Fourier Series. Fourier Series

Σχετικά έγγραφα
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Fourier Transform. Fourier Transform

1. For each of the following power series, find the interval of convergence and the radius of convergence:

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

IIT JEE (2013) (Trigonomtery 1) Solutions


3 Frequency Domain Representation of Continuous Signals and Systems

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

EN40: Dynamics and Vibrations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Trigonometric Formula Sheet

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Presentation of complex number in Cartesian and polar coordinate system

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Solve the difference equation

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

= 0.927rad, t = 1.16ms

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Assignment 1 Solutions Complex Sinusoids

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Example Sheet 3 Solutions

Homework for 1/27 Due 2/5

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

D Alembert s Solution to the Wave Equation

Bessel function for complex variable

HMY 220: Σήματα και Συστήματα Ι

Homework 8 Model Solution Section

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

α β

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

6.003: Signals and Systems

On Quasi - f -Power Increasing Sequences

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Other Test Constructions: Likelihood Ratio & Bayes Tests

Solution Series 9. i=1 x i and i=1 x i.

Math221: HW# 1 solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

C.S. 430 Assignment 6, Sample Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework 4.1 Solutions Math 5110/6830

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and Determinants

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Ψηφιακή Επεξεργασία Εικόνας

Section 8.3 Trigonometric Equations

Homework 3 Solutions

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

6.003: Signals and Systems. Modulation

If we restrict the domain of y = sin x to [ π 2, π 2

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Inverse trigonometric functions & General Solution of Trigonometric Equations

Srednicki Chapter 55

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

6.003: Signals and Systems. Modulation

PARTIAL NOTES for 6.1 Trigonometric Identities

14 Lesson 2: The Omega Verb - Present Tense

h(t) δ(t+3) ( ) h(t)*δ(t)

Introduction to Time Series Analysis. Lecture 16.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Statistical Inference I Locally most powerful tests

Το Λήμμα του Fejér και Εφαρμογές

Second Order RLC Filters

Multi-dimensional Central Limit Theorem

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Lecture 12 Modulation and Sampling

Αλληλεπίδραση ακτίνων-χ με την ύλη

HMY 220: Σήματα και Συστήματα Ι

Differentiation exercise show differential equation

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Finite Field Problems: Solutions

On Generating Relations of Some Triple. Hypergeometric Functions

Outline. Detection Theory. Background. Background (Cont.)

Parametrized Surfaces

Numerical Analysis FMN011

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Multi-dimensional Central Limit Theorem

Areas and Lengths in Polar Coordinates

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Solutions to Exercise Sheet 5

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Poularikas A. D. The Hilbert Transform The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Press

Transcript:

ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x()

Periodic sigal ca be represeed as sum of siusoidals if he sigal is square-iegrable over a arbirary ierval (). + x () d < So, i ca be expressed as x() a + a cos( ω ) + b si( ω ) c + c cos( ω + θ ) Xe ω j where π ω ω fudameal frequecy of he periodic fucio i [rad/s]. are ω, harmoic for,3,4,... frequecies he parameers are called Fourier series expasio or coefficies ad give by + a + x() d a x()cos( ω ) d,, 3,... + ()si( ) ω,, 3,... b x d c a + b θ a + jω X xe () d b a,, 3,... c Where is arbirary. I ca be se or / a

Usig Euler s rule, ca be wrie as X + + X x ( )cos( ω d ) j x ( )si( ω d ) X a j b If x() is a real-valued periodic sigal, we have + + jω jω X x() e d x() e d X X * * X a + j b o obai ad a Re{ X } b Im{ X } jθ X ce,,,3 Remember ha + cos( ω ) d for all + si( ω ) d for all + cos( ω ) si( mω ) d for all ad m + cos( ω ) cos( mω ) d for all m for all m + si( ω ) si( mω ) d for all m for all m

Example: Vm v () V m Fid he Fourier series of he followig periodic sigal v() 3 + Vm Vm m a x() d d V Vm Vm ω ω a cos( ) d cos( ) d V m cos( ω ) + si( ω ) ω ω V π m cos( ) for all ω ω Vm Vm ω ω b si( ) d si( ) d V m si( ω ) cos( ω ) ω ω V π m Vm cos( ) for ω π he v () a b si( ω ) + Vm Vm v () si( ω ) π Vm Vm Vm Vm v ( ) si( ω) si( ω) si(3 ω)... π π 3π

Le s assume ha V m V ad ms π ω π rad/s >> Vm; >>.; >> w*pi/; >> :.:.; >> vvm/-vm/pi*si(w*); >> plo (,v) >> hold o; >> vvm/-vm/pi*si(w*)- Vm/(*pi)*si(*w*); >> plo (,v) >> v3vm/-vm/pi*si(w*)- Vm/(*pi)*si(*w*)- Vm/(3*pi)*si(3*w*); >> plo (,v3) >> v4vm/-vm/pi*si(w*)- Vm/(*pi)*si(*w*)- Vm/(3*pi)*si(3*w*)- Vm/(4*pi)*si(4*w*); >> plo (,v4) >> xlabel ('[s]') >> ile('v()') V b m for,,3,... π c a b V π + m b θ a 9 for,,3,... a ω Vm X a j b j π v () c + c cos( + θ ) X c jθ V m X ce e π j9

he Effec of symmery o he Fourier Coefficies Eve-fucio symmery Eve-fucio is defied as x() x( ) + a x() d / 4 a x()cos( ω ) d x() b forall he Effec of symmery o he Fourier Coefficies Odd-fucio symmery Odd-fucio is defied as x() x( ) + a x() d x() / 4 b x()si( ω ) d a for all -

