2

Σχετικά έγγραφα
Solution Concepts. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

2 ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓ Η επιλέξουν οι υποψήφιοι αγοραστές στη δημοπρασία αυτή; Οι χώρες Α και Β έχουν τη δυνατότητα απόκτησης πυρηνικών όπλων. Το ιδεατ

ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ NASH ΙΣΟΡΡΟΠΙΑΣ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Research on Economics and Management

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ


ΜΟΡΦΕΣ ΑΓΟΡΑΣ. Ανάλογα με τα χαρακτηριστικά τους αριθμός παραγωγών, είδος προϊόντος, κλπ οι αγορές μπορούν να καταταγούν

!"#ά%&'( 18 )*&+",έ. )/0&%%&12&*'3έ. 45(*'2ί"., 7&,"28ά5"'. 5*90 :1(,ά )/0&%%ά12&*(. 3&' ;&3,(('3(0(2'3ή 7(%'*'3ή

Εισαγωγή στην Οικονομική Ανάλυση

Παραδείγματα Παιγνίων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΞΩΣΤΡΕΦΕΙΑ - ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ & ΑΡΙΣΤΗ ΚΕΦΑΛΑΙΑΚΗ ΔΙΑΡΘΡΩΣΗ

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

.,., Klas Eric Soderquist,!., (knowledge transfer). % " $&, " 295 " 72 " marketing 65,, ', (, (.

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

Application of Game Theory in Supply Chain Management. Εφαρμογή της Θεωρίας Παιγνίων στη Διαχείριση Εφοδιαστικής Αλυσίδας

Models for Probabilistic Programs with an Adversary

F NF. t 1 = S. F NF F -1, 1 2, -1 NF 0, 2 0, 0 t 1 = W

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Eaton 1987 Roldos Eaton Roldos Galor and Lin Shimomura 1993 Nakanishi Turnovsky 1997, Chap. 4

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

(clusters) clusters : clusters : clusters : 4. :

ΓΙΠΛΧΜΑΣΙΚΗ ΔΡΓΑΙΑ ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΠΑΙΓΝΙΑ ΑΣΔΛΟΤ ΠΛΗΡΟΦΟΡΗΗ ΚΑΙ ΥΡΗΗ ΣΟΤ Δ ΣΡΑΣΗΓΙΚΔ ΑΠΟΦΑΔΙ ΔΠΔΝΓΤΔΧΝ. ΔΠΙΚΟΠΗΗ ΚΑΙ ΔΦΑΡΜΟΓΗ.

Strategy of duopolistic firms using targeted advertising with distinct targeting accuracy

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εκτεταμένα Παίγνια (Extensive Games)

Η Έννοια και η Σημασία της Τιμής

:JEL. F 15, F 13, C 51, C 33, C 13

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΕΛΕΓΚΤΙΚΗΣ

Why We All Need an AIDS Vaccine? : Overcome the Challenges of Developing an AIDS Vaccine in Japan

Cobb - Dauglas. Hicks 1932 Keynes 1939 Solow 1958 Guscina 2007

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

: Six Sigma, Process Cycle Efficiency, Lean,,

IMES DISCUSSION PAPER SERIES

ΔΙΑΧΕΙΡΙΣΗ ΕΞΑΝΤΛΗΤΙΚΟΥ ΦΥΣΙΚΟΥ ΠΟΡΟΥ ΚΑΙ ΤΙΜΟΛΟΓΙΑΚΗ ΠΟΛΙΤΙΚΗ ΔΗΜΟΣΙΑΣ ΕΠΙΧΕΙΡΗΣΗΣ

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

(2) Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος

Το Υπόδειγμα της Οριακής Τιμολόγησης

Μοντέλα των Cournotκαι Bertrand

Conspectus: Ανάγκη εφαρμογής του στις Ελληνικές Ακαδημαϊκές Βιβλιοθήκες Γεώργιος Κ. Ζάχος

Monetary Policy Design in the Basic New Keynesian Model

ISIC E24, F31, L6, C23

ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΠΑΙΓΝΙΩΝ

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

!! " # $%&'() * & +(&( 2010

Ηλεκτρονικοί Υπολογιστές IV


Πα ά α Έ α 3.0 Μη ισα ό ο License. To view a copy of this license, visit

High order interpolation function for surface contact problem

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def


Game analysis of four interest group s coalition in Chinese regulated real estate market

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΑΝΑΓΙΩΤΗ Γ. ΚΟΡΛΙΡΑ

Mean-Variance Analysis

Οικονομικά της Τεχνολογίας

27/2/2013

C32,B22, Q1,E52 :JEL.

Β Ι Ο Γ Ρ Α Φ Ι Κ Ο Σ Η Μ Ε Ι Ω Μ Α ΑΘΑΝΑΣΙΟΣ ΚΑΖΑΝΑΣ

ΣΗΜΕΙΩΣΕΙΣ. ΟΟΣΑ (1996), The OECD Jobs Strategy Technology, Productivity and Job Creation, Volume 1, Paris.

