17 6 2005 11 PROGRESS IN CHEMISTRY Vol. 17 No. 6 Nov. 2005 3 3 3 ( 100083) : O631. 5 ; TQ316. 3 : A : 10052281X(2005) 0621081208 Recent Developments of Self2Propagating Frontal Polymerization Yan Qingzhi Su Xintai Ge Changchun 3 3 (Laboratory of Special Ceramics and Powder Metallurgy University of Science and Technology Beijing Beijing 100083 China) Abstract Frontal polymerization (FP) is a polymer synthesis technique that uses the exothermic reactions to form a self2sustaining wave. Because no additional heat is needed after the initial polymerization the process has potential advantages over traditional polymerization methods : lower processing costs less energy input and absence of solvent. These advantages make FP a potential viable option in polymer synthesis. The mechanism of FP frontal structure velocity front mode and properties of polymer produced via FP are reviewed. The future directions of FP research are prospected. Key words frontal polymerization( FP) ; self-propagating FP ; materials synthesis ; ; 1 1 2 Fig. 1 Schematic representation of a frontal polymerization : 2004 11 : 2005 3 3 (No. 50372008) 3 3 e2mail : ccge @mater. ustb. edu. cn
1082 17 1972 Chechilo [1 ] 300MPa P g g n + M P n+1 (3) [2 12 ] P g n+1 + P g n P n + P m ( P m+ n ) (4) Combust. Explos. Shock Waves Dokl. Phys. Chem. Pojman [13 ] 1990 E eff Pojman [43 ] : E eff = E P + E i Π2 - E t Π2 (5) i p t 300MPa [14 34 ] E i 125kJΠmol E p 29kJΠmol E t 17kJΠmol 1990 ;1990 [29 30 ] [47 ] [31 33 ] ;2001 [35 ] [36 ] [37 ] : (1) ; 1999 (2) ; (3) [38 ] ;2003 [39 41 ] 2003 ( ) ( ) Pojman [34 ] [42 ] : I f2 R g (1) f R g + M P 1 g : (2)
6 1083 ; 15mm 20mm Π ( ) ( ) [19 ] ( ) (AETMA) [44 ] [45 ] [46 ] Chechilo Pojman Π 16 ] [1 6 13 2 (1 0. 02molΠL ; 2 0. 04molΠL) [34 ( ) ] Fig. 2 Temperature profiles for polymerization front at different initiator concentrations(1 0. 02molΠL ; 2 0. 04molΠL) 2 [48 ] [16 25 ] 015cm 100 [47 48 ] 120 [42 ] :
1084 17 [42 ] [19 ] [43 ] : R P = k p f k i k t 1Π2 [ I] 1Π2 [M] (6) 4 I M k [ ] i p t Goldgeder [49 ] 20s u : 100 2 [49 ] Spade [50 ] u 2 kj 0 R g T b = E d ( T b - T 0 ) k0 eff e - E eff ΠR T g b (8) 4 k ; J 0 ; R g ; T b ; E d ; T 0 ; k 0 eff E eff k 0 eff = k p [2f k 0 0 d Πk t ] 1Π2 (9) E eff = E p + ( E d - E t )Π2 (10) k d k p k T E d E p E t 50 Chechilio [5 ] 300MPa Apostole [30 ] 01324 Tredici [29 ] Perry 32 01223 [44 ] ;Pojman [17 ] 4 0120 ( ) 0131 : (1) 3 ; (2) : CO 2 CH 4 ; ; (3) 1mg 200 2cm 3 ; (4) ; (5) ; (6) [14 ] : v ( p) = v 0 + constπp (7) [33 ] ; (7) ;
6 1085 ; [50 ] [14 19 51 ] Pojman [22 ] 1 62 [21 22 27 35 ] ( HDDA) 2 [38 ] : (TMPTA) HDDA ; HDDA (BzAc) TMPTA [19 ] ; : TMPTA [22 ] ; [24 ] : ( 3) 3 :a b c 1 62 Fig. 3 Modes of frontal propagation :a oscillating mode b spin mode c chaos mode Pojman [52 ] ; (2 wt % BPO ) [21 ] 1. 0 0166cmΠmin 50s 100 Fortenberry [25 ]
