ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

Σχετικά έγγραφα
On Generating Relations of Some Triple. Hypergeometric Functions

On Inclusion Relation of Absolute Summability

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

1. For each of the following power series, find the interval of convergence and the radius of convergence:

A study on generalized absolute summability factors for a triangular matrix

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Homework for 1/27 Due 2/5

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

α β

Certain Sequences Involving Product of k-bessel Function

Uniform Convergence of Fourier Series Michael Taylor

Ψηφιακή Επεξεργασία Εικόνας

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Statistical Inference I Locally most powerful tests

Every set of first-order formulas is equivalent to an independent set

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

A General Note on δ-quasi Monotone and Increasing Sequence

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Neutrix Product of the Distributions r. x λ

Homomorphism in Intuitionistic Fuzzy Automata

Bessel function for complex variable

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Solution Series 9. i=1 x i and i=1 x i.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Finite Field Problems: Solutions

C.S. 430 Assignment 6, Sample Solutions

Fractional Colorings and Zykov Products of graphs

Areas and Lengths in Polar Coordinates

Solve the difference equation

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Congruence Classes of Invertible Matrices of Order 3 over F 2

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

Areas and Lengths in Polar Coordinates

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

1. Introduction and Preliminaries.

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent


HARDY AND RELLICH INEQUALITIES WITH REMAINDERS

2 Composition. Invertible Mappings

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Commutative Monoids in Intuitionistic Fuzzy Sets

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Gauss Radau formulae for Jacobi and Laguerre weight functions

The Heisenberg Uncertainty Principle

Data Dependence of New Iterative Schemes

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Solutions to Exercise Sheet 5

Homework 8 Model Solution Section

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

LAD Estimation for Time Series Models With Finite and Infinite Variance

On a four-dimensional hyperbolic manifold with finite volume

Tridiagonal matrices. Gérard MEURANT. October, 2008

SOME PROPERTIES OF FUZZY REAL NUMBERS

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Example Sheet 3 Solutions

ASYMPTOTIC BEST LINEAR UNBIASED ESTIMATION FOR THE LOG-GAMMA DISTRIBUTION

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Chap. 6 Pushdown Automata

Degenerate Perturbation Theory

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Other Test Constructions: Likelihood Ratio & Bayes Tests

5. Choice under Uncertainty

Math221: HW# 1 solutions

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

A summation formula ramified with hypergeometric function and involving recurrence relation

Homework 3 Solutions

EE512: Error Control Coding

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Adaptive Covariance Estimation with model selection

Homework 4.1 Solutions Math 5110/6830

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

w o = R 1 p. (1) R = p =. = 1

F19MC2 Solutions 9 Complex Analysis

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

IIT JEE (2013) (Trigonomtery 1) Solutions

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Presentation of complex number in Cartesian and polar coordinate system

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Generating Set of the Complete Semigroups of Binary Relations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ON A MORE ACCURATE MULTIDIMENSIONAL HILBERT TYPE INEQUALITY WITH PARAMETERS BICHENG YANG. 1. Introduction. dxdy < x + y. sin(π/p) f p g q, (1)

A Note on Intuitionistic Fuzzy. Equivalence Relation

Transcript:

Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet of Va der Corput s iequality was give by Jia Cao, Da-Wei Niu ad Feg Qi. This iequality is furter geeralised i this paper. 000 Mathematics Subject Classificatio: 6D5, 6D0 Key words: Va der Corput s iequality, umeric series, Euler-Maclauri formula, completely mootoic fuctios. Itroductio Let S ad a 0 for N such that 0 < a <. The well ow iequality by Corput 0 states that: Π a/ ) /S < e γ ) a,.) where γ 0, 577...stads for Euler-Mascheroi costat. The costat e γ i.) is the best possible. A improved versio of.) is give by Hu 5 Π a/ ) /S < e γ l ) a,.) 4 A relatio betwee Carlema s iequality ad Va der Corput s iequality is metioed by Yag 4. Π a α where S α) ad α 0, α ) Sα) < e e αα S α) a,.) Aother extesio has bee obtaied by Yag 5 Faculty of Mathematics ad Iformatics, Trasilvaia Uiversity of Braşov, Romaia, email: gabis75@yahoo.com

