Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη



Σχετικά έγγραφα
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Β.

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ενδεικτικές Λύσεις. Θέµα Α

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

Πρόχειρες Λύσεις. Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Β έκδοση Θέµα Α

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4

1 Απλή Αρµονική Ταλάντωση

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου. Ονοματεπώνυμο εξεταζόμενου:.

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΥΓΟΥΣΤΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:


ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β

Θέμα 1 ο (Μονάδες 25)

1ο ιαγώνισµα - Λύσεις Απλή Αρµονική Ταλάντωση. Θέµα 2ο

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις - Αρµονική Ταλάντωση Ενδεικτικές Λύσεις Θέµα Α

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΑΠΑΝΤΗΣΕΙΣ. ΕΡΩΤΗΣΗ Α1 Α2 Α3 Α4 ΑΠΑΝΤΗΣΗ δ β β γ.

Ταλάντωση, γραφικές παραστάσεις και ρυθµοί µεταβολής

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Λύσεις. Θέµα Α

ΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 1ο σετ - Μέρος Β ΘΕΜΑ Β

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ.

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

Ενδεικτικές Λύσεις. Θέµα Α

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια;

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

1 η χρονική στιγμή της

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις

Στα ερωτήματα 1,2.3,4 του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε)

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος Διαγώνισμα Κρούσεις - Ταλαντώσεις. Δευτέρα 3 Σεπτεμβρίου Θέμα Α

2 ο Διαγώνισμα Γ Λυκείου

12ο ΓΕΛ ΠΕΙΡΑΙΑ 12/10/2010 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗΝ ΑΑΤ

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

1.1 Κινηματική προσέγγιση

Ποια μπορεί να είναι η κίνηση μετά την κρούση;

Ονοματεπώνυμο: Επιμέλεια διαγωνίσματος: Αξιολόγηση :

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις

Physics by Chris Simopoulos

[ Απ. α) , β) µατος. Εκτρέπουµε το σύστηµα προς τα κάτω κατά x=0,5 m και το αφήνουµε ελεύθερο.

5. Ένα σώµα ταλαντώνεται µεταξύ των σηµείων Α και Ε. Στο σχήµα φαίνονται πέντε θέσεις Α,Β,Γ, και Ε, οι οποίες ισαπέχουν µεταξύ 1

Physics by Chris Simopoulos. Η μάζα m χάνει την επαφή της όταν F=0 A 2. 2 Δεκτή η τιμή με το θετικό πρόσημο (δεύτερο τεταρτημόριο) 5 rad 5.

Ταλαντώσεις. =+ και έχει θετική ταχύτητα. Να γραφεί η εξίσωση κίνησης του.

ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2016 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΑΠΑΝΤΗΣΕΙΣ

m αντίστοιχα, εκτελούν Α.Α.Τ. και έχουν την

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΘΕΜΑ Β

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή

Transcript:

ΤΑΛΑΝΤΩΣΕΙΣ (µερικές σηµειώσεις...) Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη διεύθυνση της κίνησης, µέτρο ανάλογο της αποµάκρυνσης από τη θέση ισορροπίας και φορά αντίθετη της αποµάκρυνσης. ΣFx=-D.x (0) Η ΣFx ονοµάζεται και δύναµη επαναφοράς, και έχει κατεύθυνση πάντα προς τη θέση ισορροπίας. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ ΣΤΗ Γ.Α.Τ. Αποµάκρυνση x Πλάτος A Περίοδος Τ Συχνότητα f Κυκλική συχνότητα ω Φάση φ Τ=1/f f=1/τ ω=2πf=2π/τ φ=ωt+φο όπου φο η αρχική φάση ΕΞΙΣΩΣΕΙΣ Γ.Α.Τ. Οι εξισώσεις της Γ.Α.Τ. µπορούν να προκύψουν από τον κύκλο αναφοράς. Θεωρούµε ότι σώµα Σ µάζας m εκτελεί Ο.Κ.Κ. σε κύκλο ακτίνας A µε σταθερή γωνιακή ταχύτητα ω. Η προβολή Π του Σ σε µια διάµετρο του κύκλου, εκτελεί Γ.Α.Τ.. Αποµάκρυνσης Ταχύτητας επιτάχυνσης δύναµης x=aηµωt (1) u=uοσυνωt (2) a=-aοηµωt (3) F=-maοηµωt (4) u=ωaσυνωt a=-ω²aηµωt F=-mω²Aηµωt u=uοηµ(ωt+π/2) a=aοηµ(ωt+π) F=maοηµ(ωt+π) u=ωaηµ(ωt+π/2) a=ω²aηµ(ωt+π) F=mω²Aηµ(ωt+π) Οι παραπάνω σχέσεις ισχύουν όταν φο=0, δηλαδή όταν η αρχική φάση είναι µηδέν. Αν υπάρχει αρχική φάση, τότε πρέπει να την προσθέσουµε στη φάση ωt, οπότε οι παραπάνω σχέσεις παίρνουν τη µορφή: x=aηµ(ωt+φο) u=uοσυν(ωt+φο) a=-aοηµ(ωt+φο) F=-maοηµ(ωt+φο) Από τις παραπάνω σχέσεις παρατηρούµε ότι: Βαγγέλης Κολτσάκης Σελίδα 1 από 6