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Καταχρηστικές Τιµολογιακές Πρακτικές

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Τι είναι η Θεωρία Παιγνίων;

Πανεπιστήµιο Μακεδονίας Τµήµα ιεθνών Ευρωπαϊκών Σπουδών Πρόγραµµα Μεταπτυχιακών Σπουδών στις Ευρωπαϊκές Πολιτικές της Νεολαίας

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

A research on the influence of dummy activity on float in an AOA network and its amendments

Supplementary Appendix

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Αγορά Ακινήτων και η ελληνική Κρίση

Χρηματοοικονομική Ανάπτυξη, Θεσμοί και


Σύντομο Βιογραφικό Σημείωμα. Ζωής Σ. Δημητριάδη, Ph.D.

1. Panel Data.

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

A Truthful Interdependent Value Auction Based on Contingent Bids

Αποτροπή Εισόδου και Οριακή Τιμολόγηση

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Μιχάλης Βαφόπουλος, vafopoulos.org

Θεωρία Παιγνίων και Αποφάσεων

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Jordan Form of a Square Matrix

ΜΑΡΙΝΑ Ε. ΜΠΙΣΑΚΗ. Τκήκα Δθαξκνζκέλωλ Μαζεκαηηθώλ Παλεπηζηήκην Κξήηεο Τ.Θ , Ηξάθιεην, Κξήηε

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Όνοµα: Κωνσταντίνος Επίθετο: ΓΑΤΣΙΟΣ Ηµερ. Γέννησης: 27 Μαΐου 1957 Τόπος Γέννησης: Αθήνα

Κωνσταντίνος ΓΑΤΣΙΟΣ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

Liner Shipping Hub Network Design in a Competitive Environment

ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΟΡΓΑΝΩΣΗΣ

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Professional Tourism Education EΠΑΓΓΕΛΜΑΤΙΚΗ ΤΟΥΡΙΣΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ. Ministry of Tourism-Υπουργείο Τουρισμού

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

GREECE BULGARIA 6 th JOINT MONITORING

Η Διαδραστική Τηλεδιάσκεψη στο Σύγχρονο Σχολείο: Πλαίσιο Διδακτικού Σχεδιασμού

Transcript:

» /09031 -, 2012

2

7 1. 9 2. 17 2.1 17 2.2 19 2.3 21 2.4 25 2.5 25 2.6 Hawk Dove 27 2.7 33 2.8 Hawk - Dove 34 2.9 35 2.10 35 3. 37 3.1 37 4. 39 4.1 39 4.2 41 5. 46 5.1 47 5.2 55 5.3 56 6. 59 6.1 60 6.2 62 7. 65 7.1 66 7.2 68 7.3 70 8. 72 8.1 72 9. 80 9.1 80 9.2 82 9.3 83 9.4 84 10. 87 11. 97 3

4

.,,...,,,. 5

6

,,.,,..,,,.,.,,,,,. 7

8

1 H,,.,. ( ) ( ) ),, ).,,,.,,,,,,,,.,. H,,.,.,,., 9

., - -,,.,,,.,.,..,,.,.,,.,,.,,,, ; ( ).,,.,,.,,..,. 10

..,.,,,, ( )...,,,.,,,.,.... 11

,,.,,..,.,,,. ).. 8.,..,.,. 8.,,,.,,. 12

, 2.,...,,.,,.,,,,,..,,,.,,,,,. : U A ER A U A = ER A + v A * pay off ] 13

v A,. = 1 + * 2 + * 3,..,...,,,.,...,.,, 14

,,.,,,.,,.,,.,.,,.,,,,.,.,,. ( ). ), ( ). :, 15

.,,,.,,.,,,. 16

2 H 40,.,.,,,,. ( ) ( ) ( ) ),,, ).,,,.,,. 2.1,,,., 17

,. : ).,,,,,,. ),,. ).,,.,,,,,,. H,,.,.,,.,.. 18

2.2.»,. : i., : ii. ), 1. ), 5,., : ) 3. ) 1., : ) ) ) ) : 1,1 5,0 0,5 3,3 19 pay off., pay off : 0 5., ( )..

20 1,1 5,0 0,5 3,3 :, 1, 0.. 1,1 5,0 + 0,5 3,3, pay off 3 5. 1,1 5,0 + 0,5 + 3,3 :.,.,. 1,1 5,0 - + 0,5 + 3,3 -

,. pay offs 5 3, 3,. : ( ), ( ). 2.3. i. pay offs, ii. iii. iv. pay off., pay off. : dominated. dominant. : dominated dominant Rational player: dominant )., Rational players. Rational players. Zero-Order CKR (Common Knowledge Rationality)., Rational player. 1 st Order CKR. 21

v. Rational player:,.. ( pay offs ) 1 1 2 1 1 2 2 1 1 2 1 10,4 1,5 2 9,9 0,3 1 1 2 + 10,4 1,5 2 9,9 0,3 1 1 + 10,4 2 + 1,5 2 9,9 0,3 1 1 + 10,4 2 + 1,5-2 9,9 0,3 1 1 + 10,4 2 + 1,5-2 9,9-0,3 22

i. dominant ( 1) ii. iii. 0-order CKR. 1 st order CKR, a) A1, b) 2 (dominant ) 1 st order CKR. ( 1, 2) «dominant strategy equilibrium».,, 1 st order CKR.( 1 st order CKR) n-order CKR. B1 B2 B3 B4 A1 5,10 0,11 1,20 10,10 A2 4,0 1,1 2,0 20,0 A3 3,2 0,4 4,3 50,1 A4 2,93 0,92 0,91 100,90 / 1 1 2 2 3 3 4 4 A1 A2 4,0 B1 B2 B3 B4 + 5,10 0,11 1,20-10,10 + 1,1-2,0 20,0 A3 3,2 0,4 - + 4,3 50,1 A4 2,93-0,92 0,91 + 100,90 23 4 pay offs 1 3 2 2 3 2 4 1

