h(t) δ(t+3) ( ) h(t)*δ(t)
|
|
- Ἰοῦστος Αντωνιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 f()* δ ( ) = f( ) x () = δ ( + 3) = 3 h () = u () u ( ) h()* δ ( + 3) = h ( + 3) = u ( + 3) u ( + 1) 1 h() * -3 δ(+3) ( ) h()*δ()
2 MY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #6 Μοντέλα διαφορικών εξισώσεων για ΓΧΑ Συστήματα Επίλυση Διαφορικών Εξισώσεων Η γραμμική διαφορική εξίσωση δεύτερης τάξης Παράδειγματα
3 Μοντέλα διαφορικών εξισώσεων (Differeial equaio models) Πολύ συχνά τα ΓΧΑ μοντελοποιούνται με συνήθεις γραμμικές διαφορικές εξισώσεις (liear ordiary differeial equaios) με σταθερούς συντελεστές Παράδειγμα: x() y() S dy () d ay () = bx () Συνήθης: όχι μερικές παράγωγοι Γραμμική: όχι εξάρτηση η από (dy()/d) ) κλπ. Πρώτης τάξης: Διαφορικά πρώτης τάξης μόνο Σταθεροί συντελεστές
4 Μοντέλα διαφορικών εξισώσεων (Differeial equaio models) Ερώτηση: Η αναπαράσταση αυτή είναι γραμμική και χρονικά αμετάβλητη; dy1() dy() ay1() bx1(), ay() bx() d = d = x () = ax() + ax() Γραμμική: 1 1 d ( a1 y1 ( ) + a y ( )) a ( a1 y1 ( ) + a y ( )) = b ( a1 x1 ( ) + a x ( )) d dy1() dy() a 1 ( ay 1 ( ) bx 1 ( )) + a ( ay ( ) bx ( )) = d d Χρονικά αμετάβλητη: ->- dy( ) d ay( ) = bx( )
5 Μοντέλα διαφορικών εξισώσεων Παραδείγματα: Κύκλωμα RC Va() x(), vc() y() x() = Ri() + y() dy() i () = C d i() dy() RC + y() = x() d Γραμμική διαφορική εξίσωση πρώτης τάξης
6 Μοντέλα διαφορικών εξισώσεων Κύκλωμα RLC V () x (),() i y() dy () 1 Ry () + L + y ( τ ) d τ = x () d C () () 1 () L d y + R dy + y() = dx d d C d Γραμμική διαφορική εξίσωση δεύτερης τάξης
7 Μοντέλα διαφορικών εξισώσεων Μηχανικό σύστημα f () x(), y() d y () Fo () = m d dy () d y () x () r ky () M d = d d y() dy() M + r + ky() = x() d d
8 Μοντέλα διαφορικών εξισώσεων Γενική μορφή: Συνήθης γραμμική διαφορική εξίσωση τάξης με σταθερούς συντελεστές m d y() dy() d x() dx() a a1 + ay( ) = bm b1 + bx( ) m d d d d k m k d y () d x () ak = b k k k k= d k= d 1 dy d y d y με αρχικές συνθήκες: y(), (), (),..., () 1 d d d Γενικά για τη λύση μιας διαφορικής εξίσωσης τάξης απαιτούνται αρχικές συνθήκες
9 Εξισώσεις διαφορών (Differece equaios) Σε διακριτό χρόνο: a y [ k ] + a y [ k + 1] a y [ k ] = b x [ k m ] b 1 m a y[ k l] = b x[ k l] m k l= l= k με αρχικές συνθήκες y[-1],y[-], y[-]. Για την επίλυση μιας εξίσωσης διαφορών τάξης απαιτούνται επίσης αρχικές συνθήκες.