Η διαφορά φάσης ταχύτητας - αποµάκρυνσης είναι φ=π/2 Η διαφορά φάσης επιτάχυνσης - ταχύτητας είναι φ=π/2 Η διαφορά φάσης επιτάχυνσης -αποµάκρυνσης είναι φ=π Από τις (1) και (2) προκύπτει: u=±ω (A²-x²) (5) Από τις (2) και (3) προκύπτει: a=±ω (uο²-u²), (6) άρα και F=±mω (uο²-u²) (7) Από τις (1) και (3) προκύπτει: a=-ω²x Από τις (1) και (4) προκύπτει: F=-mω²x (8) Από τις (0) και (8) προκύπτει: D=mω² (9) Από την (9) προκύπτει: Τ=2π (m/d) (10) Η D ονοµάζεται σταθερά επαναφοράς (µονάδα µέτρησης: N/m). (Παρατηρούµε από την σχ. 10 ότι η περίοδος της Γ.Α.Τ. εξαρτάται από τη σταθερά επαναφοράς D και από τη µάζα m του ταλαντωτή, ενώ είναι ανεξάρτητη από το πλάτος A της ταλάντωσης). ΕΥΡΕΣΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΜΕΓΕΘΩΝ ΣΤΗΝ Γ.Α.Τ. Όταν γνωρίζουµε την εξίσωση της αποµάκρυνσης: αντιστοιχούµε την εξίσωση που µας δίνεται µε την γενική εξίσωση x=aηµ(ωt+φο). Αν η εξίσωση που έχουµε δεν έχει τέτοια µορφή, τη µετασχηµατίζουµε έτσι ώστε να πάρει τη µορφή αυτή. Με ανάλογο τρόπο δουλεύουµε όταν µας δίνεται όχι η εξίσωση της αποµάκρυνσης, αλλά η εξίσωση κάποιου άλλου χαρακτηριστικού µεγέθους (πχ ταχύτητας, επιτάχυνσης, δύναµης). ΕΛΕΓΧΟΣ ΚΑΙ ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΑΡΧΙΚΗΣ ΦΑΣΗΣ φο. Η αρχική φάση παίρνει τιµές 0 φο 2π. Πιθανώς να αναφέρεται άµεσα ή έµµεσα στην εκφώνηση αν υπάρχει αρχική φάση. Μπορούµε να διαπιστώσουµε ότι υπάρχει αρχική φάση και να την υπολογίσουµε, αν συµβαίνει ένα από τα ακόλουθα: Αναφέρεται άµεσα στην εκφώνηση ότι υπάρχει αρχική φάση. Η εξίσωση κάποιου χαρακτηριστικού µεγέθους σε συνάρτηση µε το χρόνο δεν έχει ακριβώς την ίδια µορφή µε τη γενική µορφή της εξίσωσης του µεγέθους αυτού. Βαγγέλης Κολτσάκης Σελίδα 2 από 6

