ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4"

Transcript

1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν όλοι οι ϑετικοί ακέραιοι a, b για τους οποίους ισχύει ότι : (a, b) = 18 & [a, b] = 540 Λύση. Θα έχουµε 18 a και 18 b, και άρα a = 18 και b = 18m, για κάποιους ακέραιους, m. Παρατηρούµε ότι οι ακέραιοι, m αναγκαστικά είναι ϑετικοί, διότι a, b > 0. Επειδή (a, b) [a, b] = a b, ϑα έχουµε = m, δηλαδή 540 = 18m και άρα : m = 30. Ετσι το Ϲεύγος (, m) είναι ένα εκ των : (1, 30), (2, 15), (3, 10), (5, 6) και (30, 1), (15, 2), (10, 3), (6, 5). Συνεπώς οι ϑετικοί ακέραιοι a, b µε τις Ϲητούµενες ιδιότητες ϑα προκύπτουν από τα παραπάνω Ϲεύγη αν αυτά πολλαπλασιασθούν µε το 18: (a, b) { (18, 540), (36, 270), (54, 180), (90, 108), (540, 18), (270, 36), (180, 54), (108, 90) } Ασκηση Αν α, β, γ είναι µη-αρνητικοί ακέραιοι, δείξτε ότι : max { α, β, γ } = α + β + γ min { α, β } min { α, γ } min { β, γ } + min { α, β, γ } 2. είξτε ότι αν a, b, c είναι ϑετικοί ακέραιοι, τότε : [a, b, c] = a b c (a, b, c) (a, b) (a, c) (b, c) ( ) ( ) Λύση. 1. Υπάρχουν 6 δυνατές περιπτώσεις για τα α, β, γ: α β γ, α γ β, β α γ, β γ α, γ α β, γ β α Θα δείξουµε τη Ϲητούµενη σχέση στην περίπτωση α β γ. Οι άλλες περιπτώσεις αντιµετωπίζονται ανάλογα. Θα έχουµε : max { α, β, γ } = γ, α β γ = min { α, β } = α, min { α, γ } = α, min { β, γ } = β min { α, β, γ } = α Εποµένως : α+β+γ min { α, β } min { α, γ } min { β, γ } +min { α, β, γ } = α+β+γ α α β+α = γ = max { α, β, γ }

2 2 2. Παρατηρούµε ότι επειδή (a, b) a και (a, c) c και (b, c) b το κλάσµα στην δεξιά πλευρά της ( ) είναι ένας (ϑετικός) ακέραιος. Για τους ϑετικούς ακεραίους a, b, c µπορούµε να γράψουµε : a = p α 1 1 pα 2 2 pα, b = pβ 1 1 pβ 2 2 pβ, c = pγ 1 1 pγ 2 2 pγ όπου p 1, p 2,, p είναι διακεκριµένοι πρώτοι, και α i, β i, γ i, 1 i, είναι µη-αρνητικοί ακέραιοι. Τότε ϑα έχουµε : [a, b, c] = p max{α 1, β 1, γ 1 } 1 p max{α 2, β 2, γ 2 } 2 p max{α, β, γ } (a, b, c) = p min{α 1, β 1, γ 1 } 1 p min{α 2, β 2, γ 2 } 2 p min{α, β, γ } (a, b) = p min{α 1, β 1 } 1 p min{α 2, β 2 } 2 p min{α, β } (a, c) = p min{α 1, γ 1 } 1 p min{α 2, γ 2 } 2 p min{α, γ } (b, c) = p min{β 1, γ 1 } 1 p min{β 2, γ 2 } 2 p min{β, γ } Θα έχουµε : όπου m = 1, 2,, : a b c = p α 1+β 1 +γ 1 1 p α 2+β 2 +γ 2 2 p α +β +γ (a, b) (a, c) (b, c) [a, b, c] = p x 1 1 px 2 2 px x m = max { α m, β m, γ m } + min{αm, β m } + min{α m, γ m } + min{β m, β m } Από την άλλη πλευρά ϑα έχουµε : όπου m = 1, 2,, : a b c (a, b, c) = p y 1 1 py 2 2 py y m = α m + β m + γ m + min { α m, β m, γ m } Λαµβάνοντας υπ όψιν τη σχέση ( ) οι παραπάνω σχέσεις δίνουν m = 1, 2,, : x m = y m και εποµένως : (a, b) (a, c) (b, c) [a, b, c] = a b c (a, b, c) Ασκηση 3. Εστω a 1,..., a n ϑετικοί ακέραιοι. είξτε ότι [a 1, a 2,..., a n ] = a 1 a 2 a n (a i, a j ) = 1 για κάθε 1 i j n ( ) Λύση. Θα αποδείξουµε την παραπάνω ισοδυναµία µε χρήση της Αρχής Μαθηµατικής Επαγωγής. Αν n = 1, τότε η ( ) ισχύει τετριµµένα. Εστω n = 2. Υπενθυµίζουµε ότι (a 1, a 2 ) [a 1, a 2 ] = a 1 a 2. Εποµένως [a 1, a 2 ] = a 1 a 2 [a 1, a 2 ] = (a 1, a 2 ) [a 1, a 2 ] (a 1, a 2 ) = 1 Επαγωγική Υπόθεση: Υποθέτουµε ότι για τυχόντες ϑετικούς ακεραίους a 1, a 2,, a n 1 ισχύει : [a 1, a 2,..., a n 1 ] = a 1 a 2 a n 1 (a i, a j ) = 1 για κάθε 1 i j n 1 ( ) «=» Υποθέτουµε ότι : (a i, a j ) = 1 για κάθε 1 i j n. Θα δείξουµε ότι : d = ([a 1, a 2 ], a ) = 1, 3 n Πράγµατι, αν d 1, τότε έστω p ένας πρώτος διαιρέτης του d. Τότε p a και p [a 1, a 2 ]. Επειδή (a 1, a 2 ) = 1, έπεται ότι [a 1, a 2 ] = a 1 a 2 και άρα p a 1 a 2, δηλαδή p a 1 ή p a 2. Τότε όµως p (a 1, a ) = 1 το οποίο είναι άτοπο, ή p (a 2, a ) = 1 το οποίο είναι επίσης άτοπο. Άρα πράγµατι d = 1.