0 -order CKR : 4( dominated) 1 st -order CKR : 4, 2 nd -order CKR : 4, 1 3 rd -order CKR : 1, 1 24 4 4 th -order CKR : 1, 3 2 5 th -order CKR : 2, 2. : ( 2, 2) pay offs (1,1).. 2 2 : 2 2» ( 2, 2) NASH., NASH.. NASH (+) (-)., Nash., Nash.

( 3x3 ) 1 2-1,-1 1 2 3 + 5,0 - -1,-1 25 + 172,-2 + 0,5 - -2,-2 3-2,172 - -2,-2 100,100, 3 3 dominated,.,, 3, : : 3 0< <1 : 1 0< <1 : 2 (1- ) pay offs(expected returns) : ER( 1) = 5 + (-1)(1- ) + 172 = 6 + 173 1 ER( 2) =- 2 3 3 dominated) : : 1 ER( 1)>ER( 2) 1 : 2 ER( 1)<ER( 2) 1 2-1,-1 2 + 5,0 - -1,-1 + 0,5 -

, ( ), Nash.. 2.4., ( ),.. (backward induction),. 2.5. (externalities) 100 euro, : - 100,0 100,0-26

(-) ], 0 100 (utility)., utilities (.,,.).,, :, utilities,,., ( )., Nash. 2.6. Hawk Dove, Hawk ( ) Dove ( ).,.,., - 100+x,0-y 100,0 - hawk dove hawk -2,-2 2,0 dove 0,2 1,1

: Nash (d,h) (h,d). d, d 28 ( :d) ( :d) [ ], :d. : h, : h., (h,h) (d,d). Nash fairness equilibriums. utilities pay-offs( pay-offs), (utility functions). : u A = v A *ER A + u A. v A pay-off (cf) hawk hawk -2,-2 dove ER A pay-off dove + 2,0 - + 0,2-1,1

: u = v *ER + kindness functions : f A : f B : : 1 f A, f B 1 f A =1 : f A =0 : f A =-1 : : u A = v A *ER A + f B (1+f A ) Mathew-Rabin]. Rabin: f =0 u A pay-offs( ) f =1 u A f u A. 29 f =-1 u A f A =[ (s,s B ) E B (s B ) H B (s B ) - L B (s B )], f u A s s

f A =[ (s,s ) E B (s ) H B (s ) - L B (s )], f A =[ (s,s B ) E B (s B ) H B (s B ) - L B (s B )], f A =[ (s,s ) E B (s ) H B (s ) - L B (s )], : (j,k) : :j :k s s s s s s E B (j) : j (entitlement). pay-offs. H B (j) : :j L B (j) : :j H f A, : (s,s ) E B (s ) H B (s )-L B (s ) (s,s B ) E B (s B ) H B (s B )-L B (s B ) (s,s ) E B (s ) H B (s )-L B (s ) (s,s B ) E B (s B ) H B (s B ) - L B (s B ) f B. A (s,s ) E B (s ) H B (s )-L B (s ) A (s,s B ) E A (s B ) H B (s A )-L B (s A ) A (s,s ) E B (s ) H B (s B )-L B (s B ) (s,s B ) E B (s B ) H B (s B ) - L B (s B ) 30

(j): pay off pay off. hawk-dove (h,h) pay off (- 2,-2). : (s A ) : s B 2 ( hawk) (s B ) : s B (0+1)/2 = 0,5 ( s dove) (s A )=2 (s )=(0+1)/2= 0,5 : (s,s ) = -2, (s,s B ) = 0 (s,s ) = 2, (s,s B ) = 1 ) (s,s ) = -2, (s,s B ) = 2 (s,s ) = 0, (s,s B ) = 1 H B (s ) = 1, pay off s B dove H B (s ) = 2, pay off s B hawk L B (s ) = 0, pay off s B dove L B (s ) = -2, pay off s B hawk H (s ) = 2, pay off s dove H (s ) = 1, pay off s hawk 31 s A

L (s ) = -2, pay off s dove L (s ) = 0, pay off s hawk f A,f B : f A = f B = : u A = v A *ER A + f B (1+f A ) u A 2x2 ( pay offs ) v A f B (1+f A ) 1= u A = v A *ER A + f B (1+f A ) = 1 1 1 1-1 0 0,5 0,5-1 -0,5 0 0,5 u = v *ER + f (1+f ) = 32-2 v A 2 v A -0,5 v A +0,75-2v -0,5 2v v + 0,75

