ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

Σχετικά έγγραφα
ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

. Να βρεθεί η Ψ(x,t).

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 11. ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ

Κβαντομηχανική σε μία διάσταση

Η Αναπαράσταση της Θέσης (Position Representation)

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

Ατομική Φυσική. Η Φυσική των ηλεκτρονίων και των ηλεκτρομαγνητικών δυνάμεων.

PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που

PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ III. ΤΟ ΣΥΓΧΡΟΝΟ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Από τι αποτελείται το Φως (1873)

Κεφάλαιο 38 Κβαντική Μηχανική

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Εφαρμογές κβαντικής θεωρίας

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ ΔΙΔΑΣΚΩΝ: Δ. ΣΚΑΡΛΑΤΟΣ, ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

Αρμονικός Ταλαντωτής

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Â. Θέλουμε να βρούμε τη μέση τιμή

Κβαντικές Καταστάσεις

Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1

Η Κβαντική «επανάσταση»! Κύκλοι Μαθημάτων Σύγχρονης Φυσικής Δρ. Μιχάλης Καραδημητρίου

Τα θεμέλια της κβαντομηχανικής. Τα θεμέλια της κβαντομηχανικής

Εισαγωγή στην κβαντική θεωρία

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Η Φυσική που δεν διδάσκεται ΣΥΛΛΟΓΟΣ ΦΥΣΙΚΩΝ ΚΡΗΤΗΣ

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

x όπου Α και a θετικές σταθερές. cosh ax [Απ. Οι 1, 2, 5] Πρόβλημα 3. Ένα σωματίδιο μάζας m κινείται στο πεδίο δυναμικής ενέργειας ( x) exp

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Λύση 10) Λύση 11) Λύση

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

ιστοσελίδα μαθήματος

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα B

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Δύο διακρίσιμα σωμάτια με σπιν s 1

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

Μετασχηματισμοί Καταστάσεων και Τελεστών

Συστήματα Πολλών Σωματίων

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Transcript:

stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 01. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ Στέλιος Τζωρτζάκης ΚΕΦ. 2. ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ΚΕΦ. 3. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΜΕΡΟΣ Β: ΑΠΛΑ ΚΒΑΝΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΡΧΗ ΤΟΥ PAULI ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 6. ΘΕΩΡΙΑ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ ΚΕΦ. 7. ΤΟ ΣΠΙΝ ΚΕΦ. 8. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΚΑΙ Η ΑΡΧΗ ΤΟΥ PAULI ΜΕΡΟΣ Γ: ΥΛΗ & ΦΩΣ ΔΙΑ. 10. ΑΤΟΜΑ & ΣΤΕΡΕΑ ΔΙΑ. 11. ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ ΔΙΑ. 12. ΥΛΗ & ΦΩΣ 1

3 4 ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ 2

5 Αρχή του κυματοσωματιδιακού δυϊσμού Τα πάντα στη φύση έχουν διπλή υφή. Είναι σωματίδια και κύματα ταυτόχρονα. Ό,τι θεωρούσαμε πριν αποκλειστικά ως κύμα π.χ. το φως έχει ταυτόχρονα και σωματιδιακή υπόσταση, ενώ ό,τι θεωρούσαμε πριν αποκλειστικά ως σωματίδιο π.χ. το ηλεκτρόνιο, το πρωτόνιο κ.λπ. συμπεριφέρεται ταυτόχρονα και ως κύμα. Οι σχέσεις που συνδέουν αυτές τις δύο, κλασικά ασυμβίβαστες, όψεις των πραγμάτων την κυματική με τη σωματιδιακή είναι οι: 6 Η εξίσωση Schrödinger H ποσοτική περιγραφή των κυμάτων στην κλασική φυσική απαιτεί τη χρήση μιας κατάλληλης κυματικής εξίσωσης. Παραδείγματος χάριν για τα μηχανικά κύματα πάνω σε ένα μονοδιάστατο αντικείμενο, όπως μια χορδή, η κατάλληλη κυματική εξίσωση είναι η και το τριδιάστατο ανάλογό της η Έτσι μια ποσοτική περιγραφή των υλικών κυμάτων των κυμάτων που «συνοδεύουν» την κίνηση των υλικών σωματιδίων, σύμφωνα με την αρχή του κυματοσωματιδιακού δυϊσμού δεν θα είναι δυνατή αν δεν έχουμε στη διάθεσή μας μια αντίστοιχη κυματική εξίσωση. Η αναζήτηση μιας τέτοιας εξίσωσης έγινε από τον Schrödinger, το 1925, και το αποτέλεσμά της ήταν το ακόλουθο - όπου ψ = ψ(r, t) η κυματοσυνάρτηση - και V (r) το δυναμικό υπό την επίδραση του οποίου κινείται το σωματίδιο 3

