ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ
|
|
- Δωρίς Γερμανού
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Συµπληρωµατικές Σηµειώσεις Προχωρηµένο Επίπεδο Επεξεργασίας Εικόνας Σύνθεση Οπτικού Μωσαϊκού ρ. Γ. Χ. Καρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τοµέας Μηχανολογικών Κατασκευών και Αυτοµάτου Ελέγχου Εργαστήριο Αυτοµάτου Ελέγχου και Ρυθµίσεως Μηχανών και Εγκαταστάσεων 1 Ιουλίου 2012
2 1 Εισαγωγή Αντικείµενο των σηµειώσεων αυτών είναι η εισαγωγή στις έννοιες και την υλοποίηση αλγορίθµων για την δηµιουργία οπτικών µωσαϊκών στα πλαίσια εϕαρµογών Τεχνητής Ορασης. Απώτερος σκοπός των αλγορίθµων και µεθοδολογιών που περιγράϕονται, είναι η ενσωµάτωση κάθε νέας οπτικής πληροϕορίας που προκύπτει κατά την εξέλιξη οποιασδήποτε διαδικασίας που σχετίζεται µε χρήση µίας ή και περισσότερων αναλογικών ή ψηϕιακών καµερών. Η δηµιουργία µωσαϊκού από ψηϕιακές εικόνες, αποτελεί µία ειδικότερη εϕαρµογή της γενικότερης µεθοδολογίας (image warping). Αρχικά, δίνεται µία εισαγωγή στην µεθοδολογία image warping, ενώ στην συνέχεια περιγράϕεται η διαδικασία κατασκευής του ψηϕιακού µωσαϊκού (image mosaicing), όπου διαδοχικές εικόνες συνθέτονται µεταξύ τους για την δηµιουργία µίας εικόνας µεγαλύτερης ανάλυσης (πανόραµα). 2 Μεθοδολογία Image Warping Σκοπός της τεχνικής image warping είναι ο µετασχηµατισµός της χωρικής σύνθεσης της εικόνας από το σύστηµα στο οποίο έγινε η λήψη της σε ένα άλλο. Με ϐάση τον ορισµό αυτό µπορεί να ϑεωρήσει κανείς, πως ακόµα και µία απλή µετατόπιση της εικόνας για µερικά pixels π.χ κατά τον οριζόντιο x άξονά της, ϑεωρείται στρέβλωση (warp). Ο µετασχηµατισµός αυτός απεικονίζεται µαθηµατικά µε την ακόλουθη διανυσµατική συνάρτηση : I= f (I ), f : R 2 R 2 (1) όπου I και I οι πίνακες που περιέχουν τις φωτεινότητες της εικόνας πριν και µετά τον µετασχηµατισµό. Στα πλαίσια του µαθήµατος Βιοµηχανικών Ηλεκτρονικών, γίνεται ανάλυση της µεθοδολογίας Euclidean Warp. Παρότι υπάρχουν και άλλες µεθοδολογίες διαθέσιµες στην ϐιβλιογραϕία, η απλότητα της Euclidean warp σε συνδυασµό µε την απόδοσή της, είναι και οι κύριοι λόγοι που οδήγησαν στην επιλογή και την διδασκαλία της. Στην τεχνική Euclidean Warp εµπλέκονται τέσσερις ϐασικές παράµετροι : p = [ s a t x t y ] T (2) που υποδηλώνουν την κλίµακα, την περιστροϕή γύρω από τον άξονα της κάµερας και την µεταϕορά κατά τους άξονες της εικόνας. Εστω το σηµείο x = [ x y 1 ] T στο επίπεδο της εικόνας I και έστω x = [ x y 1 ] T η αντίστοιχη ϑέση του στην µετασχηµατισµένη εικόνα I (χρησιµοποιώντας