Example: x() A - - Assume ha,a, ad Deermie Fourier series coefficies of i expoeial ad rigoomeric form. 4 Plo he discree specrum of x(). s s x() x( ) + a x() d / 4 a x()cos( ω ) d b forall Example: a d + 4 4 /4 /4 /4 /4 /4 /4 cos( ω ) si( ω ) ω 4 4 a d a 4 π π si( ) si π 4 π,,,,,,,... π 3π 5π 7π x( ) + cos( ω) cos(3 ω) + si(5 ω) cos(7 ω)... π 3π 5π 7π

>> :.:8; >> 4; >> w*pi/; >> v/+/pi*cos(w*)- /(3*pi)*cos(3*w*)+/(5*pi )*cos(5*w*)- /(7*pi)*cos(7*w*); >> plo (,v) >> xlabel ('[s]') >> ile('v()') Example : X 4 e d e e j4ω jω jω e e ω j si( ω ) si( ω ) ω ω si( π /4) si( π /) π /4 π / sic( ) jω jω jω where si( π x) sic( x) π x

Example.: (co) x () Xe sic( ) e jω jω Sice is real ad eve, a X sic( ) b X si( X ) a x( ) + sic( )cos( ω ) Sice ω π /4 π x () + sic( )cos( ) θ, π c sic( ) x(),3, 5, has odd umbers harmoics. he eve umbers harmoics are zero. X is always real, so ha he phase is eiher zero or π. he magiude of discree specrum is show i ex page. Example.: (co) X sigal as sic fucio >> -::; >> x.5*sic(/); >> sem (,x) >> ile('he /*sic(/) sigal'); >> xlabel('');

Example.: (co) Fourier series approximaio of sigal x() for.,,3,5, ad 7 >> -5:.:5; >> ; >> x.5; >> plo (,x) >> hold o >> ; >> a(sic(/)*cos(*pi**/4)); >> xx+a; >> plo (,x) >> 3; >> a(sic(/)*cos(*pi**/4)); >> xx+a; >> plo (,x) >> 5; >> a(sic(/)*cos(*pi**/4)); >> plo (,x) >> xx+a; >> plo (,x) >> 7; >> a(sic(/)*cos(*pi**/4)); >> xx+a; >> plo (,x,'r') >> ile(' approximaio for Differe values') >> Example. : x() - - /4 - / - a + x() d + jω X xe () d,, 3,... / jω jω X e d e d + /

Example. : (co) X e e jω jω / jω jω / X e e e e jω jω ( jω / jω ) ( jω jω / ) X e + e e π j π π π j j j X e + e e jπ jπ jπ jπ X e jπ jπ Example. : (co) X e e e jπ π π π j j j π j π X e si π π π si π j j X e e sic( ) π -j. 5787 >> :; >> x(./(pi*)).*(si(pi/*)).*exp(-j*(pi*/)); ±, ±, ± 3,... 3 4 5 6 7 8 9 X -j.6366 +j -j. +j -j. 7 +j -j. 99 +j -j. 77 +j

Example. : (co) X a j b b(-)*imag(x) 3 4 5 6 7 8 9 b.7 3.444.546.88 9.44 7.57 x ( ).73siω +.444 si3ω +.546 si5ω +.88si7 ω +... 4 x( ) siω si3ω si5ω si7 ω... π + + + + 3 5 7 Example. : (co) >> :.:.; >> b.73*si(*pi**); >> plo (,b) >> hold o >> b3.444*si(*3*pi**); >> bb+b3; >> plo (,b,'r') >> b5.546*si(*5*pi**); >> bb+b3+b5; >> plo (,b,'g') >> b7.889*si(*7*pi**); >> bb+b3+b5+b7; >> plo (,b,'y') >> b9.447*si(*9*pi**); >> plo (,b,'m') >> ile ('sum (b_ si( \omega )') >>

Example. : (co) >>:; >> x(./()).*(si(pi/*)).*exp(j *(pi*/)); xabs(x); hea(8*agle(x))/pi; subplo (,,); sem(,x) xlabel('\omega_'); ylabel('x_'); ile('x_(\omega_)'); subplo (,,) sem(,hea) xlabel('\omega_') ylabel('\hea') ile('\hea (\omega_)'); Problem. x() A - Assume ha,a, ad Deermie Fourier series coefficies of i expoeial ad rigoomeric form. 4 Plo he discree specrum of x(). Compare wih Example s s

Problem: Wrie he Fourier series for he followig periodic sigal ad plo he sum of firs harmoics x() - - /4 - /4 - x( ).73cosω.444cos3ω +.546cos5ω.88cos7 ω +...