7 8 Παράδειγμα: σωματίδιο σε μονοδιάστατη κίνηση Αρμονικός ταλαντωτής: δύναμης ανάλογης της απομάκρυνσης από κάποιο ελκτικό κέντρο στο x = 0, (δηλαδή F = kx) θα είναι Η σχετική εξίσωση Schrödinger θα γράφεται ως Η εξίσωση Schrödinger γράφεται συχνά στην ισοδύναμη συμβολική μορφή όπου ˆH ο λεγόμενος χαμιλτονιανός τελεστής ο οποίος μπορεί να θεωρηθεί ότι προκύπτει από την κλασική έκφραση της χαμιλτονιανής αντικαταστάσεις με τις Μια άλλη μορφή της εξίσωσης Schrödinger 4

9 Ιδιότητα της γραμμικότητας Στην κβαντομηχανική, οι τελεστές που χρησιμοποιούμε συνήθως διαφορικοί τελεστές που δρουν πάνω στις κυματοσυναρτήσεις είναι γραμμικοί, το οποίο σημαίνει ότι η δράση τους πάνω σε έναν γραμμικό συνδυασμό κυματοσυναρτήσεων μεταφέρεται πάνω σε κάθε συνάρτηση του συνδυασμού χωριστά. Δηλαδή: 10 ΘΕΩΡΗΜΑ: Κάθε γραμμικός συνδυασμός λύσεων της εξισώσεως Schrödinger είναι επίσης λύση της. Απόδειξη: Θέλουμε να δείξουμε ότι η συνάρτηση είναι λύση της εξισώσεως Schrödinger Η στατιστική ερμηνεία της κυματοσυνάρτησης Η στατιστική ερμηνεία της κυματοσυνάρτησης: Η κυματοσυνάρτηση δεν αντιπροσωπεύει ένα φυσικά παρατηρήσιμο κλασικό κύμα αλλά ένα κύμα πιθανότητας. Το τετράγωνο της απόλυτης τιμής της κυματοσυνάρτησης μας δίνει την πυκνότητα πιθανότητας δηλαδή την πιθανότητα ανά μονάδα μήκους (ή όγκου) να βρούμε το σωματίδιο σε μια περιοχή του χώρου. Σύμφωνα με τα παραπάνω η πιθανότητα να βρούμε το σωματίδιο κάπου μεταξύ x και x + dx θα είναι οπότε η ολική πιθανότητα να βρεθεί το σωματίδιο οπουδήποτε στο πλήρες διάστημα < x < + θα δίνεται από το ολοκλήρωμα 5