3 και στις δύο περιπτώσεις οµογενείς συντεταγµένες). Λαµβάνοντας υπόψιν µόνο ένα pixel, η εξίσωση 1 µπορεί να γραϕεί ως ένας απλός γραµµικός µετασχηµατισµός, όπου T ο πίνακας µετασχηµατισµού : x y 1 = x = Tx (3) x y (4) 1 s cos α s sin α t x s sin α s cos α t y Παρατηρούµε πως αντί για τον µετασχηµατισµό ενός µόνο σηµείου, είναι δυνατόν να µετασχηµατίσουµε ολόκληρη την εικόνα που αποτελείται από n σηµεία, απλά αντικαθιστώντας το διάνυσµα x µε : X = x 1 x n y 1 y n 1 1 (5) Κατά συνέπεια η εξίσωση 3 µετατρέπεται στην ακόλουθη µορϕή : X = TX (6) Στην συνέχεια εϕαρµόζεται παρεµβολή (συνήθως γραµµική) των τιµών του πίνακα φωτεινότητας της εικόνας εισόδου I µε τις τιµές ϑέσης των pixels του πίνακα X. 3 Υλοποίηση ψηϕιακού οπτικού µωσαϊκού Χαρακτηριστική εϕαρµογή της τεχνικής image warping, είναι η σύνθεση πολλών εικόνων σε ένα ολοκληρωµένο µωσαϊκό για την δηµιουργία πανοραµικής όψεως. Αντίστοιχη τεχνική διδάσκεται και στα πλαίσια του µαθήµατος κάνοντας χρήση της µεθοδολογίας Euclidean warp. Στην περίπτωσή µας (όπως και σχεδόν σε όλες τις περιπτώσεις κατασκευής µωσαϊκού), ο µετασχηµατισµός µεταξύ των εικόνων δεν είναι γνωστός από την αρχή και κατά συνέπεια πρέπει να υπολογιστεί κάθε φορά που γίνεται λήψη µίας νέας εικόνας. Υπάρχουν δύο ξεχωριστές µεθοδολογίες για τον υπολογισµό του πίνακα µετασχηµατισµού T µεταξύ δύο εικόνων. Στην πρώτη, λαµβάνεται υπόψιν η σχετική κίνηση των pixels ολόκληρης της εικόνας χρησιµοποιώντας γνωστές από την ϐιβλιογραϕία Optical Flow τεχνικές. Στην δεύτερη, λαµβάνεται υπόψιν η σχετική κίνηση µόνο των pixels που αντιστοιχούν σε συγκεκριµένα χαρακτηριστικά (features) της εικόνας. Στα πλαίσια του µαθήµατος ακολουθείται η δεύτερη µεθοδολογία. 2
4 Σχήµα 1: Εικόνα 1 Για τον υπολογισµό του µετασχηµατισµού, η εξίσωση 3 αναδιαµορϕώνεται ως εξής : x = Zp (7) x y 1 = x y y x s cos α s sin α t x t y 1 (8) εάν υπάρχει ένα διαθέσιµο σηµείο, ενώ για n σηµεία : [ X(1, :) T X(2, :) T ] = X (1, :) T X (2, :) T ones(n,1) zeros(n,1) X (2, :) T X (1, :) T zeros(n,1) ones(n,1) s cos α s sin α t x (9) Οπως φαίνεται από τις παραπάνω εξισώσεις απαιτούνται τουλάχιστον δύο σηµεία για τον προσδιορισµό των τεσσάρων παραµέτρων µετασχηµατισµού, χρησιµοποιώντας την µέθοδο των Ελαχίστων Τετραγώνων. Κατά την διδασκαλία του µαθήµατος, τα δύο σηµεία επιλέγονται από τον χρήστη µε το ποντίκι του υπολογιστή. t y 3
5 Σχήµα 2: Εικόνα 2 Σχήµα 3: Η εικόνα 2 µετασχηµατισµένη ως προς την 1 4