: hawk dove hawk -2 v A, -2v 2 v A, -0,5 dove -0,5, 2v v A +0,75,v +0,75. : : H : D : -2 v A >-0,5, v A <0,25 : D v A >0,25 : 2 v A > v A +0,75, v A >0,75 : D v A <0,75 Nash v A,v,. 2.7. (evolutionary theory- ) p, : ER(1) = p 11 + (1-p) 12 ER(2) = p 12 + (1-p) 22 d 12 (p) =ER(1) ER(2), 1 2 1 11 12 2 12 22 33

, d 12 (p). 2.8. hawk-dove d 12 (p) = -2p + 2(1-p) (1-p) = [-3p + 1] p<1/3 d 12 (1/3)>0, hawk p p>1/3 d 12 (1/3)<0, dove p d 1 0 0 0.333 0.666 0.999-1 p Nash.. ij units of evolutionary fitness,. Nash,. hawk dove hawk -2 2 dove 0 1 Nash - 34

, Nash. -. 2.9. ( Repeated games and reputation building)..,. : (finite,kind of player).,,. 2.10.,.,,,,,,.,,,,.,, 35

,..,,,.,.,,,.,,,.,,.,. 36

3.,. : -,, purification,.. 3.1..,.,,.,,.. textbooks. 37

,...,...,.,..,.,.. 38

4 :.,,,.,. subgame (Selten (1965)). 4.1, 1 2, 2,.,, k i, i = 1, 2., ki, x i, i = 1, 2. i i (x i, x j, k i ), i = 1, 2, j i. i, [k i, x i (k i, k j )], ki xi, ki. subgame perfect equilibrium (SPE), [ki*, xi* (ki, kj)], i = 1, 2, ( ) (k i, k j ), x i * (k i, k j ) = arg max x i [x, x j * (k j, k i ); k i ], ( ) k i * = arg max ki i [x i * (k i, k j *), x j (k j *, k i ); k i ]., x i,, k i., k i xi. 39

, k i,,, subgame. k i x i SPE, k i x i.,, k i x j k i. k i,,.. i, i =1,2,, i / x j 0, SPE, x i * (k i,k j ). : x j * (k j *,k i *) / k i 0, i [ x i * (k i *,k j *), x j * (k j *,k i *); k i * ] / k i 0. : SPE [ x i * (k i *, k j *), k i * ], i = 1,2. ( ) d i / dk i = 0, i / dk i ( i / x i )( x i * / k i ) + ( i / x j )( x j * / k i ) + ( i / k i ) = 0. ( ), i / x i = 0, i / dk i = ( i / x j )( x j * / k i ) + ( i / k i ) = 0.,, (k i, x i ), i = 1,2,. Nash, i = 1,2, = : k i k i *. : 40

,. 41,, SPE.,,.,., :,.,.,,. 4.2, (Brander & Spencer (1985))., 1 2,., 0 p = 1 - Q, Q.., ( ), t i,., Cournot : outputs q i p = 1 q 1 q 2.

c i (q i ;t i ) = t i q i. i,,,,.,,. ( ) ( ).. ( G i q i t i i, x i k i ). SPE : t 1 = t 2 = -1/5.,,. \ 4.1 42

4.1... R1 R2,...,,..,.,..,, :. 4.2 43

. (Eaton Grossman (1986)), Bertrand: p i q i (p i,p j ) = 1 p i + ap j, 0 < a < 1., ( p i x i, : 4.2.,,.,,. ( ),,.,,.,.,, Cournot.. Cournot Bertrand. 44

,..,,.,,.,,. Cournot Bertrand. ( ),. Cournot, Bertrand. Cournot.. Cournot Bertrand (., ),.,, (.,, ). Cournot Bertrand.,. 45

5...,...,, -.,.. :. /,. : 46

( ).., ( ),,.,,. 5.1 Milgrom and Roberts (1982).., :,., Milgrom and Roberts -. :,.., -., ( )., 47

.,... :,. :,c (t) c (L) < c(h) L. -,., p,. : 48 D.., 0 m (t),, d (t) e (t)., m (t) > d (t) e (H) > 0 > e (L). m (t) : (p,t) /... t {L,H} b 0 t b 0 L + b 0 H = 1. P : {L,H} [0, ). b t : [0, ) [0,1] t, p., p, b L (p) + b H (p) = 1. : E: [0, ) {0,1}

, «1» «0»., :,. b (b L, b H ): (Kreps and Wilson 1982) (Cho and Kreps 1987)., {P, E, b} : ( 1) 2) 49

3) ayes 3 2. (P (L) = P(H)),, (P(L) P(H)),., p P(H)}. 50 {P(L),.,.» : 4) p,,.,

,. {P, E, b} ( 1)- ( 2) ( 4).,.,. 1) 2) ( 2).,.. /,., p, p (0,p) p < p`, ( 2) single-crossing property SCP 51

(SCP), two price-entry pairs, ( ).,.,,, (SCP).. t., : p m L < p m H. p p.,.. 5.1. 52

(ii) p m L p {P, E, b} p = P(L) < P(H) = p m H E(P(L)) = 0 < 1 = E(P(H)). p m L < p {P, E, b} p m L = P(L) < P(H) = p m H E(P(L)) = 0 < 1 = E(P(H)). (iii) p m L p b 0 L b L P(L) = P(H) = p. 53 (iv) E(P(L)) = 0..., p m H., p m H. p m L p. p m L. p m L < p p m L. b 0 L b L. b 0 L < b L p m t.,, P(L) < p m L., (

)..., P(H) < p m H, P(H) < p m H p m L.,.,.....,,. Pareto. ( (iii) ),.. p m L p 54.

