης D, οπότε µπορούµε να υπολογίσουµε και την περίοδο της ταλάντωσης από τη σχέση T=2π (m/d). Παρατηρήσεις Όταν έχουµε σώµα δεµένο σε ελατήριο, το σώµα εκτελεί ταλάντωση µε D=κ, όπως και να εκτραπεί το ελατήριο από τη Θ.Ι.Τ.. Όταν έχουµε σύστηµα ελατηρίων, όπου κ χρησιµοποιούµε το κολ του ισοδύναµου ελατήριου. Στην παράλληλη σύνδεση Κολ=Κ1+Κ2+. ενώ στην κατά σειρά σύνδεση 1/Κολ=1/Κ1+1/Κ2+. Όταν έχουµε ταλάντωση για πολύ µικρές τιµές πλάτους, στην απόδειξη του ότι εκτελείται Γ.Α.Τ. πρέπει να κάνουµε κάποιες αναγκαίες προσεγγίσεις, όπως: Αν έχουµε πολύ µικρή γωνία φ, τότε ηµφ 0 και συνφ 1. Αν έχουµε πολύ µικρή αποµάκρυνση x, τότε x² 0 και α+βx α. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΚΡΟΥΣΗΣ Αν έχουµε ελαστική ή ηµιελαστική κρούση χωρίς να µεταβάλλεται η µάζα του ταλαντωτή, τότε η Θ.Ι του συστήµατος παραµένει η ίδια. Αν έχουµε πλαστική κρούση, και γενικότερα αν µεταβάλλεται η µάζα του ταλαντωτή, τότε αλλάζει και η Θ.Ι., εκτός αν έχουµε πλαστική κρούση σε λείο οριζόντιο επίπεδο. Όταν αλλάζει η Θ.Ι., πρέπει και πάλι να εφαρµόσουµε τη σχέση ΣFx=0 για τη νέα Θ.Ι.. Προσοχή, όταν µεταβάλλεται η µάζα του ταλαντωτή, τότε µεταβάλλεται και η περίοδός του. Επίσης η Θ.Ι. αλλάζει και στην περίπτωση που έχουµε διάσπαση συστήµατος σωµάτων. Βαγγέλης Κολτσάκης Σελίδα 5 από 6
Γενικά, αν έχουµε κρούση, τότε η στιγµή αµέσως µετά την κρούση είναι η στιγµή t=0 της ΑΑΤ. (πρέπει να δείξω ότι το σώµα θα εκτελέσει ΑΑΤ και να υπολογίσω την D) Από την Α Ο βρίσκω την ταχύτητα του σώµατος τη στιγµή t=0. Βρίσκω την ΘΙΤ, οπότε, αφού γνωρίζω που βρίσκεται το σώµα την t=0 (στη θέση της κρούσης), γνωρίζω και την αποµάκρυνση τη στιγµή t=0. Από τη σχέση 1/2 Dx² + 1/2 mu² = 1/2 DA² βρίσκω το πλάτος της ταλάντωσης. Μπορώ πλέον να βρω την αρχική φάση, τις εξισώσεις κίνησης κλπ. Η ΠΕΡΙΠΤΩΣΗ ΣΩΜΑΤΟΣ ΣΕ ΕΠΑΦΗ ΜΕ ΕΠΙΦΑΝΕΙΑ ***Έστω σώµα πάνω σε δίσκο που ταλαντώνεται κατακόρυφα. Σε κάθε θέση ισχύει ΣF=-Dx N-B=-Dx. Επαφή χάνεται όταν Ν=0. Αυτό µπορεί να συµβεί µόνο όταν το σύστηµα κινείται πάνω από τη θέση ισορροπίας, αφού: πάνω από τη Θ.Ι. ισχύει ΣF=-Dx N-B=-Dx Ν=B-Dx και η επαφή χάνεται όταν Ν=0 Β=Dx x=b/d. κάτω από τη Θ.Ι. ισχύει ΣF=-Dx N-B=-D(-x) Ν=B+Dx και η επαφή δεν χάνεται ποτέ. Επίσης, από τα παραπάνω προκύπτει ότι Nmin=B-DA, Nmax=B+DA. ***Προσοχή, σε περιπτώσεις ως την προηγούµενη, το σώµα, ο δίσκος και όλο το σύστηµα έχουν διαφορετικές σταθερές ταλάντωσης D. Έχουν όµως κοινή περίοδο Τ. Ισχύει: Dσώµατος=mσώµατοςω², Dδίσκου=mδίσκουω², Dσυστήµατος =mσυστήµατοςω², Στις περιπτώσεις αυτές χρησιµοποιούµε τη σχέση ΣF=ma ΣF=mω²x, όπου m η µάζα του σώµατος ή του δίσκου ή όλου του συστήµατος, δηλ. Του σώµατος στο οποίο αναφέρονται οι δυνάµεις. Στην εφαρµογή των παραπάνω θέσεων η θετική φορά επιλέγεται προς τη Θ.Ι.. ***Έστω σώµα πάνω σε επιφάνεια η οποία ταλαντώνεται οριζόντια. Σε κάθε θέση, η δύναµη επαναφοράς για το σώµα είναι η στατική τριβή Τσ, που έχει πάντα κατεύθυνση προς τη Θ.Ι. και µέτρο ΣFx=ma Τσ=mω²x. Η µέγιστη τιµή της είναι Τσ,max=mω²A. Το σώµα χάνει την επαφή του µε την επιφάνεια στη θέση που η στατική τριβή γίνεται ίση µε την οριακή τριβή, η οποία θεωρείται ίση µε την τριβή ολίσθησης. ηλαδή η επαφή χάνεται όταν mω²x=nn. Βαγγέλης Κολτσάκης Σελίδα 6 από 6