3 3 Επειδή [a 1, a 2, a 3, a n ] = [[a 1, a 2 ], a 3, a n ] και ([a 1, a 2 ], a ) = 1 και (a m, a r ) = 1, 3 m r n, έπεται µε χρήση της Επαγωγικής Υπόθεσης ότι : και [a 1, a 2, a 3, a n ] = [[a 1, a 2 ], a 3, a n ] = [a 1, a 2 ] a 3 a n = a 1 a 2 a 3 a n «=» Υποθέτουµε ότι : [a 1, a 2,..., a n ] = a 1 a 2 a n. Επειδή από την υπόθεση ϑα έχουµε : και εποµένως : [a 1, a 2, a 3, a n ] = [[a 1, a 2,, a n 1 ], a n ] [[a 1, a 2,, a n 1 ], a n ] = [a 1, a 2,, a n 1 ] a ( n ) [a1, a 2,, a n 1 ]a n a 1 a 2 a n = [a 1, a 2,, a n 1 ] a ( n ) [a1, a 2,, a n 1 ], a n [a 1, a 2,, a n 1 ] = a 1 a 2 a n 1 ([a 1, a 2,, a n 1 ], a n ) Εστω d = ( [a 1, a 2,, a n 1 ], a n ), και M = [a1, a 2,, a n 1 ]. Τότε : M = a 1 a 2 a n 1 d = a 1 a 2 a n 1 M Οπως επειδή προφανώς ισχύει [a 1, a 2,, a n 1 ] a 1 a 2 a n 1, ϑα έχουµε αναγκαστικά d = 1 και : Από την Επαγωγική Υπόθεση, τότε έπεται ότι : [a 1, a 2,, a n 1 ] = a 1 a 2 a n 1 (a i, a j ) = 1, για κάθε 1 i j n 1 και µένει να δείξουµε ότι d = (a, a n ) = 1, για κάθε = 1, 2,, n 1. Σταθεροποιώντας ένα τέτοιο και επιλέγοντας m, αντικαθιστούµε στην παραπάνω διαδικασία τον αριθµό a n µε τον αριθµό a m. Τότε χρησιµοποιώντας ότι [a 1, a 2,, a n ] = [[a 1, a 2, a m 1, a m+1,, a n ], a m ] η παραπάνω διαδικασία, δείχνει ότι ϑα έχουµε : (a i, a j ) = 1, για κάθε 1 i j n και i, j m. Ιδιαίτερα ϑα έχουµε d = (a, a n ) = 1, για κάθε = 1, 2,, n 1. Συνοψίζοντας, δείξαµε ότι : (a i, a j ) = 1, για κάθε 1 i j n Ασκηση 4. Βρείτε όλες τις ακέραιες λύσεις ή αποδείξτε ότι δεν υπάρχουν ακέραιες λύσεις, για τις ακόλουθες διοφαντικές εξισώσεις x y = x y = x + 18y = 97 Λύση. 1. Από τον Ευκλείδειο αλγόριθµο έχουµε 1745 = = = = = = 7 5 Άρα d = (1485, 1745) = 5

4 4 Επειδή d 15, έπεται ότι η εξίσωση 1485x y = 15 έχει λύση. Για την εύρεση όλων των λύσεων, ϑα έχουµε : 5 = = 75 2 ( ) = = ( ) = = ( ) = = ( ) = Εποµένως 5 = και άρα 15 = ( 3 47) (3 40) 1745 Τότε έχουµε τη λύση x 0 = 3 47 = 141 και y 0 = 3 40 = 120 και για όλες οι λύσεις της εξίσωσης 1485x y = 15 δίνονται ως εξής : x = x 0 + b d y = y 0 a d t = t = t t = t = t 2. Από τον Ευκλείδειο αλγόριθµο έχουµε 1001 = = = = = = = 2 1 Άρα d = (102, 1001) = 1 Επειδή d 1, η εξίσωση 102x y = 1 έχει λύση.