6 Σχήµα 4: Το µωσαϊκό µεταξύ των εικόνων 1 και 2 Στα Σχήµατα 1 και 2 παρατηρούµε δύο διαδοχικές εικόνες που προκύπτουν κατά την κίνηση ενός υποβρυχίου οχήµατος γύρω από ένα στόχο, µέσω ηµι-αυτόνοµου σχήµατος ελέγχου. Στο Σχήµα 3 φαίνεται ο µετασχηµατισµός (image warping) της εικόνας 2 ως προς την 1, ενώ στο Σχήµα 4 φαίνεται το µωσαϊκό που προκύπτει από την σύνθεση των δύο εικόνων. Παρακάτω περιγράϕονται αναλυτικά τα ϐήµατα του αλγορίθµου για την κατασκευή του οπτικού µωσαϊκού για n διαδοχικές εικόνες : 1. Λήψη της εικόνας I 0 2. Υπολογισµός των χαρακτηριστικών σηµείων της εικόνας, εϕαρµόζοντας κάποιον αλγόριθµο για Feature Tracking ή διαδραστικά από τον χρήστη µέσω του ποντικιού 3. Λήψη της εικόνας I 1 4. Υπολογισµός της νέας ϑέσης των χαρακτηριστικών σηµείων της εικόνας 5. Υπολογισµός του διανύσµατος p = [ s a t x t y ] T, επιλύοντας την Εξίσωση 9 εϕαρµόζοντας την τεχνική των Ελαχίστων Τετραγώνων 5
7 6. ιαµόρϕωση του πίνακα T που περιγράϕει τον µετασχηµατισµό της εικόνας I 1 ως προς την I 0, χρησιµοποιώντας τα στοιχεία του διανύσµατος p 7. Μετασχηµατισµός της εικόνας I 1 ως προς την I 0 και εύρεση των νέων ορίων αυτής 8. Επικόλληση της εικόνας I 0 στην µετασχηµατισµένη εικόνα I 0 και δηµιουργία του µωσαϊκού M 0 9. Επικόλληση της εικόνας M 0 στην εικόνα I p όπου ϑα φιλοξενεί το πανόραµα 10. Λήψη της εικόνας I Επανάληψη των ϐηµάτων 4 7 µεταξύ των εικόνων I 0 και I 2 για την δηµιουργία του µωσαϊκού M Επικόλληση της εικόνας M 1 στην εικόνα I p όπου τα κοινά σηµεία επικαλύπτονται και προστίθεται κάθε νέα πληροϕορία 13. Η διαδικασία επαναλαµβάνεται για κάθε νέα εικόνα 6
8 ΠΑΡΑΔΕΙΓΜΑ Δίνεται μονόχρωμη (grayscale) κάμερα με ανάλυση 480x720 pixels (γραμμές, στήλες). Η κάμερα βρίσκεται τοποθετημένη σε κατάλληλο μηχανισμό που της επιτρέπει να μετακινηθεί ελεύθερα στο χώρο. Τη χρονική στιγμή t γίνεται λήψη της εικόνας Ι. Στην εικόνα Ι εντοπίζονται δύο χαρακτηριστικά σημεία P 1 και P 2 με συντεταγμένες στο πεδίο της εικόνας P 1 (x 1,y 1 ) = (650, 110) και P 2 (x 2,y 2 )= (545, 375) αντίστοιχα. Την χρονική στιγμή t και ενώ η κάμερα έχει μετακινηθεί, λαμβάνεται νέα εικόνα Ι όπου τώρα τα προηγούμενα χαρακτηριστικά σημεία βρίσκονται σε νέες θέσεις P 1 και P 2 με συντεταγμένες P 1 (x 1,y 1 ) = (111, 110) και P 2 (x 2,y 2 ) = (195, 375) αντίστοιχα. Ζητείται: A) Σύμφωνα με την μέθοδο Euclidean Warp, να βρεθεί ο πίνακας Z και το διάνυσμα των παραμέτρων p= [ scos a ssin a t t ] T που περιγράφει τον μετασχηματισμό της εικόνας Ι ως προς την Ι ( sη κλίμακα, aη γωνία περιστροφής γύρω από τον άξονα της κάμερας και t, t η μεταφορά κατά τους xκαι yάξονες της εικόνας αντίστοιχα). Δίνεται ο αντίστροφος του πίνακα Ζ: -1 Z = B) Να υπολογιστούν οι διαστάσεις (γραμμές, στήλες σε pixels) της νέας εικόνας που θα προκύψει από τον μετασχηματισμό της εικόνας Ι ως προς την Ι. x x y y