5.2,...,..., ( ).,,.,,..,.. SPE,.,,.,. 3.1,.,. 55

,.,. (Roberts 1985),,,. 5.3..,.,, -., -...,,.,.,. 56

..,,.,. ; ( ) ;... US.,. :?, ;.,.,. (Mc Gee 1958 Areeda- Turner Rule 1975).,.,., 57

, Areeda - Turner:.. 58

6 : ( ) :.,.,,,..,., :...,.,.,,,.. 59

..,, (. Stigler (1964)).,,.,,,,...,,.,. (Rotemberg Saloner (1986)).,,. 6.1 Bertrand. t 1 a t, 60

., : a t., 61., t i (p t i, p t j).,. :, t s (s 1 i, s 2 i, ), t. s = (s i, s j ). (0,1). SPE., SPE. SPE SPE. 6.1: SPE..

, 1.,, 1. Rotemberg Saloner....,.,.,,.. 6.2.. Rotemberg Saloner.,,.. (, ). ( ), 62

.,., Rotemberg-Saloner,....,.,,.,.. ( )....,,. : SPE, (,, ), 63

.. :.,.. 64

7 :.,,...,,.. Varian (1980)..,. Varian,.. 65

.,,. Harsanyi (1973) Nash.,., Varian.. 7.1. > 2 c. v, v > c > 0...,..,. i p - i i, i : 66

[c, v]. i F i F_ i, i, {p1,...,pn} ash, i 67, (F1,...FN) ash, i Fi Nash (F 1, F N ) Fi = F, i = 1,...N. 7.1 : ) Nash. (B) F Nash. :. -

.,,.,,.,,. ;, ;,, ;,. 7.2 arsanyi (1973).,,.. i t i E [0, 1].,. i.i.d [0, 1]. : i t i c (t i ), c 0 < c(0) < c(1) < u., 68

., Bayesian [0, 1]., c., i i (t i) [0, 1] [c (0), v ]. [ P 1,...,F N ], P -i i P -i (t -i ) 1) t -t. i t i p i t -i i (p i, F i (t -i ), t i ), i (5.1), c c(t i ). T [ P 1,..., F N ) Nash, i t, Nash P i (t i ) = P (t i ), i t i. H 7.2 (i) Nash,. (ii) c E (0, v) > 0, > 0, [ c (t) c / < t, c.., Nash, 69

c t, c. Varian. 7.3.,.,,..,,,.,.,., 70 SPE.,,,.,.,,.

.,.,. 71

8.,.,.,. 8.1,,. SPE. ),,.,., Pareto. Rotemberg Saloner (1986),,. Green Porter (1984). 72

Cournot ( Green Porter), shock.., shock. Cournot,.,,. /. Green Porter ( shock ) Cournot. Bertrand.. :, (1- ) 73.,,.,.,

p,.,., t = 1,2,.., t x t (0,1). «sunspot»,. t h t = (a 1,, a t-1 ), (i) a r = (p,x) r,, p > 0 x, (ii) a r = (~,x) 0 r. i t. (SE) ( ) i j, I j = 1, 2,., Bertrand: p i = 0, I = 1, 2. SE.,, SPE p 1 = p 2 = 1. SE. SE, p i = 1, i p i = 1. j i.. Green Porter, 74

.,. p i = 1 p i = 0.. t a t-1 = (~,x), x <,. SE,. ( ) G (T) (i) (ii) (1,x) x (iii) (1,x) k ( +1) (~,x) k. f T,, x <. V T,, G (T) 75 (6.1) RHS,,, x <,, 1 - = (1- ) + (1- ), x,. 1 -.

, f T, (h) = 1 ( p1 = p2 = 0 Nash )., LHS. 2. (~,x) (1 ), x V T,, x < +1 V,. (6,3) 8.1 i. ( ), ii., : ( ) = min {T (1 ) / (1 2 ) (1 1}. (i) (6,2) LHS 6,4 (, ) 76

RHS,, = = 1., (6,7). ii. ( ) V. `, ` = (1 ) / (1 `) ( `, `) V., ` 1. (6.6) (, ), ( `, `),., V, = V (6.2) (, ) ( `, `)., = V., (6,2) V, V (6,7) =, = (1 ) / (1 2. (6.2), < V, = / (1 ). 77 ).,, :. (ii) -. Abreu, Pearce Stacchetti (1986),, ( ).,. =,.., Nash

. Abreu, Pearce Stacchetti (1986)., Cournot,,.. : ( Cournot)., Green Porter.. Fudenberg, Levine Maskin (1993) 1, ( ) Pareto.,..,,. 78