5 5 Για την εύρεση όλων των λύσεων, ϑα έχουµε : Άρα έχουµε τη λύση 1 = = 5 2 (7 1 5) = = (19 2 7) = = ( ) = = ( ) = = ( ) = x 0 = 422 και y 0 = 43 Τότε όλες οι λύσεις της εξίσωσης 102x y = 1 είναι οι ακόλουθες : x = x 0 + b 1001 d t = t = t y = y 0 a d t = t = t 3. Υπολογίζουµε τον µέγιστο κοινό διαιρέτη : (60, 18) = 3 και Άρα η εξίσωση 60x+18y = 97 δεν έχει ακέραιες λύσεις. Ασκηση 5. (α) Εστω η ιοφαντική εξίσωση ax + by = c όπου a, b, c N και (a, b) = 1. Να δείξετε ότι το σύνολο των ϑετικών 1 λύσεων της παραπάνω διοφαντικής εξίσωσης είναι πεπερασµένο. (β) Να εξετασθεί αν η ιοφαντική εξίσωση έχει ϑετικές λύσεις. 31x + 43y = 5 Λύση. Επειδή d = (a, b) = 1 c, έπεται ότι η εξίσωση ax + by = c έχει λύσεις. Αν (x 0, y 0 ) είναι µια λύση, τότε όλες οι λύσεις είναι της µορφής : x = x 0 + b d t = x 0 + b t y = y 0 a d t = y 0 a t Επειδή Ϲητάµε ϑετικές λύσεις ϑα πρέπει x > 0 και y > 0, δηλαδή x 0 + b t > 0 και y 0 a t > 0. Άρα t > x 0 y 0 και b a > t = x 0 < t < y 0 b a Επειδή οι ακέραιοι στο διάστηµα ( x 0 b, y 0 ) a 1 Με τον όρο ϑετικές λύσεις ενοούµε λύσεις (x, y) µε την ιδιότητα x > 0 και y > 0.

6 6 είναι πεπερασµένοι σε πλήθος έπεται ότι το σύνολο των ϑετικών λύσεων της εξίσωσης ax + by = c είναι πεπερασµένο. Επιπρόσθετα το σύνολο των ϑετικών λύσεων είναι : x = x 0 + b t y = y 0 at ( x 0 b, y ) 0 a Από τον Ευκλείδειο αλγόριθµο έχουµε ότι (43, 31) = 1 5 και άρα η εξίσωση 31x + 43y = 5 έχει λύση. Τότε ϐρίσκουµε x 0 = 90 και y 0 = 65 και εποµένως όλες οι λύσεις της εξίσωσης είναι x = x 0 + b d t = t y = y 0 a d t = t Για να έχουµε ϑετικές λύσεις ϑα πρέπει t ( x 0 b, y 0 ) (90 = a 43, 65 ) ( ) = 2.093, και Z ( 2.093, ) = Συνεπώς από το πρώτο µέρος της άσκησης έπεται ότι η εξίσωση 31x + 43y = 5 δεν έχει ϑετικές λύσεις. Ασκηση 6. Ενας υπάλληλος ταχυδροµείου διαθέτει µόνο γραµµατόσηµα των 14 και 21 λεπτών. Με ποιούς συνδυασµούς αυτών των γραµµατοσήµων µπορεί να αποσταλλεί ένα δέµα το οποίο τιµάται : (α) 3.50, (β) 4.00 ; Λύση. (α) Εστω x ο αριθµός των γραµµατοσήµων των 14 λεπτών και y ο αριθµός των γραµµατοσή- µων των 21 λεπτών. Τότε το πλήθος x και y αυτών των γραµµατοσήµων ϑα πρέπει να ικανοποιεί τη ιοφαντική εξίσωση : 14x + 21y = 350 (α) Επειδή (14, 21) = 3 350, έπεται ότι η (α) έχει ακέραιες λύσεις. Επειδή 7 = , ϑα έχουµε : 350 = 50 7 = και άρα το Ϲεύγος (x 0, y 0 ) = ( 50, 50) αποτελεί µια ακέραια λύση της (α). Ολες οι ακέραιες λύσεις της (α) ϑα είναι : x = x 0 + b d t = t = t y = y 0 a d t = t = 50 2t Επειδή προφανώς x, y 0, αναζητούµε µη-αρνητικές λύσεις : { ( t, 50 2t) Z & t 0 & 50 2t 0 } απ όπου εύκολα ϐλέπουµε ότι ϑα πρέπει t 25 = t = 17, 18, 189, 20, 21, 22, 23, 24, 25 Ετσι οι δυνατές µη-αρνητικές ακέραιες λύσεις της (α), και άρα οι δυνατοί συνδυασµοί γραµ- µατοσήµων είναι : x = 1 & y = 16, x = 4 & y = 14, x = 7 & y = 12, x = 10 & y = 10 x = 13 & y = 8, x = 16 & y = 6, x = 19 & y = 4, x = 22 & y = 2, x = 25 & y = 0