9 ΛΥΣΗ: ΕΡΩΤΗΜΑ Α: x1 x2 Έστω X = y1 y ο πίνακας που περιέχει τις συντεταγμένες των σημείων στην 2 ' ' ' x1 x 2 εικόνα Ι και X = ' ' ο πίνακας που περιέχει τις συντεταγμένες των ίδιων y1 y2 σημείων στην εικόνα Ι. Για n κοινά σημεία, ο πίνακας Ζ, δίνεται από την σχέση: ' Τ ' Τ X (1,:) X (2,:) ones( n,1) zeros( n,1) Z= ' Τ ' Τ X (2,:) X (1,:) zeros( n,1) ones( n,1) Οπότε για n=2, ο πίνακας Ζ γίνεται: ' ' x1 y1 1 0 ' ' x2 y2 1 0 Z = ' ' y1 x1 0 1 ' ' y2 x2 0 1 Αντικαθιστώντας: Z = Ο αντίστροφος του πίνακα Z δίνεται από την εκφώνηση: -1 Z =
10 Για την εύρεση του διανύσματος p λύνουμε το σύστημα: Αναλυτικά: T -1 [ X(1,:) X(2,:) ] = Zp p = Z [ X(1,:) X(2,:) ] x p= x 2 y 1 y2 T p= s cos a s sin a p= = tx t y ΕΡΩΤΗΜΑ Β: Ο πίνακας μετασχηματισμού Τ δίνεται από την εξίσωση: s cos a ssin a tx T = s sin a s cos a t y Αν CO = ο πίνακας που περιέχει τα όρια της εικόνας ως προς το σύστημα συντεταγμένων που έγινε η λήψη, τότε τα όρια της νέας εικόνας που προκύπτει από τον μετασχηματισμό της εικόνας Ι ως προς την εικόνας Ι, θα είναι:
11 scos a ssin a tx CΝ= ssin a s cos a t y CΝ= CΝ= Η νέα διάσταση της εικόνας δίνεται σύμφωνα με τον ακόλουθο συλλογισμό: XPR = min( [ CΝ(1,:) 0 ] ) : max( [CN(1,:) W_OLD] ) YPR = min( [ CΝ(2,:) 0 ] ) : max( [CN(2,:) H_OLD] ) W_NEW = size (XPR,2) H_NEW = size(ypr,2) Όπου W_OLD = 720 και H_OLD = 480. Άρα η νέα διάσταση της μετασχηματισμένης εικόνας θα είναι: W_NEW = (1205-0) H_NEW = (799-(-48)) Ύστερα από στρογγυλοποίηση σε ακέραιους αριθμούς.
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες
Διαβάστε περισσότεραΜηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται
Διαβάστε περισσότεραισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί
ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.
Διαβάστε περισσότεραΧωρικές Περιγραφές και Μετασχηµατισµοί
Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μωσαϊκά-Συρραφή Εικόνων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Διαβάστε περισσότεραΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΤΕΧΝΗΤΗ ΟΡΑΣΗ
ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΤΕΧΝΗΤΗ ΟΡΑΣΗ ΓΕΩΜΕΤΡΙΑ ΚΑΜΕΡΑΣ ΚΑΙ ΠΡΟΟΠΤΙΚΑ ΜΟΝΤΕΛΑ Εργαστήριο Αυτομάτου Ελέγχου Η παρουσίαση βασίζεται στις διαφάνειες: Multiple View Geometr, Richard Hartle ad Adrew isserma
Διαβάστε περισσότεραΔυναμική Μηχανών I. Επανάληψη: Μαθηματικά
Δυναμική Μηχανών I 2 1 Επανάληψη: Μαθηματικά 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Συμβολισμοί Μεταβλητών
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος
6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου
Διαβάστε περισσότεραΓεωμετρικοί μετασχηματιμοί εικόνας
Γεωμετρικοί μετασχηματιμοί εικόνας Μάθημα: Υπολογιστική Οραση 1 Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στονευκλείδιοχώρο: p=[x p,y p,z p ] T, όπου x p, y p, z p πραγματικοί αριθμοί. ΕστωΕ 3 τοσύνολοτωνp.