79

9. /, -., :.. Cournot, Bertrand Stackelberg, " " /.,,. 9.1 :, /.,, 1 2, q 1 q 2, P(q 1 +q 2 ) i (q i, q j ) = q i P(q 1 +q 2 )-c i (q i ). i, qi C, j., i q i,. q i C = v i (q i ). q i *, i=1.2, : 80

q i * = argmaxq i i [q i, v i (q i )]and v i (q i *)=q j * i=1.2.,,., vi q i ( ) v., v / / : v = 1, 0-1,, Cournot,, v,.,,.,,. / (., ). " ". " " («reduced form»).,..,, Nash,., Nash " "., 81

.,. 9.2 :,. :, /.,, /., /, /., /. /. / ).,, /. /,., ( )., 82

-.,, /., / /.,.,, Green - Porter.. 9.3 /,.,,.., 4 6.,,, (a posteriori).,,, Nash.. 2. / ( ), SPE..,., 83

. Nash..,.,.. ',.,.,.,,,. 9.4, ;,..,,.,..,.,,. 84

,.,, ( ).,,. /., 2, ) (Cournot vs Bertrand)., ', /.,., 7,.,.,.,..., ;. 85

,..,.,... 86

10 3.1: (i) (ii) p m L p {P, E, b} p = P(L) < P(H) = p m H E(P(L)) = 0 < 1 = E(P(H)). p m L < p {P, E, b} p m L = P(L) < P(H) = p m H E(P(L)) = 0 < 1 = E(P(H)). (iii) p m L p b 0 L b L p [p,p m L] P(L) = P(H) = p. (iv) P(L) = P(H) [p,p m L] E(P(L)) = 0. (i) p m L < p {P, E, b} : P (ii), E(p) = 1 p p m L, b L (p) = 0, p p m L b L (p m L) = 1. (E1) E(4). p m L p {P, E, b} : P (ii), E(p) = 1 p p m L, b L (p) = 0, p p m L b L (p m L) = 1. ( 1) t = H t=l p m L = p. (E2) (E4). 1 = L p m L > p. p E(p) = 0, SCP (ii) : V (p, 0, L) > V (p, 0, L). p E(p) = 1, 87

p m L. V (p, 0, L) > V (p m L, 1, L). p < p V (p, 0, H) = V (p m L, 1, H ). V p, SCP : V (p, 0, L) > V (p, 0, L) > V (p m L, 1, L). (iii) {P, E, b}., ( 2) 3) E(P(L)) = 0 < 1 = E(P(H)). ) p m H P(H) p m H V (P(H), 1, H) < V (p m H, 1, H) < V (p m H, E(p m H), H). 1., P (L) V(P(L), 0, H) V (p m H, 1, H) P(L) (p,p). p m L p. V p V (p, 0, L) > V (p, 0, L) p < p V (p, 0, L) > V (p, 0, L) p > p. p p SCP V (p, 0, L) > V (p, 0, L)., P(L) [p,p), > u V (p, 0, L) > V (P(L), 0, L) V (p, 0, H) < V (p m H, 1, H). 4 b L (p ) = 1. (p ) = 0 V (p, 0, L) > V (P(L), 0, L) 1., P(L) [p,p) P(L) (p,p), P(L) = p. p m L < p P(L) p m L, V (p m L, 0, L) > V (P(L), 0, L) V (p m L, 0, H) < V (p m H, 1, H)., 4 b L (p m L ) = 1 p m L, P(L) = p m L. (iii) p m L p b L b L. p [p, p m L ] {P, E, b} : P(L) = P(H) = p E(p) = 0 p p E(p) = 1 p > p b L (p) = b 0 L p p b L (p) = 0 p > p. {P, E, b} (E1) (E3). b 4 p < p 4. 88

p V (p, 0, H) = V (p, 0, H). p (p,p ], V (p, 0, H) V (p, 0, H), b L (p) = 0 4. p > p SCP V (p, 0, L) < V (p, 0, L) II p p > p m L., V (p, 0, L) < V (p, 0, L) V (p, 0, L) < V (p, 0, L) b L (p) = 0 4. {P, E, b}. (iv) {P, E, b}. p. E(p ) 0, t {L,H} p m L p t p m t. u(l) V (p, 0, L) u(h) V (p, 0, H)., p p p m H. p p m H... p p m H p < p m H V (p, 0, H) = u(h). SCP V (p, 0, L) > u(l), 2 4 E(p ) = 0 > 0. V (p, E(p ), L) > u(l) 1., > 0 p > p m L. V (p, 0, H) < u(h) V (p, 0, L) > u(l) 4 2 E(p ) = 0., V (p, E(p ), L) > u(l) 1 L. p p m L p [p, p m L ]. 4.1. SPE. p t i = p t i = p(a t ) 89

SPE. : p i I = L, H,, 0.., : p(h) p(l) L. p(h) : {p(h)h + [wp(h)h + (1 w) p(l)l] / (1 )} / 2 p(h)h LHS RHS ( )., p(l) {p(l)l + [wp(h)h + (1 w)p(l)l] / (1 )} / 2 p(l)l, p i s. SPE., SPE SPE., SPE p i p j { p i, p j }. t SPE p i < p j j, SPE. i. t SPE p i = p j, SPE., V 90