7 7 (β) Εστω x ο αριθµός των γραµµατοσήµων των 14 λεπτών και y ο αριθµός των γραµµατοσήµων των 21 λεπτών. Τότε το πλήθος x και y αυτών των γραµµατοσήµων ϑα πρέπει να ικανοποιεί τη ιοφαντική εξίσωση : 14x + 21y = 400 (β) Επειδή (14, 21) = 3 400, έπεται ότι η (β) δεν έχει ακέραιες λύσεις. Άρα είναι αδύνατο να αποσταλλεί το δέµα αξίας 4 χρησιµοποιώντας γραµµατόσηµα των 14 και 21 λεπτών. Ασκηση 7. Με χρήση του αλγορίθµου του Ευκλείδη υπολογίστε τους µέγιστους κοινούς διαιρέτες : d = (20785, 44350) & δ = (34709, ) και εκφράστε καθέναν από τους d, δ ως ακέραιο γραµµικό συνδυασµό των παραπάνω αριθµών. Λύση. 1. Από τον Ευκλείδειο αλγόριθµο έχουµε Άρα = = = = = = 5 5 d = (44350, 20785) = 5 Θα εκφράσουµε το d = 5 ως ακέραιο γραµµικό συνδυασµό των και Θα έχουµε : 5 = = ( ) 5 ( ) Εποµένως : Άρα = ( ) 7 ( ) + 50 ( ) = ( ) 100 ( ) = ( ) = 1707 (20785) (44350) (1) 2. Από τον Ευκλείδειο αλγόριθµο έχουµε d = 5 = 1707 (20785) (44350) = = = = = = = = 1 15 δ = (100313, 34709) = 1 Εργαζόµενοι όπως στο µέρος 1. µπορούµε να εκφράσουµε το δ = 1 ως ακέραιο γραµµικό συνδυασµό των και ως εξής : δ = 1 = 6286 (34709) (100313)

8 8 Ασκηση 8. Να ϐρεθούν, αν υπάρχουν όλες οι ακέραιες λύσεις των ιοφαντικών εξισώσεων : (α) x y = 25 & (β) x y = 37 Επιπρόσθετα να ϐρεθούν, αν υπάρχουν, όλες οι ϑετικές ακέραιες λύσεις τους. Λύση. 1. Από την Άσκηση 7 έχουµε (44350, 20785) = 5 25 και άρα η ιοφαντική εξίσωση x y = 25 έχει λύση. Επιπλέον από την Άσκηση 7, έχουµε 5 = 1707 (20785) (44350) = 25 = 5 5 = (20785) (44350) = Εποµένως το Ϲεύγος 25 = (x 0, y 0 ) = ( 8535, 40000) είναι µια λύση της (α) Ολες οι ακέραιες λύσεις της (α) ϑα είναι : x = x 0 + b d t = t = t y = y 0 a dt = = t Για τις ϑετικές λύσεις, ϑα έχουµε : x > 0 & y > 0 = t > 0 & t > 0 = 8870t > 8535 & 4157t < Εποµένως : < t < = < t < Ετσι επειδή, ϑα έχουµε t = 1, 2, 3,, 9. Εποµένως η (α) έχει 9 ϑετικές ακέραιες λύσεις : { } ( t, t) t = 1, 2,, 9 2. Από την Άσκηση 7 έχουµε δ = (100313, 34709) = 1 37 και άρα η ιοφαντική εξίσωση x y = 37 έχει λύση. Επιπλέον από την Άσκηση 7, έχουµε δ = 1 = 6286 (34709)+2175 (100313) = 37 = 37 1 = (34709) (100313) = Εποµένως το Ϲεύγος 37 = (x 0, y 0 ) = ( , 80485) είναι µια λύση της (β) Ολες οι ακέραιες λύσεις της (β) ϑα είναι : x = x 0 + b d t = t = t y = y 0 a dt = = t Για τις ϑετικές λύσεις, ϑα έχουµε : Εποµένως : x > 0 & y > 0 = t > 0 & t > 0 = = t > & 34709t < = < t < < t < Ετσι επειδή δεν υπάρχει ακέραιος στο ανοιχτό διάστηµα ( , ) των πραγ- µατικών αριθµών, έπεται ότι η (β) δεν έχει ϑετικές ακέραιες λύσεις.