10 Επίλυση διαφορικών εξισώσεων Η Η γενική λύση της m d y() dy() d x() dx() a... a1 ay( ) bm... b1 bx( ) m d + + d + = d + + d + έχει τη μορφή: y () = y () + y () y () ZS k d y - Λύση ομογενούς διαφορικής εξίσωσης k k k = d (homogeeous soluio) με αρχικές συνθήκες y() - Φυσική απόκριση (aural respose) - Απόκριση μηδενικής εισόδου (zero-ipu respose) a () = yzs () - Μερική λύση (paricular soluio) της εξίσωσης με αρχικές συνθήκες y()= - Απόκριση μηδενικής κατάστασης (zero-sae respose) - Βεβιασμένη απόκριση (Forced respose)
11 Επίλυση διαφορικών εξισώσεων a k m k d y() d x() = bk k d k k k= d k= Ισοδύναμα x () y () y () = y () + y () 1 dy d y d y 1 d d d () y(), (), (),..., () ΓΧΑ x() = P ΓΧΑ y () y() y () x() + ΓΧΑ yzs () y () =
12 Η γραμμική διαφορική εξίσωση δεύτερης τάξης d y () dy () 1 a + a + a y() = x() d d dy με αρχικές συνθήκες y(), () d Ομογενής εξίσωση: d y() dy() a + a1 + ay() = d d Θα αναζητήσουμε λύσεις της μορφής: y = Ce λ () Αντικαθιστώντας: Ca ( λ + a1λ+ a) e λ = Επομένως: Χαρακτηριστική εξίσωση ή aλ + a1λ+ a = Χαρακτηριστικό πολυώνυμο Διακρίνουσα: Δ= a 4a a 1
13 Η γραμμική διαφορική εξίσωση δεύτερης τάξης d y () dy () d 1 () y dy a + a + a y = (), () d d d a λ + a λ + a = 1 Ρίζες χαρακηριστικού πολυωνύμου Λύση ομογενούς εξίσωσης Δ> Δύο πραγματικές άνισες ρίζες ρζ λ 1, λ a1 ± Δ λ1, = a Δ= Μια πραγματική ρίζα πολλαπλότητας a1 λ1 = λ = λ = a Δ<, Δύο άνισες μιγαδικές ρίζες λ 1, λ α 1 a1 ± j Δ λ1, = = σ ± jω a y () = Ce + C e λ 1 λ 1 y () = Ce + C e λ 1 λ σ y () = e [ C cos( ω ) + C si( ω)] 1 Δ<, α 1 = Δύο φανταστικές ρίζες ± j Δ λ1, = =± jω a y () = C cos( ω ) + C si( ω ) 1
14 .5 Η γραμμική διαφορική εξίσωση δεύτερης τάξης 1 σ < e - cos(1) e - -e - σ y () = e cos( ω ) 3 1 e cos(1) e -e σ > με απόσβεση (uderdamped) σ = cos(1) ασταθές (overdamped). λ1 ω. λ χωρίς απόσβεση (criically damped). λ λ σ< σ>. λ σ
15 Η γραμμική διαφορική εξίσωση δεύτερης τάξης d y () dy () 1 a + a + a y() = d d dy Οι σταθερές C 1 και C υπολογίζονται από τις αρχικές συνθήκες y (), () π.χ. για πραγματικές ρίζες της χαρακτηριστικής εξίσωσης: d y () Ce C e λ 1 λ = + 1 C1+ C = y() C dy d 1λ1+ Cλ = () Η εύρεση της μερικής λύσης yp () μπορεί να γίνει με διάφορους τρόπους, από τους οποίους ο πιο απλός είναι η μέθοδος των προδιοριστέων συντελεστών (mehod of udeermied coefficies). Η ειδική λύση μπορεί να προσδιοριστεί ανάλογα με τη μορφή της συνάρτησης εξαναγκασμού/ εισόδου x(): Π.χ. για x()=k, ψάχνουμε επίσης για μερικές λύσεις της μορφής y P ()=C 3
16 Η γραμμική διαφορική εξίσωση δεύτερης τάξης d y () dy () 1 a + a + a y () = x () d d Μορφή εισόδου Μορφή μερικής λύσης x()=k y P ()=C 3 x()=βe α x()=βcos(ω) y P ()=C 3 e α y P ()=C 3 cos(ω)+c 4 si(ω) x()=β k k +β k 1 k 1 + +β y P ()=C k+ k +C k+1 k 1 + +C 3 όταν α μη μηδενικό, αλλιώς y ()=(C k +C k 1 P (C k+ k+1 + +C C 3 ) x()=(β k k +β k 1 k 1 + +β )e α x()=(β k k +β k 1 k 1 + +β ) cos(ω) y P ()=(C k+ k +C k+1 k 1 + +C 3 )e α όταν α μη μηδενικό αλλιώς y P()=(C k+ k +C k+1 k 1 + +C 3)e α y P ()=(C k+ k +C k+1 k 1 + +C 3 )cos(ω) όταν α μη μηδενικό αλλιώς y P ()=(C k+ k +C k+1 k 1 + +C 3 ) cos(ω)