11 12 Συνθήκη κανονικοποίησης Για να έχει όμως νόημα η στατιστική ερμηνεία της ψ πρέπει αυτή η ολική πιθανότητα να είναι ίση με τη μονάδα. Δηλαδή βεβαίως, ότι για να μπορεί μια κυματοσυνάρτηση να κανονικοποιηθεί πρέπει κατά πρώτο λόγο να είναι Συναρτήσεις ψ(x) με αυτή την ιδιότητα ονομάζονται τετραγωνικά ολοκληρώσιμες. Αν μια κυματοσυνάρτηση ψ(x) είναι τετραγωνικά ολοκληρώσιμη μπορούμε πάντα να την πολλαπλασιάσουμε με έναν κατάλληλο συντελεστή κανονικοποίησης ώστε η συνολική πιθανότητα να βγαίνει ίση με μονάδα. Για να συμβαίνει αυτό, μια προφανής αναγκαία συνθήκη είναι η: Οι βασικές στατιστικές έννοιες ΟΡΙΣΜΟΣ: Η μέση τιμή <A> ενός στατιστικού μεγέθους A με δυνατές τιμές a 1,...,a n,... και αντίστοιχες πιθανότητες εμφάνισής τους P 1,..., P n,... ορίζεται ως δηλαδή ως το άθροισμα των δυνατών τιμών του πολλαπλασιασμένων επί τις αντίστοιχες πιθανότητες. Στην περίπτωση ενός συνεχούς στατιστικού μεγέθους A με πυκνότητα πιθανότητας P(a) δηλαδή πιθανότητα ανά μονάδα διαστήματος της συνεχούς στατιστικής μεταβλητής a το άθροισμα μετατρέπεται σε ολοκλήρωμα και ο αντίστοιχος στον τύπος είναι ο Συνθήκες κανονικοποίησης: 6

13 14 Στατιστική απόκλιση & ροπή ΟΡΙΣΜΟΣ: Το τετράγωνο της αβεβαιότητας ενός στατιστικού μεγέθους A ορίζεται ως η μέση τετραγωνισμένη απόκλιση από τη μέση του τιμή. Δηλαδή ή που μας λέει ότι: το τετράγωνο της αβεβαιότητας ενός στατιστικού μεγέθους ισούται με τη μέση τιμή του τετραγώνου του μείον το τετράγωνο της μέσης τιμής του. Αν η αβεβαιότητα μιας στατιστικής κατανομής μηδενίζεται, τότε η κατανομή αποτελείται από ένα μόνο δυνατό αποτέλεσμα, με πιθανότητα 100%. Στατιστική ροπή τάξεως n είναι η μέση τιμή της νιοστής δύναμης της στατιστικής μεταβλητής. Δηλαδή Η γνώση των στατιστικών ροπών όλων των τάξεων προσδιορίζει πλήρως μια στατιστική κατανομή. Η θέση ενός κβαντομηχανικού σωματιδίου Η θέση ενός κβαντομηχανικού σωματιδίου σε μία διάσταση για την οποία θα είναι οι μέσες τιμές x και και θα δίνονται από τις εκφράσεις οπότε θα προσδιορίζεται αμέσως και η αβεβαιότητα θέσης Δx βάσει του τύπου 7

15 16 Γκαουσιανή κυματοσυνάρτηση Ο γενικός τύπος της μέσης τιμής Θα ξεκινήσουμε από την έκφραση της μέσης θέσης ή Η εύλογη γενίκευσή της για ένα τυχόν φυσικό μέγεθος θα είναι η όπου Aˆ ένας κατάλληλος γραμμικός τελεστής για το μέγεθος A Για το φυσικό μέγεθος θέση ο κατάλληλος κβαντομηχανικός τελεστής είναι ο Για την ορμή 8

17 18 Τελεστές Για την ολική ενέργεια του σωματιδίου ο σχετικός τελεστής θα είναι ο Στροφορμή Για το μέγεθος της στροφορμής 9