9 9 Ασκηση 9. Να λυθεί η διοφαντική εξίσωση : Υπάρχουν ϑετικές λύσεις ; 10672x y = 87 ( ) Λύση. Από τον Ευκλείδειο Αλγόριθµο ϑα έχουµε : Άρα = = = = = = = 29 2 d = (10672, 4147) = 29 Επειδή 87 = 29 3, έπεται ότι και εποµένως η διοφαντική εξίσωση ( ) έχει λύση. Για την εύρεση µιας λύσης της ( ) ϑα έχουµε : 29 = = = ( ) = = = ( ) = = = ( ) = = = ( ) = = = 68 ( ) = = Εποµένως ϑα έχουµε ( 68 3) (175 3) 4147 = 3 29 = 87 και άρα : ηλαδή το Ϲεύγος είναι µια ακέραια λύση της ( ). Ολες οι λύσεις της ( ) ϑα είναι τότε οι εξής : x = x 0 + b d = 87 (x 0, y 0 ) = ( 204, 525) t = t = t y = y 0 a dt = = t Για να έχουµε ϑετικές λύσεις ϑα πρέπει x > 0 και y > 0, δηλαδή : t > t > 0 = t > t > 0 = t > = t < = Επειδή Z ( , ) =, έπεται ότι η διοφαντική εξίσωση ( ) δεν έχει ϑετικές λύσεις. Ασκηση 10. Να λυθεί η διοφαντική εξίσωση 172x + 20y = 1000 και ακολούθως να ϐρεθούν, αν υπάρχουν, όλες οι ϑετικές ακέραιες λύσεις της.

10 10 Λύση. Από τον Ευκλείδειο Αλγόριθµο ϑα έχουµε : Άρα 172 = = = = 4 2 d = (172, 20) = 4 Επειδή 1000 = 4 250, έπεται ότι και εποµένως η διοφαντική εξίσωση ( ) έχει λύση. Για την εύρεση µιας λύσης της ( ) ϑα έχουµε : 4 = 12 8 = = 12 (20 12) = = = 2 ( ) = = Εποµένως ϑα έχουµε (250 2) ( ) 20 = = 1000 και άρα : ηλαδή το Ϲεύγος είναι µια ακέραια λύση της ( ). Ολες οι λύσεις της ( ) ϑα είναι τότε οι εξής : x = x 0 + b d t = ( 4250) 20 = 1000 (x 0, y 0 ) = (500, 4250) t = t t y = y 0 a 172 dt = = t Για να έχουµε ϑετικές λύσεις ϑα πρέπει x > 0 και y > 0, δηλαδή : t > 0 t > t > 0 = Z t < = = 100 < t < = t = 99 Άρα η διοφαντική εξίσωση ( ) έχει ακριβώς µια ϑετική λύση η οποία προκύπτει για την τιµή t = 99 και είναι η x = 5 και y = 7 Ασκηση 11. Να ϐρεθούν όλοι µη-αρνητικοί ακέραιοι, n, έτσι ώστε η εξίσωση να έχει διπλή ϱίζα. ( n 1)x x 3( n + 1) = 0 Λύση. Υπολογίζουµε τη διακρίνουσα του παραπάνω τριωνύµου : = (2 ) 2 4( n 1)( 3( n + 1)) = (n 1) = n 12 Για να έχει διπλή ϱίζα το τριώνυµο, πρέπει και αρκεί = 0, ή ισοδύναµα οι ϑετικοί ακέραιοι, n είναι λύσεις της διοφαντικής εξίσωσης 4x + 12y = 12 ( )

11 11 Μια προφανής λύση της ( ) είναι η (x 0, y 0 ) = (0, 1), και τότε όλες οι λύσεις της ( ) ϑα είναι οι εξής (εδώ a = 4, b = 12, c = 12, και d = (4, 12) = 4): x = x 0 + b d t = t = 3t y = y 0 a d t = t = 1 t Επειδή ϑε πρέπει x, y 0, ϑα έχουµε 3t 0 και 1 t 0 = 0 t 1 = t = 0 ή t = 1 Εποµένως οι Ϲητούµενες τιµές των, n είναι οι εξής : = 0 και n = 1 ή = 3 και n = 0 Ασκηση 12. Εστω a 1,..., a n ϑετικοί ακέραιοι, n 2, και c ένας ακέραιος. Υποθέτουµε ότι d = (a 1,..., a n ) c. είξτε ότι η ιοφαντική εξίσωση έχει άπειρες ακέραιες λύσεις. Λύση. Υπενθυµίζουµε ότι : a 1 x 1 + a 2 x a n x n = c η ιοφαντική εξίσωση a 1 x 1 +a 2 x 2 + +a n x n = c έχει ακέραιες λύσεις d = (a 1,..., a n ) c Θα δείξουµε µε χρήση της Αρχής Μαθηµατικής Επαγωγής στο πλήθος n των αγνώστων ότι στην περίπτωση κατά την οποία d c, η ( ) έχει άπειρες λύσεις. Αν n = 2, τότε γνωρίζουµε ότι αν d = (a 1, a 2 ) c, τότε η ιοφαντική εξίσωση a 1 x 1 + a 2 x 2 = c έχει άπειρες ακέραιες λύσεις οι οποίες δίνονται από τους παρακάτω τύπους : x 1 = z + a 2 d t x 2 = w a 1 d t όπου (z, w) είναι µια λύση της a 1 x 1 + a 2 x 2 = c. Υποθέτουµε ότι η ( ) έχει άπειρες ακέραιες λύσεις, για τυχόντες ακεραίους a 1,, a n, c έτσι ώστε : d = (a 1,..., a n ) c. Θεωρούµε την ιοφαντική εξίσωση : και υποθέτουµε d = (a 1,..., a n, a n+1 ) c. a 1 x 1 + a 2 x a n x n + a n+1 x n+1 = c { Θεωρούµε το σύνολο a n x n + a n+1 x n+1 Z x n, x n+1 Z } των ακεραίων γραµµικών συνδυασµών των a n, a n+1. Οπως έχουµε { αποδείξει στην Θεωρία αυτό το σύνολο συµπίπτει µε το σύνολο των ακεραίων πολλαπλασίων (a n, a n+1 )y Z y Z } του µέγιστου κοινού διαιρέτη (a n, a n+1 ) των a n, a n+1 : { an x n + a n+1 x n+1 x n, x n+1 Z } = { (a n, a n+1 )y y Z } Θεωρούµε, για κάθε ακέραιο y, τη ιοφαντική εξίσωση : ( ) ( ) a n x n + a n+1 x n+1 = (a n, a n+1 )y ( ) ως προς x n, x n+1, η οποία προφανώς έχει ακέραια λύση, και εποµένως ϑα έχει άπειρες ακέραιες λύσεις. Χρησιµοποιώντας ότι (a 1,..., a n 1, a n, a n+1 ) = (a 1,..., a n 1, (a n, a n+1 )), έπεται ότι ϑα έχουµε (a 1,..., a n 1, (a n, a n+1 )) c, και άρα η ιοφαντική εξίσωση ( ) ανάγεται στην a 1 x 1 + a 2 x a n 1 x n 1 + (a n, a n )y = c ( )

