(MIRU9) 9 7 R R R 1 R, R,..., R R Bisser Raytchev 739-857 1-4-1 63-19 8916 5 E-mail: {tamaki,bisser,ki}@hiroshima-u.ac.jp, amao@is.aist.jp 3 3 R R, R 3,..., R R R, R 3,... 3 3 R, R,..., R R R R,,, Abstract Ca R estimate a rotatio matrix R more accurately tha R? A method for estimatig a rotatio matrix R by usig R, R, R 3,... obtaied by a oe-shot measuremet Toru TAMAKI, Bisser RAYTCHEV, Toshiyuki AMANO, ad Kazufumi KANEDA Departmet of Iformatio Egieerig, Graduate School of Egieerig, Hiroshima Uiversity 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-857 Japa Graduate School of Iformatio Sciece, Nara Istitute of Sciece ad Techology 8916-5 Takayama, Ikoma, Nara, 63-19 Japa E-mail: {tamaki,bisser,ki}@hiroshima-u.ac.jp, amao@is.aist.jp I this paper, we show that a more accurate estimatio of a 3 3 rotatio matrix R ca be achieved by appropriately decomposig higher-order rotatio matrices: R, R 3, ad so o. First we discuss a agle estimatio of a rotatio matrix ispired by the Electroic Distace Measuremet. The we reformulate the problem for a 3 3 rotatio matrix: if oise-cotamiated measuremet matrices R, R,..., R are give, fid a appropriate rotatio matrix R. I the proposed method, the give measuremet matrices are first trasformed to rotatio matrices by usig the polar decompositio. The the rotatio agles are obtaied by usig a eige decompositio of the rotatio matrices. Fially, the ambiguity of the obtaied rotatio agle is removed. Numerical simulatios ad pose estimatio experimets show that the use of R results i more accurate estimates tha whe R itself is used. Key words pose estimatio Rotatio matrix, Measuremet with higher frequecy, Electroic distace measuremet, View-based 1. R t 3
[1], [] F E R t [3] [1], [] ICP [4] [5] [6] [8] [9], [1] R R SO(3) [11] [14] R R R, R 3,... (Electroic Distace Measuremet, EDM) [15], [16] 3 3 R, R 3,... R R, R,..., R R 8 [] 8 1 R, R,..., R [17] 1 R R [6] [8] R R, R 3,... R, R, R 3,... 3 3 3 4 3 R R. 1 R R R 1 R θ R R θ R R R. 1 [16], [18] 1 Dist λ 1 1 θ 1 λ 1 > Dist Dist = θ 1 π λ 1, < = θ 1 < π (1)
1 Dist λ 1 λ k 1 k θ θ π θ = θ + π θ θ + π θ θ + πk θ 1 ( ) ( ) cos θ 1 cos( θ mi + πk ) k =,1 si θ 1 si( θ. (5) + πk ) θ 1 π/1 Dist λ 1 /1 λ (< λ 1 ) θ ( ) θ Dist = π + k λ, < = θ < π () k λ λ λ 1 1 1 1 1 λ /1 k Total Statio Geodimeter Tellurometer [19] (beatig). R R R R θ R 1 cos θ 1, si θ 1 R cos θ, si θ 1 θ θ 1 θ θ θ R R θ 1 θ θ θ 1 1 < = θ < π λ 1 = π θ θ θ 1 λ = π θ = θ 1 π λ 1 = θ 1, (3) ( ) θ θ = π + k λ = θ + πk, (4) θ 1 θ + πk R R θ R θ θ θ θ λ = π/ ( ) θ θ = π + k λ = θ + π k, (6) k =, 1,..., 1 k ( ) ( ) cos θ 1 cos( ˆk θ = argmi + π k ) k si θ 1 si( θ + π k ) θ + π ˆk 3. 3 3 (7) R 3 3 R 3 1 3 R ( = 1,,...) 3 3 3. 1 R 3 3 R R R R R R [], [1] mi R R F + µ R T R I F (8) µ