SPE ( SPE, ). V ( ). V t a t, ( 1, p i 1, p j 1 ),, (a t-1, p i t-1, p j t-1 ). t, V.,.,, V., a t (a t ) = argmax { p a t s.t. (p a t + V) / 2 p a t p 1 (8.1), t., V = [w (H)H + (1 w) (L)L] / (1 ). V 8.1 (x) = p(x), x = L, H p(x). 5.1 ) ash. ) Nash f. (i) p(f) = u (ii) [p(f) c](u / N + I) = [u c] (U / N) (iii) [p c](u/n + (1 F(p)) N-1 I) = [u c](u/n) p {p(f), p(f)}. ) k p 2 k N. p > c, p, [p c](u/n + I) > [p c](u/n + I/k)., p = c, p > p (p c)(u/n) > 0. k = 1. 91

p + p +, [p + c](u/n + I) > [p c](u/n + I). ) Nash (i) (iii)., p(f) > c., F. p F,, p -. p -. p p p(f) > c. p(f) < u.,., p(f),., [p(f), p(f)]., p(f) = u.,,., F, [p(f) c](u/n + I) = [u c](u/n). F (p(f),p(f)). (p1, p2) p(f) < p 1, p(f) > p 2 F(p 1 ) = F(p 2 ). (p 1, p 2 ) 0., [p 1, p 1 ] p 2 -. (p 1, p 2 ),. [p(f), p(f)]. [p(f), p(f)] [u c](u/n). 92

[1 F(p)] N-1., [p c](u/n + (1 F(p)) N-1 I) = [u c])u/n) p [p(f), p(f)]. (i) (iii) Nash, (i) (iii) Nash. (iii) [1 F(p)] N-1 = (u p)u/n (p c)i, p [p(f), p(f)] RHS 0 1, F(p) (0,1). (i) (iii) F(p(F)) = 0 < 1 = F(p(F)) F (p) > 0 p [p(f), p(f)] F. F ash -1 F (p) (i) - (iii). [p(f), p(f)] F., p(f) p(f) p(f). F, F. 5.2 (i), Nash. (ii) c (0, u) > 0 > 0 c(t) c < t, P, P -1 (x) F c c. (i) P: [0,1] [c(0), u] 93

, P P(t) > c(t) P (t) > 0 t. Nash. (t,t) T P(t) P 1 (t,t) = [P(t) c(t)]{u/n + [1 t] N-1 I} [1 t] N-1 P(t). P(t) t, P(t) p > u. Nash - (t, t) (t,t) t,t [0,1] (8.4) 2(t,t) = -[P(t) c(t)][n 1][1 t] N-2 I + {U/N + [1 t] N-1 I}P (t) (8.5) 8.2 2 (t, t) = 0 t [0,1] 2 (x, x) = 0 12 (y, x) (8.5)., (8.4) 94

Nash. t P(t). (ii), c (0, u) P c c. P c P c (t) = F -1 C(t) t [0,1] P c. P c (8.2) (8.3) c(t) c. P c (1) = F -1 c(1) = i., (iii) 5.1 8.6. P c (t) p = P c (t), F = F c t = F c (P c (t)) P c (8.2) (8.2) (8.3).P: [0,1] [0, u]. c( ) P( ) = (c( )) c( ) c( ) c, (c)= P c. > 0 > 0, c( ) c <, (c( ))) P c <. Nash 95

. 96

[1] Abreu, D., D. Pearce and E. Stacchetti (1985), "Optimal Cartel Equilibria with Imperfect Monitoring," Journal of Economic Theory, 39, 251-269. [2] Areeda, P. and D. Turner, "Predatory Pricing and Related Practices Under Section 2 of the Sherman Act," Harvard Law Review, 88 (December 1975), 697-733. [3] Bagwell, K. and G. Ramey (1988), "Advertising and Limit Pricing," Rand Journal of Economics, 19, 59-71. [4] Bagwell, K. and G. Ramey (1991), "Oligopoly Limit Pricing," Rand Journal of Economics, 22, 155-72. [5] Bagwell, K and R. Staiger (1997), "Collusion over the Business Cycle," Rand Journal of Economics, 28, 82-106. [6] Bain, J. (1949), "A Note on Pricing in Monopoly and Oligopoly," American Economic Review, 39: 448-64. [7] Borenstein, S. and A. Shephard (1996), "Dynamic Pricing in Retail Gasoline Markets," Rand Journal of Economics, 27, 429-451. [8] Brander J. and B. Spencer (1985), "Export Subsidies and International Market Share Rivalry," Journal of International Economics, 18, 83-100. [9] Bulow, J., J. Geanakoplos and P. Klemperer (1985), "Multimarket Oligopoly: Strategic Substitutes and Complements," Journal of Political Economy, 93 (June 1985), 488-511. [10] Cho, I-K. and D. Kreps (1987), "Signalling Games and Stable Equilibria," Quarterly Journal of Economics, 102: 179-221. [11] Dixit, A. (1980), "The Role of Investment in Entry Deterrence," Economic Journal, 90, 95-106. [12] Eaton, J. and G. Grossman (1986), "Optimal Trade and Industrial Policy Under Oligopoly," Quarterly Journal of Economics, 101, 383-406. [13] Fellner, W. (1949), Competition Among the Few, New York: Knopf. [14] Friedman, J. (1990), Game Theory with Applications to Economics, Oxford University Press. [15] Friedman, J. (1971), "A Non-cooperative Equilibrium in Supergames," Review of Economic Studies, 38. 97