12 12 η οποία είναι µια ιοφαντική εξίσωση n µεταβλητών. Από την Επαγωγική υπόθεση, η ( ) έχει άπειρες λύσεις. Εποµένως, επειδή κάθε ακέραια λύση της ( ) είναιν και ακέραι λύση της ( ), έπεται ότι και η αρχική ιοφαντική εξίσωση ( ) έχει άπειρες λύσεις. Ασκηση 13. Βρείτε όλες τις ακέραιες λύσεις ή αποδείξτε ότι δεν υπάρχουν ακέραιες λύσεις, για τις ακόλουθες διοφαντικές εξισώσεις 1. 2x + 3y + 4z = x + 21y + 35z = x + 102y + 103z = 1 Λύση. 1. Θέτουµε z = να είναι ένας τυχαίος αλλά σταθερός ακέραιος, και τότε έχουµε την εξίσωση ως προς x και y: 2x + 3y = 5 4t Επειδή (2, 3) = 1 5 4t,, έπεται ότι η εξίσωση 2x + 3y = 5 4t έχει λύση, έστω την (x 0, y 0 ). Τότε 2x 0 + 3y 0 = 5 4t και όλες οι λύσεις της 2x + 3y = 5 4t είναι οι ακόλουθες : x = x 0 + b d s = x s s Z y = y 0 a d s = y 0 2 s Τότε η γενική λύση της 2x + 3y + 4z = 5 είναι x = x s 2x 0 + 3y 0 = 5 4t y = y 0 2 s όπου s, z = t Παρατηρούµε ότι για x 0 = 5 2t και y 0 = 5 η εξίσωση 2x 0 + 3y 0 = 5 4t ικανοποιείται. Τότε η γενική λύση της 2x + 3y + 4z = 5 είναι η εξής : x = 5 2t + 3s y = 5 2s z = t s, 2. Επειδή d = (7, 21, 35) = 7 και 7 8 έπεται ότι η εξίσωση 7x + 21y + 35z = 8 δεν έχει ακέραιες λύσεις. 3. Θέτουµε z = να είναι ένας τυχαίος αλλά σταθερός ακέραιος, και τότε έχουµε την εξίσωση ως προς x και y: 101x + 102y = 1 103t Επειδή (101, 102) = 1 έπεται ότι η εξίσωση 101x + 102y = 1 103t έχει λύση,. ουλεύοντας όπως και στο ερώτηµα 1, τότε έπεται ότι x = s + t y = 1 101s 2t s, z = t και έτσι έχουµε ϐρει τη γενική λύση της εξίσωσης 101x + 102y + 103z = 1.

