R k = r k x r k y r k z



Σχετικά έγγραφα
Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections)

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής

ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Εικόνες και Πολυµεσικές Εφαρµογές. Ψηφιακή Επεξεργασία Εικόνας.

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Ο ρόλος των αναπαραστάσεων στην επίλυση προβλήματος

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών

Τμήμα Διοίκησης Επιχειρήσεων

Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Ορισµός του Προβλήµατος Ευθυγράµµιση : Εύρεση ενός γεωµετρικού µετασχηµατισµού που ϕέρνει κοντά δύο τρισδιάσ

2D23D. Seamless 2D23D Texture Mapping , : (1) ; (2) 1 ( LI Xiaolan 2),3) ZHA Hongbin 3)

ΤΕΛΙΚΕΣ ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ (6 Μονάδες ECTS)- Ακαδημαϊκό Έτος

Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μεθοδολογίες παρεµβολής σε DTM.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Συστήματα Πολυμέσων Ενότητα 1: Εικόνες - Γραφικά. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Three Dimensional Signed Eucl idean Distance Transf orm and Its Appl ications

= = = A X = B X = A B=

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΤΕΧΝΗΤΗ ΟΡΑΣΗ

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου

Γραφικά με Η/Υ / Εισαγωγή

Βαθμονόμηση κάμερας Camera Calibration. Κ Δελήμπασης 1

Εισαγωγή στην Τοπολογία

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

y(k) + a 1 y(k 1) = b 1 u(k 1), (1) website:

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων

3.3 ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ

ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

Κριτήριο παρεµβολής Βοηθητική συνάρτηση. R R τέτοια, ώστε να ισχύει. f(x) x. lim. ii) x 0. lim f (x) = 0. x 0. lim. ( x + x + 4) = 4. x 0.

Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων

Βιοπληροφορική και Πολυµέσα. Ειρήνη Αυδίκου Αθήνα

min x = f x, + y& f u f u

Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods)

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Τμήμα Επιστήμης Υπολογιστών ΗΥ-474. Ψηφιακή Εικόνα. Χωρική ανάλυση Αρχεία εικόνων

Παρεµβολή και Προσέγγιση Συναρτήσεων

Καµπύλες Bézier και Geogebra

Αξιολόγηση Ευριστικών Αλγορίθµων

Μέθοδοι Αναπαράστασης Περιγραµµάτων

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4

DECO DECoration Ontology

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 2: Ψηφιοποίηση, Αναπαράσταση και αποθήκευση δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών Σπουδών

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

3.6 Ευθεία και Αντίστροφη υναµική

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα.

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Στόχος της εργασίας και ιδιαιτερότητες του προβλήματος

Απεικόνιση δεδομένων (data visualization)

Γραφικά Ι. Ενότητα 1: Εισαγωγή. Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

P = 0 1/2 1/ /2 1/

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}.

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων

Γραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραφικά Υπολογιστών: Spline Αναπαραστάσεις

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΝΗΣΗΣ : 1981 ΟΙΚΟΓΕΝΕΙΑΚΗ ΚΑΤΑΣΤΑΣΗ. : mkrinidi@gmail.com

Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία

14 Εφαρµογές των ολοκληρωµάτων

Γραφικά Υπολογιστών: Θέαση στις 3D

Οπτική αντίληψη. Μετά?..

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Ακαδηµαϊκό Ετος

Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες

Οδηγίες σχεδίασης στο περιβάλλον Blender

Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing)

Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες

Επίλυση Γραµµικών Συστηµάτων

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Transcript:

Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες Καλογήρου Χαρίλαος Ηλ. Ταχυδροµείο : harkal@cs.uoi.gr Πανεπιστήµιο Ιωαννίνων Τµήµα Πληροφορικής Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.1/

Εισαγωγή Ορισµός προβλήµατος οσµένης µιας σειράς ϕωτογραφιών ενός ανθρώπου, να δηµιουργηθεί µια τρισδιάστατη πολυεδρική αναπαράσταση του κεφαλιού του ανθρώπου αυτού. Εφαρµογές : Εύκολη µοντελοποίηση ανθρωπίνων κεφαλιών Αντικατάσταση ηθοποιών µε αναγνωρίσιµα 3D µοντέλα για οπτικά effects. εν χρειάζεται η χρήση ακριβού εξοπλισµού 3D scanning. Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.2/

Μέθοδος Πρόβληµα : Οι ϕωτογραφίες είναι αποτέλεσµα µη αντιστρέψιµης προοπτικής προβολής Οι ϱυθµίσεις της κάµερας δεν είναι γνωστές για κάθε ϕωτογραφία. (εστιακή απόσταση, ϑέση) q p C1... C2 C3 Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.3/

Μέθοδος Λύση : Μαθηµατική µοντελοποίηση του προβλήµατος Μετατροπή του προβλήµατος σε πρόβληµα ελαχιστοποίησης Υπολογισµός των χαρακτηριστικών λήψης κάθε ϕωτογραφίας Υπολογισµός ϑέσης των χαρακτηριστικών σηµείων στο χώρο Morphing γενικού κεφαλιού στο Ϲητούµενο Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.4/