1086 17 65 % 76 % [29 ] ( ) 120 Washington [53 ] 80 % Pojman [17 ] 32 Pojman [20 ] A 32 [46 ] : H 0 S 0 + Rln ([M] eq Π[M] 0 ) T = (11) [M] 0 S 0 H 0 : : 1 = 1 - exp H0 - T S 0 (12) (1) [M] initial RT 80 140 : T = T i + H 0 ΠC p (13) [18 ] (2) Enikolopyan [2 ] 150 Pojman [17 ] 10 5 ( M W ΠM N = 117 210) Pojman [20 ] Fortenberry [25 ] 10 6 2. (3) Chekanov [26 ] Pujari [37 ] 22 5 Tredici
6 1087 Masere [28 ] Schult [54 ] (4) 214 : 174 176 [48 ] ; 80 % (5) 31 Pojman [55 ] : 1992 96 : 7466 7472 T g ; 30 % Mariani [36 ] 3611 3612 ( ) ; ; 1997 35 : 227 230 : ; [ 1 ] Chechilo N M Khvikivitskii R J Enikolopyan N S. Dokl. Akad. Nauk USSR 1972 204 : 1180 1181 [ 2 ] Enilolopyan N S Kozhushner M A Khanukave B B. Dokl. Phys. Chem. 1974 217 : 676 678 [ 3 ] Khanukave B B Kozhushner M A Enikolopyan N S. Dokl. Phys. Chem. 1974 214 : 84 87 [ 4 ] Chechilo N M Enilolopyan N S. Dokl. Phys. Chem. 1974 [ 5 ] Chechilo N M Enilolopyan N S. Dokl. Phys. Chem. 1975 221 : 392 394 [ 6 ] Chechilo N M Enilolopyan N S. Dokl. Phys. Chem. 1976 230 : 840 843 [ 7 ] Surkov N K Davtyan S P Rozenberg B A Enikolopyan N S. Dokl. Phys. Chem. 1976 228 : 435 438 [ 8 ] Davtyan S P Surkov N K Rozenberg B A Enikolopyan N S. Dokl. Phys. Chem. 1977 232 : 64 67 [ 9 ] Begishev V P Volpert V A Davtyan S P Malkin A Y. Dokl. Acad. Nauk USSR 1985 279 : 909 912 [10] Volpert V A Megrabova I N Davtyan S P Begishev V P. Comb. Explosion Shock Waves 1986 21 : 443 447 [11] Babadzhanyan A S Volpert V A Davtyan S P Megrbova I N. Comb. Explos. Shock Waves 1989 25 : 23 [12] Davtyan S P Zhirkov P V Vol fson S A. Russ. Chem. Rev. 1984 53 : 150 163 [13] Pojman J A. J. Am. Chem. Soc. 1991 113 : 6284 6286 [14] Pojman J A Craven R Khan A West W. J. Phys. Chem. [15] Pojman J A Willis J R Khan A M West W. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem. ) 1992 33 : 1188 1189 [16] Pojman J A Nagy I P Salter C. J. Am. Chem. Soc. 1993 115 : 11044 11045 [17] Pojman J A Willis J Fortenberry D Ilyashenko V Khan A M. J. Poly. Sci. A 1995 33 : 643 652 [18] Nagy I P Sike L Pojman J A. J. Am. Chem. Soc. 1995 117 : [19] Pojman J A Khan A M Mathias L. Microgravity Sci. Technol. 1997 10(1) : 36 40 [20] Pojman J A Elcan W Khan A M Mathias L. Poly. Sci. A [21] Ilyashenko V M Pojman J A. Chaos 1998 8(1) : 285 289 [22] Masere J Stewart F Meehan T Pojman J A. Abstracts of Papers of the Amer. Chem. Soc. 1999 U294 U294 [23] Masere J Chekanov Y Warren J R Stewart F D Al2Kaysi R Rasmussen J K Pojman J A. J. Polym. Sci. Part A : Polym. Chem. 2000 38 : 3984 3990 [24] Texier2Picard R Pojman J A Volpert V A. Chaos 2000 10 : 224 230 [25] Fortenberry D I Pojman J A. J. Poly. Sci. A 2000 38 : 1129 1135 [26] Chekanov Y A Pojman J A. J. Appl. Poly. Sci. 2000 76 : 2398 2404 [27] Manz B Masere J Pojman J A Volke F. J. Polym. Sci. Part A : Polym. Chem. 2001 39 : 1075 1080