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Εκτίµηση Κίνησης Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα
Διαβάστε περισσότεραΓραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διαλέξεις #-# Σύνθεση Δ Μετασχηματισμών Ομογενείς Συντεταγμένες Παραδείγματα Μετασχηματισμών
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα
ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :
Διαβάστε περισσότεραΘέση και Προσανατολισμός
Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου
Διαβάστε περισσότερα2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων
2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Επανάληψη 3 Συσχετισμένοι 4 Γραμμικοί
Διαβάστε περισσότεραΚεφάλαιο 5 Γραμμικοί Μετασχηματισμοί
Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 9/6/08 Διδάσκων: Ι. Λυχναρόπουλος Έστω A= k και w = 3 0. Να βρεθεί η τιμή του k για την οποία
Διαβάστε περισσότεραΑνεξαρτησία κάθετων μεταξύ των κινήσεων
Ανεξαρτησία κάθετων μεταξύ των κινήσεων ΦΥΣ 111 - Διαλ.08 1 Εξαρτώνται οι τιμές των α x, v x και x από τις τιμές των α y, v y και y την ίδια ή κάποια άλλη χρονική στιγμή? Το ερώτημα που τίθεται είναι κατά
Διαβάστε περισσότεραΚΑΤΑΓΡΑΦΗ ΤΟΥ ΙΧΝΟΥΣ ΤΗΣ ΟΠΤΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ: ΜΙΑ ΜΕΘΟΔΟΣ ΔΙΕΡΕΥΝΗΣΗΣ ΤΗΣ ΕΠΙΛΕΚΤΙΚΟΤΗΤΑΣ ΤΗΣ ΟΠΗΣ ΩΣ ΒΑΣΙΚΟΥ ΧΑΡΑΚΤΗΡΙΣΤΙΚΟΥ ΤΟΥ ΣΧΗΜΑΤΟΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΧΑΡΤΟΓΡΑΦΙΑΣ ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΙΧΝΟΥΣ ΤΗΣ ΟΠΤΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ: ΜΙΑ ΜΕΘΟΔΟΣ ΔΙΕΡΕΥΝΗΣΗΣ ΤΗΣ ΕΠΙΛΕΚΤΙΚΟΤΗΤΑΣ
Διαβάστε περισσότεραcos ϑ sin ϑ sin ϑ cos ϑ
ΜΕΜ 102 Γεωμετρία και Γραμμική Άλγεβρα Διάλεξη 33 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης Νοε 2014 Χ.Κουρουνιώτης (Παν.Κρήτης) ΜΕΜ 102-33 Νοε 2014 1 / 11 Μετασχηματισμοί του επιπέδου Πολλοί μετασχηματισμοί
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ Ορισμός. Αν τα και είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα η συνάρτηση που ορίζεται από τη σχέση όπου (συνιστώσες) είναι
Διαβάστε περισσότεραΣημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
Διαβάστε περισσότεραΜοντέλο φωτισμού Phong
ΚΕΦΑΛΑΙΟ 9. Στο προηγούμενο κεφάλαιο παρουσιάσθηκαν οι αλγόριθμοι απαλοιφής των πίσω επιφανειών και ακμών. Απαλοίφοντας λοιπόν τις πίσω επιφάνειες και ακμές ενός τρισδιάστατου αντικειμένου, μπορούμε να
Διαβάστε περισσότεραΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ
Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 5. - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 opyight ΕΜΠ - Σχολή
Διαβάστε περισσότεραΜετασχηματισμοί Μοντελοποίησης (modeling transformations)
Μετασχηματισμοί Δ Μετασχηματισμοί Μοντελοποίησης (modeling trnformtion) Καθορισμός μετασχηματισμών των αντικειμένων Τα αντικείμενα περιγράφονται στο δικό τους σύστημα συντεταγμένων Επιτρέπει την χρήση
Διαβάστε περισσότεραΕφαρµογές γεωγραφικών επεξεργασιών
ΕΞΑΡΧΟΥ ΝΙΚΟΛΟΠΟΥΛΟΣ ΜΠΕΝΣΑΣΣΩΝ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε. ΛΑΖΑΡΙ ΗΣ & ΣΥΝΕΡΓΑΤΕΣ ΑΝΩΝΥΜΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΛΕΤΩΝ Α.Ε. ΓΕΩΘΕΣΙΑ ΣΥΜΒΟΥΛΟΙ ΑΝΑΠΤΥΞΗΣ Ε.Π.Ε. Εφαρµογές γεωγραφικών επεξεργασιών Α. Κουκουβίνος
Διαβάστε περισσότεραΓραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής
Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΣΤ Εξάμηνο Δρ Κωνσταντίνος Δεμερτζής η Μετασχηματισμοί kdemertz@fmenr.duth.gr Μετασχηματισμοί Κατά τον σχηματισμό του εικονικού κόσμου
Διαβάστε περισσότεραΕπανάληψη Μιγαδικών Αριθμών
Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,