Η αποµάκρυνση δεν είναι µηδέν τη χρονική στιγµή t=0. Στην περίπτωση αυτή µπορεί να δίνεται περιορισµός για κάποιο άλλο µέγεθος, ή ακόµη και κάποια στιγµιαία τιµή κάποιου άλλου µεγέθους. Η επιτάχυνση δεν είναι µηδέν τη χρονική στιγµή µηδέν. Η ταχύτητα δεν είναι µέγιστη τη χρονική στιγµή µηδέν. Η δυναµική ενέργεια του ταλαντωτή δεν είναι µηδέν τη χρονική στιγµή µηδέν. Η κινητική ενέργεια του ταλαντωτή δεν είναι µέγιστη τη χρονική στιγµή µηδέν. Μπορούµε να δουλέψουµε µε δυο τρόπους: α' τρόπος: µε τριγωνοµετρικές εξισώσεις Χρησιµοποιούµε την εξίσωση κάποιου µεγέθους που µας δίνεται η αλγεβρική του τιµή για τη χρονική στιγµή t=0. Προκύπτει έτσι µια τριγωνοµετρική εξίσωση, που µας δίνει όλες τις δυνατές τιµές της αρχικής φάσης φο. Συνήθως υπάρχουν και κάποιοι περιορισµοί (όπως πχ πρόσηµο κάποιου χαρακτηριστικού µεγέθους), τους οποίους λαµβάνουµε υπόψη. Απορρίπτουµε έτσι κάποιες από τις τιµές τις φο και βρίσκουµε µια δεκτή τιµή. Αν δεν υπάρχει περιορισµός για κάποιο άλλο µέγεθος, πρέπει να κάνουµε δεκτές όλες τις τιµές τις φο, και να δουλέψουµε στη συνέχει µε πάνω από µια περιπτώσεις. Μπορεί επίσης να δίνονται οι τιµές δυο χαρακτηριστικών µεγεθών για τη χρονική στιγµή t=0. ουλεύοντας όπως παραπάνω, βρίσκουµε τιµές για τη φο από δυο τριγωνοµετρικές εξισώσεις, οπότε δεκτή τιµή είναι αυτή για την οποία οι δυο εξισώσεις συναληθεύουν. β' τρόπος: µε τον κύκλο αναφοράς Μπορούµε να εφαρµόσουµε τα δεδοµένα στον κύκλο αναφοράς, ως εξής: από µια εξίσωση που µας δίνεται, τοποθετούµε όλες τις πιθανές φο στον κύκλο αναφοράς, και σε συνδυασµό µε τα υπόλοιπα δεδοµένα, απορρίπτουµε κάποιες από αυτές και βρίσκουµε µια δεκτή. ΕΝΕΡΓΕΙΑ ΣΤΗ Γ.Α.Τ. υναµική ενέργεια ταλάντωσης: U=1/2 Dx²=1/2 muο²-1/2 mu²=1/2 DA²ηµ²ωt Κινητική ενέργεια ταλάντωσης: Βαγγέλης Κολτσάκης Σελίδα 3 από 6

K=1/2 mu²=1/2 DA²-1/2 Dx²=1/2 muο²συν²ωt Ολική (µηχανική) ενέργεια ταλάντωσης: Εολική (ταλάντωσης) = Εσε τυχαία θέση = Εσε ακραία θέση = Εστη Θ.Ι. = ΣΤΑΘΕΡΗ δηλ. Εολ=U+K=Umax=Kmax = ΣΤΑΘΕΡΗ δηλ. Εολ=1/2 Dx² + 1/2 mu² = 1/2 DA² = 1/2 muο² = ΣΤΑΘΕΡΗ Ρυθµός µεταβολής κινητικής ενέργειας: K/ t=σfu=-dxu Ρυθµός µεταβολής δυναµικής ενέργειας: U/ t=- Εκιν/ t=-σfu=dxu ηλ. Οι δυο ρυθµοί είναι αντίθετοι, αφού U+K=ΣΤΑΘ. Παρατήρηση: η ολική µηχανική ενέργεια ενός σώµατος που εκτελεί Γ.Α.Τ. δεν ταυτίζεται πάντα µε την ενέργεια ταλάντωσης του σώµατος. Η ολική µηχανική ενέργεια µπορεί να είναι µεταβλητή, λόγω της βαρύτητας, ενώ η ενέργεια ταλάντωσης παραµένει σταθερή. Χαρακτηριστικό παράδειγµα είναι το σώµα που ταλαντώνεται κατακόρυφα ενωµένο σε ελατήριο. Η ενέργεια ταλάντωσης του συστήµατος σώµα - ελατήριο παραµένει σταθερή, ενώ η ολική µηχανική ενέργεια του σώµατος µεταβάλλεται, επειδή µεταβάλλεται η λόγω βαρύτητας δυναµική του ενέργεια. Προσοχή, δεν πρέπει να συγχέουµε την δυναµική ενέργεια ταλάντωσης ½ Dx² µε την δυναµική ενέργεια ελατηρίου 1/2K l², αφού αυτές δεν ταυτίζονται πάντα. Στην πρώτη περίπτωση, µε x παριστάνεται η αποµάκρυνση, δηλαδή η απόσταση από τη Θ.Ι, ενώ στην δεύτερη περίπτωση µε l παριστάνεται η επιµήκυνση ή η συσπείρωση του ελατηρίου (διαφορά από το φυσικό του µήκος). Στις ασκήσεις που δουλεύουµε µε Α..Ε. Στις ασκήσεις αυτές χρησιµοποιούµε την Α..Ε. εννοώντας ως ενέργεια την ενέργεια ταλάντωσης (δηλαδή δεν λαµβάνουµε υπόψη άλλες τυχόν µορφές ενέργειας που έχει το ταλαντούµενο σώµα, εκτός και αν µας ζητείται κάτι τέτοιο). Εντοπίζουµε τη Θ.Ι. του σώµατος. Εφαρµόζουµε τη σχέση Εσε τυχαία θέση = Εσε ακραία θέση = Εστη Θ.Ι. Βαγγέλης Κολτσάκης Σελίδα 4 από 6