13 13 Ασκηση 14. Να ϐρεθούν όλοι οι ϑετικοί ακέραιοι οι οποίοι όταν διαρεθούν µε το 11 αφήνουν υπόλοιπο 6 και όταν διαρεθούν µε το 5 αφήνουν υπόλοιπο 2. Λύση. Εστω a ένας ϑετικός ακέραιος ο οποίος όταν διαρεθεί µε το 11 αφήνει υπόλοιπο 6 και όταν διαρεθεί µε το 5 αφήνει υπόλοιπο 2. Τότε υπάρχουν ακέραιοι, l έτσι ώστε : a = 11l + 6 και a = ( ) δηλαδή 11l + 6 = και άρα 5 11l = 4. Εποµένως οι ακέραιοι, l είναι λύσεις της διοφαντκής εξίσωσης 5x 11y = 4 Λύνοντας µε τη γνωστή διαδικασία την παραπάνω διοφαντική εξίσωση, ϐρίσκουµε εύκολα ότι οι ακέ- ϱαιες λύσεις της είναι οι εξής : x = 11t 8 και y = 5t 4, Άρα όλοι οι ακέραιοι, l για τους οποίους ικανοποιούνται οι σχέσεις ( ) είναι οι Επειδή a > 0, ϑα πρέπει = 11t 8 και l = 5t 4, Τότε 5( 11t 8) + 2 = 55t 38 > 0 = t < 38 = = t 1 55 a = 55t 38, t 1 ή ισοδύναµα a = 55t 38, t 1 Ετσι οι Ϲητούµενοι αριθµοί a προκύπτουν ϑέτοντας t = 1, 2, στη σχέση a = 55t 38: a = 17, 72, 127, Ασκηση 15. Ενας ϕοιτητής επιστρέφει στην Νέα Υόρκη απο διακοπές στη Ελλάδα και την Αγγλία. Στην Νέα Υόρκη αλλάζει τις λίρες Αγγλίας και τα ευρώ τα οποία έχει σε δολλάρια και µετά την αλλαγή λαµβάνει συνολικά δολλάρια. Αν παίρνει 1.11 δολλάρια για κάθε ευρώ και 1.69 δολλάρια για κάθε λίρα Αγγλίας, πόσα ευρώ και πόσες λίρες Αγγλίας είχε πρίν την αλλαγή συναλλάγµατος ; Λύση. Εστω x ο αριθµός των ευρώ και y ο αριθµός των λιρών Αγγλίας που είχε ο ϕοιτητής πριν τη συναλλαγή. Οπως προκύπτει από τα δεδοµένα του προβλήµατος, τα x και y είναι (ϑετικές) λύσεις της ιοφαντικής εξίσωσης : Από τον Ευκλείδειο αλγόριθµο έχουµε 111x + 169y = = = = = = = = 2 1

14 14 Άρα d = (169, 111) = 1. Αφού d η εξίσωση 111x + 169y = έχει λύση. Εχουµε 1 = = 3 1 (5 1 3) = = ( ) = Εποµένως 1 = ( 44) 169 και άρα Τότε έχουµε τη λύση = ( ) = = ( ) = = ( ) = = ( ) ( ) 169 x 0 = = και y 0 = = και όλες οι λύσεις της εξίσωσης 111x + 169y = δίνονται ως εξής : x = x 0 + b d t = t y = y 0 a d t = t Επειδή x > 0 και y > 0 και επειδή, ϑα έχουµε : t = t < = = t = 4677 Τότε αντικαθιστώντας ϐρίσκουµε ότι x = ( 4677) = = 53 y = ( 4677) = = 35 Συνεπώς πρίν την αλλαγή συναλλάγµατος ο ϕοιτητής είχε x = 53 ευρώ και y = 35 λίρες Αγγλίας. Ασκηση 16. Ενας ιδιοκτήτης ϐιβλιοπωλείου παραγγέλνει ηµερολόγια, καθένα εκ των οποίων κοστίζει 5, µαρκαδόρους, καθένας εκ των οποίων κοστίζει 3, και ξύστρες, όπου τρείς ξύστρες µαζί κοστίζουν 1. Αν η παραγγελία αφορά 100 κοµµάτια και το συνολικό ποσό το οποίο πλήρωσε είναι 100, πόσα ηµερολόγια, µαρκαδόρους, και ξύστρες παρέλαβε ο ϐιβλιοπώλης ; Λύση. Εστω x ο αριθµός των ηµερολογίων, y ο αριθµός των µαρκαδόρων, και z ο αριθµός των ξυστρών της παραγγελίας. Τότε προφανώς οι αριθµοί x, y, z αποτελούν ακέραιες λύσειςν των εξισώσεων x + y + z = 100 & 5x + 3y + z 3 = 100 Ισοδύναµα οι x, y, z αποτελούν ακέραιες λύσεις των ιοφαντικών εξισώσεων : x + y + z = 100 & 15x + 9y + z = 300 ( )