17 Παράδειγμα i() Κύκλωμα RC dy() RC + y() = x(), d R= 1 Ω, C = 1 F, x () = cos( () ), y () = V V () x (), v () y () dy() Ομογενής εξίσωση: + y () = d Χαρακτηριστικό πολυώνυμο: λ + 1= Λύση ομογενούς εξίσωσης: y () = Ce y () = C = Μερική λύση: = P = 1 + Αντικαθιστώντας: C C + C = 1 = = x () cos() y Ccos() C si() a dy P () = C1 si( ) + C cos( ) d C si( ) + C cos( ) + C cos( ) + C si( ) = cos( ) 1 1 ( C + C )cos( () + ( C C )si() = cos( () C1 C ZS C1 = y () = cos() + si() + De C
18 1 1 yzs () = + D= D= y () = y() + yzs() = e + cos() + si() e y () y () P y() >> =:.1:; >> y_h=*exp(-); >> y_p=.5*cos()+.5*si()-.5*exp(-); >> plo (,y_h,'b',,y_p,'r',,y_h+y_p,'k'); >> leged ('y_()','y_p()','y()');
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #7 Μοντέλα διαφορικών εξισώσεων για ΓΧΑ Συστήματα Επίλυση Διαφορικών Εξισώσεων Η γραμμική διαφορική εξίσωση δεύτερης τάξης Παραδείγματα Μοντέλα διαφορικών εξισώσεων
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα : Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Συστήματα Διακριτού Χρόνου Εξισώσεις Διαφορών Επίλυση Εξισώσεων Διαφορών με Γραμμικούς Συντελεστές
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 2: Συστήματα διακριτού χρόνου Συστήματα διακριτού χρόνου Σύστημα διακριτού χρόνου: Μετασχηματισμός Τ που μετατρέπει το σήμα εισόδου x[] στο σήμα
ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ
ΜΑΣ 3: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 4 ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
Σήματα- συμβολισμοί. x(n)={x(n)}={,x(-1),x(0), x(1),.} x(n)={0,-2,-3, -1, 0, 1, 2, 3, 4,0 }
ΚΕΦΑΛΑΙΟ 2 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 1 1-1 -4-3 -2-1 1 2 3 4 5-1 1 2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-1),x(), x(1),. x()={,-2,-3,-1,, 1, 2, 3, 4, } x()={x()}={,x(-1),x(), x(1),.} x()={,-2,-3, -1,,
ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/60 Πληροφορίας
ΚΕΦΑΛΑΙΟ 2 /6 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 - -4-3 -2-2 3 4 5-2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-),x(), x(),. x()={,-2,-3,-,,, 2, 3, 4, } x()={x()}={,x(-),x(), x(),.} x()={,-2,-3, -,,, 2, 3, 4, } 2/6
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/62 Πληροφορίας
ΚΕΦΑΛΑΙΟ 2 /62 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 - -4-3 -2-2 3 4 5-2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-),x(), x(),. x()={,-2,-3,-,,, 2, 3, 4, } x()={x()}={,x(-),x(), x(),.} x()={,-2,-3, -,,, 2, 3, 4, }
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει
Μάθημα: Θεωρία Δικτύων
Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy
4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των
HMY 220: Σήματα και Συστήματα Ι
HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal
Ανάλυση υναµικής ιεργασιών
Ανάλυση υναµικής ιεργασιών Αντιπροσώπευση µε το Μοντέλο Κατάστασης- Χώρου (State-Space Space Models) υναµική Γραµµικών Συστηµάτων 1ης και 2ης Τάξης Συστήµατα SISO και MIMO Ο Μετασχηµατισµός Laplace για
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
a n = 3 n a n+1 = 3 a n, a 0 = 1
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ7-1
ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 19Κ7-1 ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία). Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση i.
ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,
Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Διαφορικές εξισώσεις
Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 0 / 0 6 εκδόσεις Καλό πήξιμο
Ο μετασχηματισμός z αντιστοιχεί στην ακολουθία συνάρτηση: Xz ()
Ο Ρ Ι Σ Μ Ο Σ Ο μετασχηματισμός αντιστοιχεί στην ακολουθία συνάρτηση: X x x τη X O Μετασχηματισμός,, της ακολουθίας είναι μιγαδική συνάρτηση, της μιγαδικής μεταβλητής x r j Ω Ο μονόπλευρος μετασχηματισμός
10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι
Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)
Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες
y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)
Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα
Γραμμική Διαφορική Εξίσωση 2 ου βαθμού
//04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί
Επίλυση Δ.Ε. με Laplace
Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή
Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα
Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει
Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #2 Σειρές Fourier και ΓΧΑ Συστήματα Απόκριση Συχνοτήτων και Φιλτράρισμα Σειρές Fourier: Σειρές Fourier και ΓΧΑ Συστήματα jk( 2π ) Τ k k x () FS.. ak k= k= jkω0 x
Μετασχηματισμός Z. Κυριακίδης Ιωάννης 2011
Μετασχηματισμός Z Κυριακίδης Ιωάννης 20 Τελευταία ενημέρωση: /2/20 Εισαγωγή Ο μετασχηματισμός- είναι ένα πολύ ισχυρό μαθηματικό εργαλείο για τη μελέτη διακριτών σημάτων και συστημάτων. Μπορεί να χρησιμοποιηθεί:
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Εισαγωγή στις Διαφορικές Εξισώσεις Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα . Σκοποί
x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
3. Κεφάλαιο Μετασχηματισμός Fourier
3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια
a (x)y a (x)y a (x)y' a (x)y 0
Γραμμικές Διαφορικές εξισώσεις Ανώτερης Τάξης Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a (x) a (x) a (x)' a (x) f (x) () (n) (n) n n 0 όπου a i(x),i 0,...,n και f(x) είναι συνεχείς συναρτήσεις
η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) ,
Λύσεις Ασκήσεων ου Κεφαλαίου 45 και επειδή d x x = / = 7.5649 > η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: και ( x ) = ( x x ) = P P, P,.58975,.478 x =.58975 x =.58975 ( x
Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville
Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος
Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.
Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Παραδείγµατα: Σήµα οµιλίας Πίεση P() Σήµα εικόνας y I
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.
Σήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος
Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Εισαγωγή Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος: Δ05-2 Μία κατασκευή λέγεται ότι εκτελεί ελεύθερη ταλάντωση όταν μετακινηθεί από τη θέση στατικής ισορροπίας
y 1 (x) f(x) W (y 1, y 2 )(x) dx,
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x
Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:
Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,
Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 )
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα ΠΛΗ 44: Σήματα και Επεξεργασία Εικόνας Ακαδημαϊκό Έτος 007 00 Ημερομηνία Εξέτασης 4.0.00
Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές) Δ. Δημογιαννόπουλος,
Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Η Κρουστική Απόκριση
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αιτιατότητα Μη-Αιτιατότητα. Ευστάθεια. Περιοχή Σύγκλισης Μετασχηµατισµού Laplace
x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων»
ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΤΟΝ ΧΩΡΟ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Μία άλλη περιγραφή συστηµάτων διακριτού χρόνου είναι η περιγραφή µέσω των εξισώσεων του «χώρου των καταστάσεων» (state space represetatios)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας
HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Ο μετασχηματισμός αντιστοιχεί
Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient
(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0
Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +
Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που
Διαφορικές εξισώσεις
Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglys.gr 1 1 / 1 / 0 1 8 εκδόσεις Καλό
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΟΠΙΚΗ ΑΝΑΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Θεωρούμε τη γενιϰή ομογενή γραμμιϰή διαφοριϰή εξίσωση τάξης n N στην ϰανονιϰή μορφή της
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χώρος Κατάστασης Παραστάσεις στο Πεδίο του
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ:
a k y[n k] = b l x[n l] (12.1)
Κεφάλαιο 12 Ανάλυση Σημάτων και Συστημάτων στο Πεδίο του Διακριτού Χρόνου 12.1 Εισαγωγή Σε αυτό το κεφάλαιο, θα συζητήσουμε για το πως μπορούμε να μελετάμε γραμμικά και χρονικά αμετάβλητα ΓΧΑ) συστήματα
Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =
. Δίνεται το ΓΧΑ σύστημα με συνάρτηση μεταφοράς ++2 Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Λύση : Α) +3 +2 ++2 2 + + 2+2 Η κρουστική απόκριση του συστήματος είναι L : 2 + 2 H είναι φραγμένη καθώς.
Μέθοδος προσδιορισμού συντελεστών Euler
Μέθοδος προσδιορισμού συντελεστών Euler Η προηγούμενη μέθοδος αν και δεν έχει κανένα περιορισμό για το είδος συνάρτησης του μη ογενούς όρου, μπορεί να οδηγήσει σε πολύπλοκες ολοκληρώσεις, πολλές φορές
Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις
Θέματα Εξετάσεν Ιουνίου 00 στο μάθημα Σήματα και Συστήματα και Λύσεις ΘΕΜΑ. μονάδες Έστ το αιτιατό σύστημα d y t y t x t d t όπου x t η είσοδος και y t η έξοδος του συστήματος. α Να υπολογιστεί η συνάρτηση
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Σύνθεση ή σύζευξη ταλαντώσεων;
Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος
Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =
Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 7 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Επανάληψη 1 ου μέρους μαθήματος: Μοντελοποίηση & Κατάστρωση Δυναμικών Εξισώσεων Εισαγωγή 2 ου μέρους μαθήματος:
Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14
1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 72 Fringe: Season 1 Episode 10 73 Επίλυση Δ.Δ.Σ. 2 ης τάξης Έστω το γενικό
Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών. σε Συστήματα Συνήθων Διαφορικών Εξισώσεων με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών 6 1 σε Συστήματα Συνήθων Διαφορικών Εξισώσεων με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
MATLAB Εισαγωγή στο SIMULINK Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Εισαγωγή στο Simulink - Βιβλιοθήκες - Παραδείγματα Εκκίνηση BLOCKS click ή Βιβλιοθήκες Νέο αρχείο click ή Προσθήκη block σε αρχείο
Δυναμική Μηχανών I. Διάλεξη 9. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 9 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Η διάλεξη σε MATLAB/simulink για όσους δήλωσαν συμμετοχή θα γίνει στις 16/1/2014 στο PC LAB Δεν θα γίνει διάλεξη
. Σήματα και Συστήματα
Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/14 Πρόβλημα 1 (βιβλίο σελίδα 27) Να υπολογιστεί η βασική