4 Gabriel Sta Π a α where α, ), S α) ) Sα) α ad γ α) lim Applyig α 0 i.4) leads to Π a < e γ α) l α) α ) S < e γ α ) a.4).5) ) a.6) which is a improvemet of iequality.). The purpose of this paper is to further exted ad refie Va der Corput s iequality which has bee exteded i 6 by Jia Cao, Da Wei Niu ad Feg Qi here give with a small correctio of a misprit) Π a λ) where λ 0, ), ) Sλ) < e λ )γλ) S λ) ) λ l ) 4 λ ) a.7),.8) λ) γ λ) lim S λ) l The Euler Maclauri formula, 6,, 4 states λ λ.9) f ) f x) dx f ) f ) ρ x) f x) dx.0) where ρ x) x x is Beroulli s fuctio ad f C, ). Furthermore, if ) i f i) x) > 0 ad lim f i) x) 0 for i,, the x ρ x) f x) dx f ) ɛ, 0 < ɛ <.)

Aother extesio of Va der Corput s iequality 5. Lemmas Some lemmas are eeded. A fuctio f is said to be completely mootoic o a iterval I if f has derivatives of all orders o I ad 0 < ) f ) x) <, ) N, x I 4, 7, 8, 9 Lemma. Fuctio f x) for α, β 0, ) is completely mootoic i xα)xβ) 0, ) ad lim x f i) x) 0 for ) i N. Proof. Fuctios xα ad xβ are completely mootoic o 0, ), a fact very easy to verify. Sice the product of ay completely mootoic fuctios is also completely mootoic, the fuctio f x) is mootoic o 0, ). It ca be proved by iductio that lim f i) x) 0, ) i N. The proof of Lemma has eded. x Lemma. For N ad α, β 0, ) S α, β) < l ) γ α, β).) where S α, β),.) α) β) α β γ α, β) lim S α, β) l x α β.) Proof. It is obvious that Lemma permits to apply the Euler-Maclauri formulas.0 ad. to f x) xα)xβ). Hece it follows that: S α, β) x α) x β) dx α) β) α β l α β α) β) α) β) α) β) ρ x) dx. x α) x β) ρ x) f x) dx

6 Gabriel Sta Also, we have ρ x) dx x α) x β) ɛ x α) x β) x where ɛ 0, ), ad γ α, β) lim x Therefore, { α) β) ɛ 4 α) β) ρ x) dx x α) x β) α) β) α β α) β),.4) ρ x) dx.5) x α) x β) S α, β) l α) β) γ α, β) α) β) α) β) l ɛ 4 ρ x) dx x α) x β) α β α β γ α, β) α β α) β) α) β). Hece S α, β) < l γ α, β) α) β).6) Iequality: l α β α β l is used. The S α, β) S α, β) γ α, β) α ) β ) < l ) α ) β ) α ) β ).

Aother extesio of Va der Corput s iequality 7 It follows This proof of Lemma is complete. S α, β) < l ) γ α, β)..7) Lemma. For N ad α, β 0, ) α) β) α ) β ) α β α ) β ) α) β) Proof. Iequality.8) is equivalet to.8).9) α β ) α) β) α β ) α ) β ) ad the this is equivalet with the obvious iequality α β) α β) α β ) 4 Iequality.9) ca be deduced directly from 0. α ) β ) α) β) α β α ) β ) α) β) α β The proof of Lemma is complete. α β Lemma 4. For x 0, ) ad α, β 0, ) x lx) l x ) < ).0) 4 x Proof. If we deote λ α β Lemma 4 becomes Lemma.4 from 7. Lemma 5. For N ad α, β 0, ), β α, β) α)β)s α,β) α ) β )S α, β) α) β)s α, β) e )γα,β) l ) ) 4 )

8 Gabriel Sta Proof. For N we have β α, β) where { } α)β)s α,β) h, α, β) α) β)s α, β) g,α,β) h,α,β) C h,α,β) g, α, β) α) β) S α, β) g, α, β), h, α, β) h, α, β) α ) β ) α) β) S α, β), g,α,β) C g, α, β) It is easy to see that g, α, β) α ) β )S α, β) α ) β ) α) β) S α, β) α ) β ) α ) β ) α) β).5) By usig iequality ) x x < e x) obtaied i, iequlities.5) ad.8) i Lemma it follows that g,α,β) { } C e g, α, β) g, α, β) α ) β ) α) β) e α ) β ) α) β) e e.6) α ) β ) Hece from iequalities.9),.),.6) ad.0) it follows