15 15 Αντικαθιστώντας το z = 100 x y στην δεύτερη εξίσωση, προκύπτει η ιοφαντική εξίσωση : 14x + 8y = 200 η οποία έχει άπειρες ακέραιες λύσεις διότι (14, 8) = Μια προφανής ακέραια λύση της ( ) είναι η x 0 = 0 και y 0 = 25, και όλες οι ακέραιες λύσεις της ( ) δίνονται από τους τύπους : x = 4t & y = 25 7t, και εποµένως z = 100 x y = t Επειδή αναζητούµε µη-αρνητικές λύσεις, ϑα πρέπει να έχουµε : απ όπου άµεσα ϐλέπουµε ότι : x = 4t 0 & y = 25 7t 0 & z = t 0 t = 0, 1, 2, 3 Εποµένως οι µη-αρνητικές λύσεις του συστήµατος ιοφαντικών εξισώσεων ( ) είναι : (x, y, z) { (0, 25, 75), (4, 18, 78), (8, 1, 81) (12, 4, 84) } ( ) Ασκηση 17. Να ϐρεθούν όλες οι ακέραιες λύσεις της (µη-γραµµικής) διοφαντικής εξίσωσης : y 2 6x 2 + xy y + 17x 12 = 0 ( ) Λύση. Θα δείξουµε ότι η επίλυση της ( ) ανάγεται στην επίλυση δύο γραµµικών διοφαντικών εξισώσεων. Θεωρώντας την ( ) ως τριώνυµο ως προς y: Η διακρίνουσα του παραπάνω τριωνύµου είναι : y 2 + (x 1)y + ( 6x x 12) = 0 = (x 1) 2 4( 6x x 12) = x 2 2x x 2 68x + 48 = 25x 2 70x + 49 = (5x 7) 2 Εποµένως οι ϱίζες του τριωνύµου ( ) ϑα είναι : (x 1) + (5x 7) y 1 = = 4x 6 (x 1) (5x 7) = 2x 3 και y 1 = = 6x + 8 = 3x Τότε το τριώνυµο ( ) µπορεί να γραφεί ως εξής : y 2 + (x 1)y + ( 6x x 12) = ( y (2x 3) )( y ( 3x + 4) ) = ( y 2x + 3 )( y + 3x 4 ) Ετσι οι ακέραιες λύσεις της ( ) αποτελούνται από όλους τους ακέραιους x, y έτσι ώστε y 2 +(x 1)y+( 6x 2 +17x 12) = ( y 2x+3 )( y+3x 4 ) = 0 = y 2x+3 = 0 ή y+3x 4 = 0 ηλαδή το σύνολο των ακέραιων λύσεων της ( ) αποτελείται από την ένωση Λ = Λ 1 Λ 2 του συνόλου Λ 1 των ακέραιων λύσεων της διοφαντικής εξίσωσης 2x + y = 3 και του συνόλου Λ 2 των ακέραιων λύσεων της διοφαντικής εξίσωσης Εύκολα ϐλέπουµε ότι 3x + y = 4 Λ 1 = { (1 + t, 1 + 2t) } και Λ 2 = { (1 + t, 1 3t) } Άρα το σύνολο των ακέραιων λύσεων της ( ) είναι το εξής : Λ = { (1 + t, 1 + 2t) } { (1 + t, 1 3t) s Z }

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις Επαναληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015/nt015.html Τρίτη Ιουνίου 015 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2016/nt2016.html Πέµπτη 7 εκεµβρίου 2016 Ασκηση 1. Για κάθε

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2014/nt2014.html https://stes.google.com/ste/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 6 Μαρτίου 2013 Ασκηση 1. Βρείτε όλους τους

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Α Μπεληγιάννης - Σ Παπαδάκης Ιστοσελιδα Μαθηµατος : http://usersuogr/abelga/numbertheory/nthtml Τετάρτη 10 Απριλίου 2013 Ασκηση 1 Θεωρούµε τις αριθµητικές

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 2 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/liearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου 2018 Ασκηση 1

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt.html Σάββατο 20 Απριλίου 2013 Ασκηση 1. 1) είξτε ότι η

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 7 Απριλίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 00) Η Εργασία χωρίζεται σε µέρη: Το πρώτο Ασκήσεις - περιλαµβάνει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai017/lai017html Παρασκευή 17 Νοεµβρίου 017

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 2 Απριλίου 2013 Το παρόν κείµενο

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ 1 4. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ 1. Η γενική µορφή του τριωνύµου µε µεταβλητή x R i) α x + βx + γ, α 0 ii) β α x + α 4α, α 0. Ειδικές µορφές του τριωνύµου Όταν > 0 τότε α x + βx + γ α(x x 1 )(x x ), όπου

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2013-2014 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii19/laii19html Παρασκευή 1 Μαρτίου 19 Υπενθυµίσεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 7 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου 2016

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Η Ευκλείδεια διαίρεση

Η Ευκλείδεια διαίρεση 1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 25 Μαιου 2013 2

Διαβάστε περισσότερα

( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α

( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α . ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Σηµείωση Οι δυνάµεις α του κεφαλαίου έχουν βάση α > 0 και εκθέτη οποιονδήποτε πραγµατικό αριθµό.. Παραδοχή 0 α. Ιδιότητες α + α ( ) α α : α ( ) α α α αβ α β α β α β. Εκθετική

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 26 Μαίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt205/nt205.html ευτέρα 27 Απριλίου 205 Ασκηση. είξτε ότι για κάθε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 8 Παραβολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Παραβολή είναι ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου τα οποία ισαπέχουν από µια σταθερή ευθεία (δ) που λέγεται διευθετούσα της παραβολής και από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017 Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 15 εκεµβρίου 2017

Διαβάστε περισσότερα