polar decompositio [] R R = U Σ V T R polar decompositio R = (U V T )(V Σ V T ). (9) polar part U V T (8) U V T 1 U V T R { U V R T if U V = +1, = (1) U (HV ) T if U V = 1, H = diag(1, 1, 1) polar decompositio R U V T V T V I G V T G 1 GV polar part 1 H V T H 1 HV H T H = I H = 1 U V = 1 polar decompositio R = (U (HV ) T )(HV Σ V T ) (11) 3. R R expoetial map [] cos θ = trr 1 expoetial map π θ π cos si ω = (b, c, d) T 3 expoetial map [] ω = (r 3 r 3, r 13 r 31, r 1 r 1 ) T, (1) r ij R ij R R 1 [1], [] R P D [1], [], [3] R = P D P H, (13) i = 1 b P = 1 c ω d c +d bc+id ω (c +d ) bd ic ω (c +d ) c +d bc id ω (c +d ) bd+ic ω (c +d ) (14) D = diag(1, e iθ, e iθ ) (15) P 1 D e ±iθ R P = D θ P H P R R = P DP H R P H P = I R = P DP H P DP H = P D P H P R P ω 1,..., ω media 1 1 ω med P med ω med = med ω i (16) i=1,..., media media 3. 3 [4], [5] Matlab S S = 1 1 i 1 i, S H S = SS H = I. (17) R = P D P H = P SS H D SS H P H, (18) = P D P T, (19) P = P S D = S H D S P 1 media
P P T = P T P = I D D = 1 cos θ si θ si θ cos θ. () θ D = P T R P 3. 4 R 1 R θ 1 θ θ ( ) ( ) cos θ 1 cos( ˆk θ = argmi + π k ) k=,1, si θ 1 si( θ..., 1 + π k ) ˆθ = θ + π ˆk (1) R 1 R θ 1 θ 1 θ 1 π k θ 1 θ 1 π 1 k 1 R = P med cos ˆθ si ˆθ P T si ˆθ cos ˆθ med () 4. R ( = 1,,...) R 1 (R 1 ) R 4. 1 1 R R R R R R [6] 1 4 agle error [deg] F orm 3 F orm 4 15 1 5.1..3.4.5 1 3 4 5 6 7 8 1 ±.1 ±.5 1.8.6.4..1..3.4.5 1 3 4 5 6 7 8 1 ±.1 ±.5 1.8.6.4..1..3.4.5 1 3 4 5 6 7 8 1 ±.1 ±.5 P med P 1 1 R 1 R ±.1 ±.5
θ, ω ˆθ, ˆω 3 θ, ω (π θ), ω ω ˆω 9 π θ ˆθ, ω T ˆω < π agle error = θ (π ˆθ), (3) otherwise agle error [deg] 15 1 5.1..3.4.5 [deg] R = 1 R 1 > 1 R 1 R,..., R 1 (±.1,.,.3,.4,.5) R, R 3,... R 1 R R 1 7 3 R R 1 R 3 R media P med media R P med P 1 4 R R 1 R 3 P P 4. R R R 1 R 1 (R 1 ) R 1 3 4 5 6 7 8 5 ±.1 ±.5 F orm 1.1..3.4.5.8.6.4. 1 3 4 5 6 7 8 6 ±.1 ±.5 R 1 5 6 R R 1 R R 1 R R 1, R,... R 1 4. 3 3 [6] [8] [5] [9], [1] 3 R R, R,..., R 8
agle error [deg] 1 1 8 6 4 1 3 4 5 6 7 8 7 F orm.4.3..1 1 3 4 5 6 7 8 8 R 1,..., R 8 [8] [7] [8] R x R R = F x R, = 1,..., 8 (4) F i R R 9 x R = F x, = 1,..., 8 (5) 9 R 3 3 R 3 1 1 CG 18 18 3 1 3 3[deg] 7 8 R 1 5.31 ± 5.84[deg] R 8.87 ± 4.55[deg] R 1.183 ±.16 R 8.14 ±.146 5. R R ( > 1) R [1] Richard Hartley ad Adrew Zisserma. Multiple View Geometry i Computer Visio. Cambridge Uiversity Press, d editio, 4. http://www.cambridge.org/aus/catalogue/ catalogue.asp?isb=5154518. [] Yi Ma, Stefao Soatto, Jaa Košecká, ad S. Shakar Sastry. A Ivitatio To 3-D Visio. Spriger, 4. http://visio.ucla.edu/masks/. [3] Carlo Tomasi ad Takeo Kaade. Shape ad motio from image streams uder orthography: a factorizatio method. Itl. J. of Computer Visio, Vol. 9, No., pp. 137 154, 199. http://www. sprigerlik.com/cotet/q3546r136334l8r. [4] P. J. Besl ad N. D. McKay. A method for registratio of 3-D shapes. IEEE Tras. PAMI, Vol. 14, No., pp. 39 56, 199. http://doi. ieeecomputersociety.org/1.119/34.11791. [5] D. G. Lowe. Fittig parameterized three-dimesioal models to images. IEEE Tras. PAMI, Vol. 13, No. 5, pp. 441 45, 1991. http://doi. ieeecomputersociety.org/1.119/34.13443. [6] Hiroshi Murase ad Shree K. Nayar. Visual learig ad recogitio of 3-D objects from appearace. Itl. J. of Computer Visio, Vol. 14, No. 1, pp. 5 4, 1995. http://dx.doi.org/1.17/bf141486. [7] Gabriele Peters, Barbara Zitova, ad Christoph