Aother extesio of Va der Corput s iequality 9 h, α, β) α β ) S α, β) α β β α, β) e ) l ) γ α, β) h,α,β) e e )γα,β) ) )l)γα,β) e )γα,β) ) l ) 4 l) The proof of Lemma.5 is complete.. A ew theorem emerges. Theorem. Let a 0 for N such that 0 a < The α)β) Π a where α, β 0, ). Sα,β) < e )γα,β) ) Proof. Fixig c > 0 for ad defiig l ) a 4,.) α ) β )S α, β) α)β)s α,β) c α) β)s α, β) α)β)s α,β)

40 Gabriel Sta the α)β) Π c Sα,β) α ) β )S α, β). for Usig the Jese iequality ) u l b l u b u ad Lemmas it follows α)β) Π a Π a c ) ) Sα,β) Sα,β) α)β) α)β) Π c Sα,β) α) β)s α, β) c a α ) β )S α, β) c a α) β) α ) β )S α, β) S α, β) c a α) β) S α, β) S α, β) c a α) β) S α, β) α)β)s α,β) α ) β )S α, β) a. α) β)s α, β) From the above iequality ad iequality.4) we obtai iequality.). Refereces Adrews, G. E., Asey, R. ad Roy, R., Special Fuctios, Ecyclopedia of Mathematics ad Its Applicatios, vol.7, Cambrige Uiversity Press, Cambrige, 999. Aurora, B., Publicatio list: J.G. va der Corput, Acta Arithmetica 6 980), o., 9-99. Che, Ch. -P. ad Qi, F., O further sharpeig of Carlema s iequality, Daxue Shuxue College Mathematics) 005), o., 88-90 Chiese).

Aother extesio of Va der Corput s iequality 4 4 Grishpa, A. Z. ad Ismail, M. E. H., Completely mootoic fuctios ivolvig the gamma ad q-gamma fuctios, Procedig of the America Mathematical Society 4 006), o.4, 5-60. 5 Hu, K., O the va der Corput iequality, Joural of Mathematics Shuxue Zazhi) 00), o., 6-8 Chiese). 6 Kuag, J. -Ch., Asymptotic estimatios of fiite sums, Joural of Hexi Uiversity 00), o., -8 Chiese). 7 Qi, F., Certai logarithmically N-alteratig mootoic fuctios ivolvig gamma ad q-gamma fuctios, RGMIA Research Report Collectio 8 005), o.. article 5, available olie at http://rgmia.vu.edu.au/v8.html. 8 Qi, F. ad Guo, B. -N., Complete mootoicities of fuctios ivolvig the gamma ad digamma fuctios, RGMIA Research Report Collectio 7 004), o., article 8,6-7, available olie at http:rgmia.vu.edu.au/v7.thml. 9 Qi, F. ad Guo, B. -N. ad Che, C.-P., Some Completely mootoic fuctios ivolvig the gamma ad polygamma fuctios, Joural of the Australia Mathematical Society 80 006), o.,8-88, RGMIA Research Report Collectio 7 004), o., article 5, -6, available olie at http://rgmia.vu.edu.au/v7l.html. 0 Va der Corput, J.G., Geeralizatio of Carlema s iequality, Proceedigs of the Sectio of Scieces, Koilije Aademie va Weteschappe te Amsterdam 9 96), 906-9. Va Haerige, H., Completely mootoic ad related fuctios, Report 9-08, Faculty of Techical Mathematics ad Iformatics, Delft Uiversity of Techology, Delft, 99. Yag, B. -Ch., O a stregtheed versio of the more precise Hardy-Hilbert iequality, Acta Mathematica Siica 4 999),o.6 0-0 Chiese)., O Hardy s iequality, Joural of Mathematical Aalysis ad Applicatios 4 999), o., 77-7. 4, O a relatio betwee Carlema s iequality ad Va der Corput s iequality, Taiwaese Joural of Mathematics 9 005), o., 4-50. 5, O a extesio ad a refiemet of va der Corput s iequality, to appear i Chiese Qarterly Joural of Mathematics. 6 Cao, J., Niu, D-W. ad Qi, F., A extesio ad a refiemet of Va der Corput s iequality, It. J. Math.Math. Sci., 006), Art. ID 70786, 0pp. 7 Qi, F., Cao, J. ad Niu,D.-W., A geeralizatio of Va der Corput s Iequality, Appl., Math. Comput. 0, 008), o., 770-777.

4 Gabriel Sta