Διαβάστε περισσότεραΚλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία
Διαβάστε περισσότεραΜηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 1. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται
Διαβάστε περισσότεραΚίνηση σε δύο διαστάσεις
ΦΥΣ 131 - Διαλ.07 1 Κίνηση σε δύο διαστάσεις Διαδρομή του σώματος Τελική θέση Αρχική θέση Η κίνηση που κάνει το αυτοκίνητο καθώς στρίβει περιορίζεται σε ένα οριζόντιο επίπεδο - Η αλλαγή στο διάνυσμα θέσης
Διαβάστε περισσότεραΕνότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
Διαβάστε περισσότεραΘέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού
Διαβάστε περισσότεραΔιάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο
Διαβάστε περισσότεραΜετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ
Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός
Διαβάστε περισσότερα2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
Διαβάστε περισσότεραΣφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ. Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής
ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής E-mail: pasv@uniwa.gr ΑΣΚΗΣΗ 1 1. Έστω δύο 3Δ καρτεσιανά συστήματα συντεταγμένων,
Διαβάστε περισσότερααπό t 1 (x) = A 1 x A 1 b.
Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από
Διαβάστε περισσότεραΑριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50
Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΟπτική Μοντελοποίηση Ανθρώπινου Προσώπου με Εφαρμογές σε Αναγνώριση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Σημάτων Ελέγχου και Ρομποτικής Οπτική Μοντελοποίηση Ανθρώπινου Προσώπου με Εφαρμογές σε Αναγνώριση Επιβλέπων: καθ. Πέτρος Μαραγκός Ορισμός
Διαβάστε περισσότερα1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων
3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από
Διαβάστε περισσότεραΠεριγραφή αλγορίθµων. ιαγράµµατα ροής
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην Πληροφορική Ρωµύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr Περιγραφή αλγορίθµων Η έννοια του αλγορίθµου
Διαβάστε περισσότεραΘεωρία μετασχηματισμών
Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί
Διαβάστε περισσότεραΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ
Ψηφιακή Επεξεργασία Εικόνας-ΚΕΦ. -- ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΤΑΣΕΩΣ Η επεξεργασία εικόνας µέσω του ιστογράµµατος ουσιαστικά αποτελεί µία βασική επεξεργασία εικόνας που ανήκει
Διαβάστε περισσότεραΠερί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Διαβάστε περισσότεραΣυστήματα συντεταγμένων
Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από
Διαβάστε περισσότεραΔυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος
Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται
Διαβάστε περισσότεραΣτατιστική, Άσκηση 2. (Κανονική κατανομή)
Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται
Διαβάστε περισσότεραΜετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Διαβάστε περισσότεραE = P t = IAt = Iπr 2 t = J (1)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Η ενέργεια που παραδίδεται στο αυτί µας σε χρόνο
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
Διαβάστε περισσότεραΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB
Διαβάστε περισσότεραΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ
Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 7.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ
Διαβάστε περισσότεραΚεφάλαιο 4 Διανυσματικοί Χώροι
Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο
Διαβάστε περισσότεραΜεθοδολογίες παρεµβολής σε DTM.
Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία
Διαβάστε περισσότεραΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ 4 Ο Δ Ε Δ Ο Μ Ε Ν Α ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ Δεδομένα ή στοιχεία είναι μη επεξεργασμένα ποσοτικά και ποιοτικά χαρακτηριστικά
Διαβάστε περισσότεραΑνάλυση Σ.Α.Ε στο χώρο κατάστασης
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος
Διαβάστε περισσότεραυναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί
Διαβάστε περισσότεραΚεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Διαβάστε περισσότεραΠερί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις
Διαβάστε περισσότεραΓραμμική Διαφορική Εξίσωση 2 ου βαθμού
//04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί
Διαβάστε περισσότεραυναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων
υναµική των Ροµποτικών Βραχιόνων Ροµποτική Αρχιτεκτονική: η υναµική u Ροµποτική υναµική q, q& Ροµποτική Κινηµατική Περιβάλλον Θέση, Προσανατολισµός & και αλληλε ίδραση Η δυναµική ασχολείται µε την εξαγωγή
Διαβάστε περισσότεραΕισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος
Διαβάστε περισσότεραΜε τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:
ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:
Διαβάστε περισσότεραI. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Διαβάστε περισσότεραΠαρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
Διαβάστε περισσότεραΤα ρομπότ στην βιομηχανία
Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Δρ. Φασουλάς Γιάννης
Διαβάστε περισσότεραΑριθµητική Ανάλυση 1 εκεµβρίου / 43
Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι
Διαβάστε περισσότεραυναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 9. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - Cpyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός
Διαβάστε περισσότεραΓραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία) Σχεδίαση ευθείας θί με σάρωση (παρουσίαση προβλήματος) σχεδίαση ευθείας AB, με σάρωση, όπου A=(0,1) και B=(5,4) ποιο είναι το επόμενο pixel
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Διαβάστε περισσότεραΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ B ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ B ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ΠΡΩΤΟ Α. Να δείξετε ότι, σε ορθοκανονικό σύστημα συντεταγμένων Οxy, η εξίσωση του κύκλου C, με κέντρο Κ(x, y ) και ακτίνα
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν
Διαβάστε περισσότεραΕισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία
Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Τα ρομπότ στην
Διαβάστε περισσότεραιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση
44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια
Διαβάστε περισσότερα( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Διαβάστε περισσότερα2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Διαβάστε περισσότεραΠαραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος
Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Έστω ο υποχώρος W του R 5 που παράγεται από τα διανύσματα v=(,,-,,), v=(,,-,6,8), v=(,,,,6), v=(,,5,,8), v5=(,7,,,9). a)
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει.
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: Ν : = + + + Ν : = + + + Ν : = ma 3 για κάθε = ( ) Να αποδείξετε ότι για κάθε = ( ) ισχύει: Ν ( ) Ν ( ) Ν ( ) Ν (
Διαβάστε περισσότεραα) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ
ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.
Διαβάστε περισσότεραΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)
Διαβάστε περισσότεραΜετασχηµατισµοί 2 &3
Μετασχηµατισµοί &3 Περιγράφονται σαν σύνθεση βασικών: µετατόπιση, αλλαγή κλίµακας,περιστροφή, στρέβλωση Χωρίζονται σε γεωµετρικούς (εδώ) και αξόνων (αντίστροφοι) Θέσεις αντικειµένων και φωτεινών πηγών
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση
Διαβάστε περισσότεραΟΡΙΣΜΟΣ ΤΟΥ ΠΙΝΑΚΑ ΣΥΝΔΙΑΣΠΟΡΑΣ (Covariance Matrix)ΕΙΚΟΝΑΣ. Έστω ότι κάθε pixel της εικόνας έχει φωτεινότητα a i, i=1,2,...,ν
ΤΜΗΜΑ ΠΛΗΡ/ΚΗΣ &ΤΗΛ/ΝΙΩΝ 206 ΟΡΙΣΜΟΣ ΤΟΥ ΠΙΝΑΚΑ ΣΥΝΔΙΑΣΠΟΡΑΣ (ovince Mtix)ΕΙΚΟΝΑΣ ε Έστω η εικόναετου σχήματος με τα φωτεινά pixels να έχουν το κάθε ένα διάνυσμα θέσης i =(x i,y i ),i=,2,...,ν Έστω ότι
Διαβάστε περισσότεραP G = 1 2 (x x 3 2 ) 2 [(y 1 + y y n ) 6 + (y y y 2 n ) 3 ] 2 (n6 + n 3 ) = n3 (n 3 + 1)
Διακριτά Μαθηματικά Φροντιστήριο Θεωρία μέτρησης Polya ΙΙ 1 / 15 Ενας κύλινδρος, που έχει διαιρεθεί σε 6 τμήματα θα χρωματιστεί με 1 ή περισσότερα από διαφορετικά χρώματα. Με πόσους τρόπους επιτυγχάνεται
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Διαβάστε περισσότερα