vo der Malsburg. How to measure the pose robustess of object views. Image ad Visio Computig, Vol., No. 4, pp. 49 56,. http://ls7-www.cs.ui-dortmud.de/ peters/ pages/research/modeladaptsys/ modeladaptsys vba rov.html. [8] Thomas Melzer, Michael Reiter, ad Horst Bischof. Appearace models based o kerel caoical correlatio aalysis. Patter Recogitio, Vol. 36, pp. 1961 1971, 3. http: //dx.doi.org/1.116/s31-33(3)58-x. [9] David G. Lowe. Distictive image features from scale-ivariat keypoits. Itl. J. of Computer Visio, Vol. 6, No., pp. 91 11, 4. http://www.sprigerlik.com/cotet/ h4l69137px768. [1] Fred Rothgager, Svetlaa Lazebik, Cordelia Schmid, ad Jea Poce. 3D object modelig ad recogitio usig affie-ivariat patches ad multi-view spatial costraits. Proc. of CVPR3, Vol., pp. 7 77, 3. http://www-cvr.ai.uiuc.edu/poce grp/ publicatio/paper/cvpr3a.ps.gz. [11] Ameesh Makadia ad Kostas Daiilidis. Rotatio recovery from spherical images without correspodeces. IEEE Tras. PAMI, Vol. 8, No. 7, pp. 117 1175, 6. [1] Ameesh Makadia ad Kostas Daiilidis. Direct 3d-rotatio estimatio from spherical images via a geeralized shift theorem. Proc. of CVPR3, Vol., p. 17, 3. http://doi.ieeecomputersociety.org/1.119/ CVPR.3.111473. [13] Peter J. Kostelec ad Daiel N. Rockmore. Ffts o the rotatio group. Joural of Fourier Aalysis ad Applicatios, Vol. 14, No., 8. http://www. sprigerlik.com/cotet/r631816xr89vr5. [14] David K. Masle ad Daiel M. Rockmore. Geeralized FFTs a survey of some recet results. Groups ad Computatio II, DIMACS Series i Discrete Mathematics ad Theoretical Computer Sciece, pp. 183 38, 1997. http://www.cs. dartmouth.edu/ rockmore/dimacs-.pdf. [15].., 1976. [16] Russell Charles Briker ad Roy Miick, editors. The Surveyig Hadbook. Chapma & Hall, d editio, 1995. http: //books.google.com/books?id=gb7w9xlnjac. [17] Zhegyou Zhag. Parameter estimatio techiques: a tutorial with applicatio to coic fittig. Image ad Visio Computig, Vol. 15, No. 1, pp. 59 76, 1997. [18],,,,.., 8. http: //books.google.co.jp/books?id=jk7ivyjsloc. [19] The Alberta Lad Surveyors Associatio. Equipmet. olie, accessed 9//6. http:// www.ladsurveyighistory.ab.ca/equipmet.htm. [] Gee Howard Golub ad Charles F. Va Loa. Matrix Computatios. The Joh Hopkis Uiversity Press, 3rd, 1996. http: //books.google.com/books?id=mloa7wpx6oyc. [1] Zhegyou Zhag. A flexible ew techique for camera calibratio. Techical Report MSR-TR-98-71, Microsoft Research, 1998. http://research.microsoft.com/research/pubs/ view.aspx?tr id=1. [] MathPages. Rotatio matrices. olie, accessed 9//6. http://www.mathpages.com/home/ kmath593/kmath593.htm. [3] Eric W. Weisstei. Rotatio matrix. From MathWorld A Wolfram Web Resource, accessed 9//6. http: //mathworld.wolfram.com/rotatiomatrix.html. [4] Ichiro Satake. Liear Algebra. Marcel Dekker Ic., 1975. [5],,.. MIRU7, pp. 958 963, 7. http://ir.lib.hiroshima-u.ac.jp/1989. [6] GSL GNU Scietific Library, 8. http://www.gu.org/software/gsl/. [7] Shigo Ado, Yoshiori Kusachi, Akira Suzuki, ad Keichi Arakawa. Appearace based pose estimatio of 3D object usig support vector regressio. ICIP5, Vol. 1, pp. I 341 344, 5. http://ieeexplore.ieee.org/xpls/abs all.jsp? arumber=159757&isumber=366. [8] Takayuki Okatai ad Koichiro Deguchi. Yet aother appearace-based method for pose estimatio based o a liear model. IAPR Workshop o Machie Visio Applicatios, pp. 58 61,. http: //b.cvl.iis.u-tokyo.ac.jp/mva/proceedigs/ CommemorativeDVD//papers/58.pdf.