1088 17 [28] Masere J Lewis L L Pojman J A. J. Appl. Poly. Sci. 2001 80 : 686 691 [29] Tredici A Pecchini R Morbidelli M. J. Polym. Sci. Part A : Polym. Chem. 1998 36 : 1117 1126 [30] Apostolo M Tredici A Morbidelli M Varma A. J. Polym. Sci. Part A : Polym. Chem. 1997 35 : 1047 1059 [31] Garbey M Tromeur2Dervout D. J. Comput. Phys. 1998 145 : 316 331 [32] Vladimir V I Christian D. Polym. Int. 2001 50 : 113 118 [33] Bazile J R M Nichols H A Pojman J A Volpert V. J. Polym. Sci. Part A : Polym. Chem. 2002 40 : 3504 3508 [34] Pojman J A Ilyashenko V M Khan A M. J. Chem. Soc. Faraday Trans. 1996 92(16) : 2825 2837 [35] Huh D S Kim H S. Polym. Int. 2003 52 : 1900 1904 [36] Mariani A Bidali S Fiori S Sangermano M Malucelli G Bongiovanni R Priola A. J. Polym. Sci. Part A : Polym. Chem. 2004 42 : 2066 2072 [37] Pujari N S Vishwakarma A R Pathak T S Mule S A Ponrathnam S. Polym. Int. 2004 53 : 2045 2050 [38] ( Yin S). ( Combustion Synthesis ). (Beijing) : (Metallurgy Industry Press) 1999. 7 [39] Ge C C Li J T. Int. J. Self2Propagating High2Temperature Synthesis 1996 15 : 1051 1053 [40] Ge C C Li J T Cao Y G. Z. fur Metallkunde 1998 89 (2) : 149 152 [41] Ge C C Chen K X Li J T Cao W B. Z. fur Metallkunde 1999 90(2) : 168 170 [42] Pojman J A West W W Simmons J. J. Chem. Edu. 1997 74 : 727 730 [43] (Pan Z R). (Macromolecule Chemistry). (Beijing) : ( Chemical Industry Press) 1997. 18 67 [44] Perry M F Volpert V A Lewis L L Nichols H A Pojman J A. Macromol. Theory Simul. 2003 12(4) : 276 286 [45] Chekanov Y Arrington D Brust G Pojman J A. J. Appl. Poly. Sci. 1997 66 : 1209 1216 [46] Mariani A Fiori S Chekanov Y Pojman J A. Macromolecules 2001 34 : 6539 6541 [47] Davtyan S P Hambartsumyan A F Davtyan D S Tonoyan A O Hayrapetyan S Bagyan S H Manukyan L S. Eur. Polym. J. 2002 38 : 2423 2431 [48] Yan Q Z Zhang W F Lu G D Su X T Ge C C. Chem. Eur. J. 2005 11 : 1 8 [49] Goldfeder P M Vopert V A Ilyashenko V M Khan A M Pojman J A Solovyov S E. J. Phy. Chem. B 1997 101 : 3474 3482 [50] Spade C A Volpert V A. Chem. Eng. Sci. 2000 55 : 641 654 [51] Briskman V A Yudina T M Kostarev K G Kondyurin A V Leontyev V B Levkovich M G Mashinsky A L Nechitailo G S. Acta Astronautica 2001 48 : 169 180 [52] Macfarland B Popwell S Pojman J A. Macromolecules 2004 37 : 6670 6672 [53] Washington R P Steinbock O. J. Am. Chem. Soc. 2001 123 : 7933 7934 [54] Schult D A Spade C A Volpert V A. Appl. Math. Lett. 2002 15 : 749 754 [55] Chekanov Y A Arrington D Brust G Pojman J A. J. Appl. Poly. Sci. 1997 66 : 1209 1216