19 20 Ερμιτιανότητα ΟΡΙΣΜΟΣ 1: Λέμε ότι ένας (γραμμικός) τελεστής A είναι ερμιτιανός αν ισχύει η σχέση Ο ορισμός αυτός μπορεί να διατυπωθεί πολύ κομψότερα αν εισαγάγουμε την έννοια του εσωτερικού γινομένου δύο κυματοσυναρτήσεων ψ και φ μέσω της σχέσης ορισμού ΟΡΙΣΜΟΣ 2: Ένας τελεστής θα είναι ερμιτιανός αν μπορεί να μεταφερθεί χωρίς αλλαγή από τη μια συνάρτηση ενός τυχόντος εσωτερικού γινομένου στην άλλη. Θα είναι δηλαδή Ιδιότητες ερμιτιανών τελεστών ΘΕΩΡΗΜΑ: Ένας ερμιτιανός τελεστής έχει πάντα: α) Πραγματική μέση τιμή, β) πραγματικές ιδιοτιμές, και γ) ορθογώνιες ιδιοσυναρτήσεις. Απόδειξη: α) Θα πρέπει να δείξουμε ότι β) Αν η ψ ικανοποιεί την εξίσωση ιδιοτιμών Aψ = aψ τότε θα είναι 10

21 22 πρώτων. Ορισμός της ορθογωνιότητας γ) Ορισμός της ορθογωνιότητας: Δυο κυματοσυναρτήσεις ψ και φ θα ονομάζονται ορθογώνιες αν το εσωτερικό τους γινόμενο μηδενίζεται. Αν είναι δηλαδή Αν εφαρμόσουμε τώρα τον ορισμό του ερμιτιανού τελεστή για ψ = ψ 1 και φ = ψ 2 όπου ψ 1 και ψ 2 δυο ιδιοσυναρτήσεις του A με ιδιοτιμές a 1 και a 2, δηλαδή θα έχουμε το οποίο σημαίνει ότι οι ιδιοσυναρτήσεις που αντιστοιχούν σε διαφορετικές ιδιοτιμές είναι όντως ορθογώνιες, όπως θέλαμε να αποδείξουμε. Οι κβαντομηχανικοί τελεστές είναι ερμιτιανοί Για τον τελεστή της θέσης η ερμιτιανότητα είναι προφανής. Για τον τελεστή της ορμής θέλουμε να δείξουμε ότι για p = i d/dx είναι Οι τελεστές θέσης και ορμής είναι λοιπόν ερμιτιανοί και το ίδιο αναμένεται να ισχύει και για τους τελεστές όλων των άλλων φυσικών μεγεθών, αφού αυτά είναι συναρτήσεις των δύο 11

23 24 του. Καταστάσεις επαλληλίας ΘΕΩΡΗΜΑ: Οι ιδιοσυναρτήσεις ενός ερμιτιανού τελεστή αποτελούν πλήρες σύστημα. Είναι δηλαδή αρκετές ώστε κάθε (τετραγωνικά ολοκληρώσιμη) κυματοσυνάρτηση ψ να μπορεί να γραφεί ως ένας άπειρος εν γένει γραμμικός τους συνδυασμός της μορφής με αριθμητικούς συντελεστές c n που δίνονται από τον τύπο αφού εισαγάγουμε την κυματοσυνάρτηση στην έκφραση της μέσης τιμής Θα έχουμε το ολοκλήρωμα είναι μηδέν για m n λόγω της ορθογωνιότητας των ιδιοσυναρτήσεων και ισούται με τη μονάδα για m = n αφού τότε πρόκειται για το ολοκλήρωμα κανονικοποίησης της ιδιοσυνάρτησης ψ n. πιθανότητες εμφάνισης των ιδιοτιμών a n οπότε Συμπέρασμα : Οι μόνες δυνατές τιμές που μπορεί να πάρει ένα φυσικό μέγεθος A είναι εκείνες που προκύπτουν από τη λύση της εξίσωσης ιδιοτιμών δηλαδή οι ιδιοτιμές 12