[16] Fudenberg, D. and J. Tirole (1984), "The Fat Cat Effect, the Puppy Dog Ploy and the Lean and Hungry Look," American Economic Review, Papers and proceedings, 74, 361-368. [17] Fudenberg, D. and J. Tirole (1986), Dynamic Models of Oligopoly. Chur: Harwood Academic Publishers. [18] Fudenberg, D. and J. Tirole (1987), "Understanding Rent Dissipation: On the Use of Game Theory in Industrial Organization," American Economic Review, Papers and proceedings, 77, 176-183. [19] Fudenberg, D., D. Levine and E. Maskin (1994), "The Folk Theorem with Imperfect Public Information," Econometrica, 62, 997-1039. [20] Green, E. and R. Porter, "Noncooperative Collusion Under Imperfect Price Information," Econometrica, 52 (January 1984), 87-100. [21] Haltiwanger, J. and J. Harrington (1991), "The Impact of Cyclical Demand Movements on Collusive Behavior," Rand Journal of Economics, 22, 89-106. [22] Harrington, J. (1986), "Limit Pricing when the Potential Entrant is Uncertain of Its Cost Function," Econometrica, 54: 429-37. [23] Harsanyi, J. (1967-68), "Games with Incomplete Information Played by 'Bayesian' Players," Parts I, II, and III, Management Science, 14, 159-82, 320-24, 486-502. [24] Harsanyi, J. (1973), "Games with Randomly Disturbed Payoffs: A New Rationale for Mixed Strategy Equilibrium Points," International Journal oj Game Theory, 2: 1-23. [25] Kadiyali, V., "Entry, Its Deterrence, and Its Accommodation: A Study of the U.S. Photographic Film Industry," Rand Journal of Economics, 27.3 (Autumn 1996), 452-478. [26] Kreps, D. and J. Scheinkman, "Quantity Precommitment and Bertrand Competition Yield Cournot Outcomes," Bell Journal of Economics, 14 (Autumn 1983), 326-337. [27] Kreps, D. and R. Wilson (1982a), "Sequential Equilibria," Econometrica, 50: 863-894. [28] Kreps, D. and R. Wilson (1982b), "Reputation and Incomplete Information," Journal of Economic Theory, 27: 253-79. [29] McGee, J. (1958), "Predatory Price Cutting: The Standard Oil (N.J.) Case," Journal of Law and Economics, 1, 137-169. [30] Milgrom, P. and J. Roberts (1982a), "Limit Pricing and Entry under Incomplete Information: An Equilibrium Analysis," Econometrica, 50: 443-59. 98

[31] Milgrom, P. and J. Roberts (1982b), "Predation, Reputation and Entry Deterrence," Journal of Economic Theory, 27: 280-312. [32] Modigliani, F. (1958), "New Developments on the Oligopoly Front," Journal of Political Economy, 66, 215-232. [33] Nash, J. (1950), "Equilibrium Points in n-person Games," Proceedings of the National Academy of Sciences, 36: 48-49. [34] Porter, R. (1983), "A Study of Cartel Stability: The Joint Executive Committee, 1880-1886" Bell Journal of Economics, 14, 301-314. [35] Radner, R. (1981), "Monitoring Cooperative Agreements in a Repeated Principal-Agent Relationship," Econometrica, vol 49, No. 5, 1127-1148. [36] Roberts, J. (1985), "A Signaling Model of Predatory Pricing," Oxford Economic Papers, Supplement, 38, 75-93. [37] Rosenthal, R. (1980), "A Model in Which an Increase in the Number of Sellers Leads to a Higher Price," Econometrica, 48, 1575-1580. [38] Rotemberg J. and G. Saloner, "A Supergame-Theoretic Model of Business Cycles and Price Wars During Booms," American Economic Review, 76 (June 1986), 390-407. [39] Rubinstein, A. (1979), "Offenses that May Have Been Committed by- Accident An Optimal Policy of Retribution," in S. Brams, A. Schotter and G. Schwodiauer (eds), Applied Game Theory: 236-53. Wurzburg, Vienna: Physica-Verlag. [40] Selten, R. (1965), "Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetragheit," Zeitschrift fur die gesamte Staatswissenschaft, 12, 301-324. [41] Shilony, Y. (1977), "Mixed Pricing in Oligopoly," Journal of Economic Theory, 14: 373-88. [42] Spence, M. (1977), "Entry, Capacity, Investment and Oligopolistic Pricing," Bell Journal of Economics, 8, 534-544. [43] Stigler, G. (1964), "A Theory of Oligopoly," Journal of Political Economy, 72, 44-61. [44] Tirole, J. (1988), The Theory of Industrial Organization, Cambridge: MIT Press. [45] Varian, H. (1980), "A Model of Sales," American Economic Review, 70, 651-659. [46] Villas-Boas, J. Miguel (1995), "Models of Competitive Price Promotions: Some Empirical Evidence from the Coffee and Saltine Crackers Markets," Journal of Economics and Management Strategy, 4: 85-107. 99