Μοντελοποίηση Για κάθε ϕωτογραφία k ϑεωρούµε πως η κάµερα έχει τα εξής χαρακτηριστικά : R k = r k x r k y r k z : 3x3 πίνακας περιστροφής t k = [t k x, t k y, t k z] : ιάνυσµα µετατόπισης Για κάθε 3D χαρακτηριστικό σηµείο p i ϑεω- ϱούµε ότι οι συντεταγµένες του πάνω στην εικόνα k είναι οι (x k i, yk i ) Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.5/

Μοντελοποίηση Θεωρούµε ότι η αρχή του συστήµατος συντεταγµένων (x, y) των ϕωτογραφιών ϐρίσκεται στο κέντρο της ϕωτογραφίας. Οι εξισώσεις προοπτικής προβολής της κάµερας µε εστιακή απόσταση f k είναι : x k i Rk p i + t k, x k i = (x k i, y k i, f k ) Η διαφορετικά : x k i = f k r k x p i + t k x r k z p i + t k z y k i = f k r k y p i + t k y r k z p i + t k z Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.6/

Μοντελοποίηση Θέτουµε h k = 1/t k z και sk = f k h k και έχουµε : x k i = s k r k x p i + t k x 1 + h k r k z p i y k i = s k r k y p i + t k y 1 + h k r k z p i Θέτοντας τέλος wi k = 1/(1 + h k r k z p i ) παίρνουµε : ( wi k x k i + x k i h k r k z p i s k ( r ) x k p i + t k x) = 0 ( yi k + yi k h k r k z p i s k ( r ) y k p i + t k y) = 0 w k i Προσέγγιση των αγνώστων µε ελαχιστοποίηση τετραγώνων. Με τον αλγόριθµο των Levenberg-Marquardt. Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.7/

Υλοποίηση Κύριοι τοµείς Το γραφικό περιβάλλον µε το οποίο ο χρήστης ϑα µπορεί να επεξεργάζεται τις εικόνες και να επιβλέπει την διαδικασία δηµιουργίας του 3D µοντέλου Επιλυτής κάµερας και χαρακτηριστικών σηµείων Morphing από το γενικό κεφάλι στο συγκεκριµένο Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.8/

Το γραφικό περιβάλλον Υποστήριξη projects Φόρτωση εικόνων σε µορφή JPEG, PNG, GIF, TGA, BMP, TIFF ιαχείριση των χαρακτηριστικών σηµείων Αλληλεπίδραση µε τον επιλυτή κάµερας. Υλοποίηση σε γλώσσα Python Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.9/

Το γραφικό περιβάλλον Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.10/

Επ. κάµ. και χαρακτ. σηµείων Λειτουργία επίλυσης κάµερας Λειτουργία επίλυσης χαρακτηριστικών σηµείων έχοντας καθορίσει τις κάµερες Υλοποίηση σε γλώσσα C++ Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.11/

Morphing / Deforming Μορφοποίηση του γενικού κεφαλιού µε ϐάση τα χαρακτηριστικά σηµεία οσµένων µετατοπίσεων u i = p i p (0) i αρχικές ϑέσεις p (0) i σε κάθε κορυφή i που από τις αντιστοιχεί σε χαρακτηριστικό σηµείο, ϑέλουµε να ϕτιάξουµε µία συνάρτηση f που ϑα µας δίνει την µετατόπιση u j για τις κορυφές j που δεν αντιστοιχούν σε χαρακτηριστικό σηµείο. Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.12/

Morphing / Deforming Μορφοποίηση του γενικού κεφαλιού µε ϐάση τα χαρακτηριστικά σηµεία Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.13/

Morphing / Deforming Μεγάλο ϑέµα, πολλές διαφορετικές λύσεις Η τελική µέθοδος δεν είναι σαφής ακόµα Χρήση Radial Basis Functions Χρήση Free-form deformation (FFD) Υλοποίηση σε γλώσσα C++ Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.14/

Τι έχει υλοποιηθεί Ο χρήστης µπορεί να δηµιουργεί, αποθηκεύει ϕορτώνει projects Nα επιλέγει και να ϕορτώνει ϕωτογραφίες Να ϑέτει και να επεξεργάζεται χαρακτηριστικά σηµεία Επίλυση κάµερας Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.15/

Τι αποµένει Σύνδεση επιλυτή κάµερας µε γραφικό περιβάλλον Μορφοποίηση γενικού κεφαλιού µε ϐάση τα χαρακτηριστικά σηµεία Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.16/

Βιβλιογραφία Frédéric Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, David H. Salesin. Synthesizing Realistic Facial Expressions from Photographs. Proceedings of SIGGRAPH 98, pp. 75 84, 1998 Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, and George Wolberg. Image Metamorphosis Using Snakes and Free-Form Deformations. SIGGRAPH 95 Conference Proceedings, pp 439 448. ACM SIGGRAPH, August 1995. Seung-Yong Lee, George Wolberg, Kyung-Yong Chwa, Sung Yong Shin. Image Metamorphosis with Scattered Feature Constraints. IEEE Transactions on Visualization and Computer Graphics, 2(4), December 1996 Richard Szeliski and Sing Bing Kang. Recovering 3D Shape and Motion from Image Streams using Nonlinear Least Squares. Journal of Visual Communication and Image Representation, 5(1):10 28, March 1994 Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.17/