ΠΩΣ ΑΠΟ ΕΙΚΝΥΟΥΜΕ ΟΤΙ ΕΝΑ ΣΩΜΑ ΕΚΤΕΛΕΙ Γ.Α.Τ. (ΚΑΙ ΠΩΣ ΒΡΙΣΚΟΥΜΕ ΤΗΝ ΠΕΡΙΟ Ο) 1. Κάνουµε ένα σχήµα, µε το σώµα σε δυο θέσεις: στη θέση ισορροπίας της ταλάντωσης (Θ.Ι.Τ.) και σε τυχαία θέση, όπου το σώµα που ταλαντώνεται έχει αποµάκρυνση x. Σηµειώνουµε τις δυνάµεις που ασκούνται στο σώµα στη θέση ισορροπίας της ταλάντωσης και στην τυχαία θέση. 2. Αναλύουµε τις δυνάµεις σε άξονες, έτσι ώστε ο άξονας x να έχει τη διεύθυνση της ταλάντωσης (παράλληλος στην τροχιά του σώµατος) και θετική φορά ίδια µε τη φορά της αποµάκρυνσης. 3. Εφαρµόζοντας τη συνθήκη ΣFx=0 στη Θ.Ι.Τ. συνήθως προκύπτει µια σχέση δυνάµεων που τη χρησιµοποιούµε στη συνέχεια. 4. Στην τυχαία θέση προσπαθούµε να δείξουµε ότι ΣFx=-Dx (χρησιµοποιώντας ίσως και τη σχέση που βρήκαµε παραπάνω), όπου D είναι συνάρτηση σταθερών µεγεθών. 5. Έχοντας πλέον αποδείξει ότι το σώµα εκτελεί Γ.Α.Τ., έχουµε συγχρόνως βρει και την σταθερά ταλάντωσης D, οπότε µπορούµε να υπολογίσουµε και την περίοδο της ταλάντωσης από τη σχέση T=2π (m/d). Παρατηρήσεις Όταν έχουµε σώµα δεµένο σε ελατήριο, το σώµα εκτελεί ταλάντωση µε D=κ, όπως και να εκτραπεί το ελατήριο από τη Θ.Ι.Τ.. Όταν έχουµε σύστηµα ελατηρίων, όπου κ χρησιµοποιούµε το κολ του ισοδύναµου ελατήριου. Στην παράλληλη σύνδεση Κολ=Κ1+Κ2+. ενώ στην κατά σειρά σύνδεση 1/Κολ=1/Κ1+1/Κ2+. Όταν έχουµε ταλάντωση για πολύ µικρές τιµές πλάτους, στην απόδειξη του ότι εκτελείται Γ.Α.Τ. πρέπει να κάνουµε κάποιες αναγκαίες προσεγγίσεις, όπως: Αν έχουµε πολύ µικρή γωνία φ, τότε ηµφ 0 και συνφ 1. Αν έχουµε πολύ µικρή αποµάκρυνση x, τότε x² 0 και α+βx α. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΚΡΟΥΣΗΣ Αν έχουµε ελαστική ή ηµιελαστική κρούση χωρίς να µεταβάλλεται η µάζα του ταλαντωτή, τότε η Θ.Ι του συστήµατος παραµένει η ίδια. Αν έχουµε πλαστική κρούση, και γενικότερα αν µεταβάλλεται η µάζα του ταλαντωτή, τότε αλλάζει και η Θ.Ι., εκτός αν έχουµε πλαστική κρούση σε λείο οριζόντιο επίπεδο. Όταν αλλάζει η Θ.Ι., πρέπει και πάλι να εφαρµόσουµε τη σχέση ΣFx=0 για τη νέα Θ.Ι.. Προσοχή, όταν µεταβάλλεται η µάζα του ταλαντωτή, τότε µεταβάλλεται και η περίοδός του. Επίσης η Θ.Ι. αλλάζει και στην περίπτωση που έχουµε διάσπαση συστήµατος σωµάτων. Βαγγέλης Κολτσάκης Σελίδα 5 από 6