25 26 Η εξίσωση ιδιοτιμών για τη θέση Aν θέλουμε να γνωρίζουμε τις δυνατές τιμές ενός φυσικού μεγέθους κατ αρχάς αν υφίσταται κβάντωση ή όχι, και αν ναι ποιες είναι οι επιτρεπόμενες τιμές του θα πρέπει να λύσουμε την εξίσωση ιδιοτιμών Aψ = aψ του αντίστοιχου κβαντομηχανικού τελεστή. Αν με ψa(x) συμβολίσουμε την ιδιοσυνάρτηση της θέσης με ιδιοτιμή a τότε δεδομένου ότι ˆx = x θα έχουμε H σχετική κυματοσυνάρτηση θα πρέπει να είναι μηδέν παντού, πλην του σημείου x = a. Όπου όμως η τιμή της δεν θα πρέπει να είναι πεπερασμένη αλλά να «εκτινάσσεται» στο άπειρο ώστε να «αναπληρώνεται» κάπως η μηδενική πιθανότητα να βρούμε το σωματίδιο οπουδήποτε αλλού. Μια «συνάρτηση» με αυτά τα χαρακτηριστικά μηδέν παντού και άπειρη σε ένα σημείο είναι γνωστή (προς τιμήν αυτού που την εισήγαγε για πρώτη φορά) ως συνάρτηση δέλτα του Dirac, συμβολίζεται ως δ(x a). H παραπάνω λύση ισχύει για κάθε a και άρα το φάσμα του φυσικού μεγέθους θέση θα είναι συνεχές. 13

27 28 Η εξίσωση ιδιοτιμών για την ορμή Για το φυσικό μέγεθος ορμή όπου είναι ˆp = i d/dx η σχετική εξίσωση ιδιοτιμών ˆpψp = pψp(x) όπου p η ιδιοτιμή και ψp(x) η αντίστοιχη ιδιοσυνάρτηση θα γράφεται ως και λύνεται αμέσως με αποτέλεσμα το οποίο έχει την αναμενόμενη μορφή ενός επίπεδου κύματος, exp(ikx), με κυματαριθμό k = p/, όπως ακριβώς προβλέπει η αρχή του κυματοσωματιδιακού δυϊσμού. Η λύση ισχύει προφανώς για κάθε (πραγματικό) p και επομένως το φάσμα είναι ξανά συνεχές. Η ορμή ενός σωματιδίου μπορεί να πάρει οποιαδήποτε πραγματική τιμή. Η εξίσωση ιδιοτιμών για την ενέργεια Για ένα τυχόν μονοδιάστατο πρόβλημα με δυναμικό V (x) γράφεται ως και είναι γνωστή ως χρονανεξάρτητη εξίσωση Schrödinger ή, απλώς, εξίσωση Schrödinger. 14

29 30 Σωματίδιο σε ένα μονοδιάστατο κουτί Θέτοντας η γενική λύση γράφεται ως συνοριακές συνθήκες Σωματίδιο σε ένα μονοδιάστατο κουτί η Με δίνει Δηλαδή μια διάκριτη ακολουθία τιμών που θα είναι, βεβαίως, οι μόνες δυνατές τιμές της ενέργειας του σωματιδίου μέσα στο κουτί: Το πρόβλημα έχει διάκριτο φάσμα. Παίρνουμε Από τη συνθήκη κανονικοποίησης 15

31 32 Σωματίδιο σε ένα μονοδιάστατο κουτί Παράδειγμα σωματιδίου σε ένα μονοδιάστατο κουτί Η κατάσταση ενός σωματιδίου σε ένα μονοδιάστατο κουτί περιγράφεται, σε μια ορισμένη στιγμή από την επαλληλία Όπου ψ 1 και ψ 2 οι (κανονικοποιημένες) ιδιοσυναρτήσεις της θεμελιώδους και της πρώτης διεγερμένης στάθμης του σωματιδίου μέσα στο κουτί. Αν η ενέργεια E 1 της θεμελιώδους στάθμης έχει μια δεδομένη τιμή E1 = ε Τότε η ενέργεια της 1 ης διεγερμένης θα είναι Με αντίστοιχες πιθανότητες εμφάνισής και Και οι μέσες τιμές 16