Γενικά, αν έχουµε κρούση, τότε η στιγµή αµέσως µετά την κρούση είναι η στιγµή t=0 της ΑΑΤ. (πρέπει να δείξω ότι το σώµα θα εκτελέσει ΑΑΤ και να υπολογίσω την D) Από την Α Ο βρίσκω την ταχύτητα του σώµατος τη στιγµή t=0. Βρίσκω την ΘΙΤ, οπότε, αφού γνωρίζω που βρίσκεται το σώµα την t=0 (στη θέση της κρούσης), γνωρίζω και την αποµάκρυνση τη στιγµή t=0. Από τη σχέση 1/2 Dx² + 1/2 mu² = 1/2 DA² βρίσκω το πλάτος της ταλάντωσης. Μπορώ πλέον να βρω την αρχική φάση, τις εξισώσεις κίνησης κλπ. Η ΠΕΡΙΠΤΩΣΗ ΣΩΜΑΤΟΣ ΣΕ ΕΠΑΦΗ ΜΕ ΕΠΙΦΑΝΕΙΑ ***Έστω σώµα πάνω σε δίσκο που ταλαντώνεται κατακόρυφα. Σε κάθε θέση ισχύει ΣF=-Dx N-B=-Dx. Επαφή χάνεται όταν Ν=0. Αυτό µπορεί να συµβεί µόνο όταν το σύστηµα κινείται πάνω από τη θέση ισορροπίας, αφού: πάνω από τη Θ.Ι. ισχύει ΣF=-Dx N-B=-Dx Ν=B-Dx και η επαφή χάνεται όταν Ν=0 Β=Dx x=b/d. κάτω από τη Θ.Ι. ισχύει ΣF=-Dx N-B=-D(-x) Ν=B+Dx και η επαφή δεν χάνεται ποτέ. Επίσης, από τα παραπάνω προκύπτει ότι Nmin=B-DA, Nmax=B+DA. ***Προσοχή, σε περιπτώσεις ως την προηγούµενη, το σώµα, ο δίσκος και όλο το σύστηµα έχουν διαφορετικές σταθερές ταλάντωσης D. Έχουν όµως κοινή περίοδο Τ. Ισχύει: Dσώµατος=mσώµατοςω², Dδίσκου=mδίσκουω², Dσυστήµατος =mσυστήµατοςω², Στις περιπτώσεις αυτές χρησιµοποιούµε τη σχέση ΣF=ma ΣF=mω²x, όπου m η µάζα του σώµατος ή του δίσκου ή όλου του συστήµατος, δηλ. Του σώµατος στο οποίο αναφέρονται οι δυνάµεις. Στην εφαρµογή των παραπάνω θέσεων η θετική φορά επιλέγεται προς τη Θ.Ι.. ***Έστω σώµα πάνω σε επιφάνεια η οποία ταλαντώνεται οριζόντια. Σε κάθε θέση, η δύναµη επαναφοράς για το σώµα είναι η στατική τριβή Τσ, που έχει πάντα κατεύθυνση προς τη Θ.Ι. και µέτρο ΣFx=ma Τσ=mω²x. Η µέγιστη τιµή της είναι Τσ,max=mω²A. Το σώµα χάνει την επαφή του µε την επιφάνεια στη θέση που η στατική τριβή γίνεται ίση µε την οριακή τριβή, η οποία θεωρείται ίση µε την τριβή ολίσθησης. ηλαδή η επαφή χάνεται όταν mω²x=nn. Βαγγέλης Κολτσάκης Σελίδα 6 από 6