33 34 Η αρχή του φιλτραρίσματος Η χρονική εξέλιξη των κυματοσυναρτήσεων H εξίσωση Schrödinger η οποία είναι πρωτοτάξια ως προς τον χρόνο και επομένως είναι εύλογο να περιμένουμε ότι η αναγκαία αρχική συνθήκη για τον μονοσήμαντο προσδιορισμό της λύσης της θα είναι η Από φυσικής πλευράς η γνώση αυτής της λύσης θα μας επιτρέψει, βεβαίως, να προβλέψουμε ποια θα είναι, παραδείγματος χάριν, η μέση θέση ή η μέση ορμή του σωματιδίου ύστερα από χρόνο t και να παρακολουθήσουμε έτσι την «κίνησή» του στον χώρο, όχι βέβαια πάνω σε μια τροχιά, όπως στη νευτώνεια μηχανική, αλλά με το κβαντομηχανικό της ανάλογο. Κάτι σαν ένα κινούμενο... σύννεφο στον ουρανό! 17

35 36 Λύση της χρονεξαρτημένης εξίσωσης Schrödinger Έχουμε Η Μπορεί να γραφεί Ή αλλιώς Από όπου έχουμε τις και που είναι και οι δύο συνήθεις διαφορικές εξισώσεις σε αντίθεση με την αρχική που ήταν μια μερική διαφορική εξίσωση. Και αυτός είναι πάντα ο στόχος της μεθόδου του χωρισμού των μεταβλητών: να μετατρέψει μια μερική διαφορική εξίσωση σε συνήθεις εξισώσεις. H εξίσωση Schrödinger λύνεται πολύ εύκολα με μια μέθοδο που είναι γνωστή ως χωρισμός των μεταβλητών και η οποία αποτελεί στην πραγματικότητα τη μόνη γενική μέθοδο ακριβούς επίλυσης των μερικών διαφορικών εξισώσεων της μαθηματικής φυσικής. Στην τωρινή περίπτωση η μέθοδος συνίσταται στο να αναζητήσουμε λύσεις που έχουν τη χωριζόμενη μορφή 18

37 38 Η Η ή έχει λύση γράφεται ως ή χρονανεξάρτητη εξίσωση Schrödinger Δεδομένου ότι η λύση της χρονικής εξίσωσης είναι πάντα η ίδια (δηλαδή ανεξάρτητη από το εκάστοτε δυναμικό V (x)), η λύση της χρονεξαρτημένης εξίσωσης Schrödinger ανάγεται πλήρως στη λύση της χρονανεξάρτητης εξίσωσης. Η χρονανεξάρτητη εξίσωση Schrödinger διαθέτει φυσικά παραδεκτές λύσεις δηλαδή λύσεις που μηδενίζονται στο ± μόνο αν η ενέργεια E παίρνει μια διάκριτη ακολουθία τιμών E 1,...,E n,... με αντίστοιχες ενεργειακές ιδιοσυναρτήσεις ψ 1,..., ψ n,.... Οπότε αυτό που έχουμε βρει είναι μια άπειρη ακολουθία χωριζόμενων λύσεων με τη μορφή Το τελικό συμπέρασμα είναι πολύ απλό. Η λύση της χρονεξαρτημένης εξίσωσης Schrödinger δίνεται από την άπειρη σειρά 19

39 40 Στάσιμες καταστάσεις Η κατανομή πιθανότητας του σωματιδίου στον χώρο είναι ανεξάρτητη του χρόνου Ανεξάρτητη του χρόνου είναι επίσης και η μέση τιμή ενός τυχόντος φυσικού μεγέθους Είναι φανερό από τα παραπάνω ότι η χρονική εξέλιξη δεν έχει καμιά φυσική επίπτωση στις καταστάσεις που περιγράφονται από τις χωριζόμενες κυματοσυναρτήσεις γι αυτό και οι καταστάσεις αυτές αποκαλούνται στάσιμες. Πρόκειται δηλαδή για καταστάσεις στις οποίες ουσιαστικά τίποτα δεν αλλάζει με τον χρόνο! Μη στάσιμες καταστάσεις Η «στασιμότητα» δεν ισχύει για τη γενική λύση της εξισώσεως Schrödinger διότι τώρα η χρονική εξέλιξη δεν έχει πλέον τη μορφή ενός κοινού παράγοντα φάσης που, αναγκαστικά, απαλείφεται με τον συζυγή του. Έτσι, παραδείγματος χάριν, για τη μέση τιμή, σε χρόνο t, ενός τυχόντος κβαντικού μεγέθους A θα έχουμε 20

41 42 Η αρχή της αβεβαιότητας θέσης - ορμής Η αρχή της αβεβαιότητας (ή αρχή της απροσδιοριστίας, όπως επίσης λέγεται) δεν συνιστά μια ανεξάρτητη φυσική αρχή αλλά αποτελεί μια αναγκαστική μαθηματική συνέπεια της αρχής του κυματοσωματιδιακού δυϊσμού και της στατιστικής του ερμηνείας. Η ανισότητα αυτή μας λέει ότι οποιαδήποτε και αν είναι η κυματοσυνάρτηση ψ(x) που περιγράφει την κατάσταση του συστήματος, το γινόμενο των αβεβαιοτήτων θέσης-ορμής δεν θα μπορεί να γίνει μικρότερο από το ήμισυ της σταθεράς του Planck. Αν υποθέσουμε ότι η κυματοσυνάρτηση ψ(x) είναι πραγματική, οπότε <p> = 0 και επομένως Η αβεβαιότητα ορμής Δp αποτελεί ένα χονδρικό μέτρο των κλίσεων της κυματοσυνάρτησης ψ(x). Όσο μεγαλύτερες κλίσεις παρουσιάζει το γράφημά της τόσο μεγαλύτερη είναι η αβεβαιότητα ορμής του σωματιδίου. 21

43 44 Παράδειγμα της αρχή της αβεβαιότητας θέσης - ορμής Η θέση ενός σωματιδίου μπορεί να είναι γνωστή όχι επειδή μετρήθηκε αλλά επειδή το σωματίδιο συμβαίνει να είναι «παγιδευμένο» σε ένα φυσικό σύστημα με γνωστή θέση και μέγεθος. Π.χ., τα ηλεκτρόνια που είναι δέσμια σε ένα άτομο έχουν γνωστή θέση με ακρίβεια της τάξεως του angstrom ενώ για τα σωματίδια του πυρήνα (πρωτόνια και νετρόνια) η θέση τους είναι γνωστή με ακρίβεια της τάξεως του fermi (1 fermi 10 15 m). Αν γνωρίζουμε λοιπόν ότι ένα σωματίδιο βρίσκεται δέσμιο σε ένα φυσικό σύστημα με γραμμική διάσταση a τότε θα είναι Και η μέση κινητική του ενέργεια Απλώς και μόνο επειδή είναι εγκλωβισμένο σε μια πεπερασμένη περιοχή, ένα κβαντικό σωματίδιο είναι υποχρεωμένο να έχει μια ελάχιστη κινητική ενέργεια ίση με 2/2ma2! Και όσο μικρότερη είναι αυτή η περιοχή τόσο μεγαλύτερη γίνεται η ενέργεια του σωματιδίου. Η αρχή της αβεβαιότητας χρόνου - ενέργειας ΔE η αβεβαιότητα με την οποία είναι γνωστή η ενέργεια του συστήματος και Δt ένα είδος «αβεβαιότητας χρόνου». Το Δt πρέπει να ερμηνευτεί ως ο χαρακτηριστικός χρόνος εξέλιξης του εξεταζόμενου φυσικού συστήματος. Δηλαδή, ο χρόνος που χρειάζεται να περιμένουμε για να υπάρξει μια αισθητή μεταβολή στις ιδιότητές του. Όσο πιο αργά μεταβάλλεται ένα φυσικό σύστημα (τ μεγάλο) τόσο πιο καλά καθορισμένη είναι η ενέργειά του (ΔE μικρό). Και αντίστροφα: όσο πιο γρήγορος είναι ο ρυθμός μεταβολής του (τ μικρό) τόσο πιο μεγάλη είναι η αβεβαιότητα στην ενέργειά του (ΔE μεγάλο). Σαν παράδειγμα εφαρμογής αυτής της αρχής ας εξετάσουμε τι συμβαίνει όταν ΔE = 0, όταν δηλαδή η κατάσταση του φυσικού συστήματος είναι μια ενεργειακή ιδιοκατάσταση. Τότε τ =, το οποίο σημαίνει ότι το σύστημα θα παραμένει χρονικά αμετάβλητο. Αυτό ακριβώς είναι το χαρακτηριστικό των ενεργειακών ιδιοκαταστάσεων τις οποίες είχαμε αποκαλέσει στάσιμες. 22

45 46 Πεπερασμένος χρόνος εξέλιξης τ μπορεί να εμφανιστεί μόνο σε καταστάσεις που δεν έχουν καθορισμένη ενέργεια. Είναι δηλαδή ΔE 0.Μια τέτοια περίπτωση δίνεται από την κατάσταση υπέρθεσης Μόλις το φυσικό μας σύστημα έπαυσε να έχει καθορισμένη ενέργεια απέκτησε ταυτόχρονα και μια ουσιώδη χρονική εξέλιξη με τον κατάλληλο χαρακτηριστικό χρόνο Ή αντίστροφα: Η κλασική εφαρμογή αυτών των ιδεών αφορά τη συσχέτιση μέσου χρόνου ζωής και πλάτους γραμμής των διεγερμένων καταστάσεων ενός ατόμου. Όπως γνωρίζουμε οι διεγερμένες ατομικές καταστάσεις δεν είναι αυστηρά στάσιμες, γιατί το ηλεκτρόνιο που βρίσκεται εκεί έχει τη δυνατότητα να μεταβεί σε μια κατώτερη ενεργειακή στάθμη με ταυτόχρονη εκπομπή ενός φωτονίου. Δεδομένου βέβαια ότι η ενεργειακή διαφορά των παραπάνω σταθμών δεν είναι απόλυτα καθορισμένη αλλά έχει μια διασπορά ΔE, η ενέργεια του εκπεμπόμενου κατά την αποδιέγερση φωτονίου θα είναι επίσης αβέβαια κατά το ίδιο ποσό. Η διασπορά στη συχνότητά του θα είναι λοιπόν 23

47 48 Αν αντικαταστήσουμε στην παραπάνω το ΔE με Παίρνουμε Η σχέση αυτή συνδέει το εύρος Δt ενός χρονικού παλμού με το φασματικό εύρος των συχνοτήτων που περιέχει. Και μας λέει το εξής πολύ απλό: όσο στενότερος είναι ο παλμός τόσο ευρύτερο είναι το φάσμα συχνοτήτων που περιλαμβάνει. Ή το αντίστροφο, αν θέλουμε να δημιουργήσουμε ένα στενό παλμό αυτός πρέπει να έχει ένα ευρύ φάσμα. Πρακτική εφαρμογή στα λέιζερ στενών παλμών. Τα λέιζερ αυτά δεν είναι μονοχρωματικά! Οι πέντε θεμελιώδεις προτάσεις της κβαντομηχανικής 24

49 50 25

52 51 ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ 1. Υπολογίστε την αβεβαιότητα θέσης (α) ενός νετρονίου (1.65 10-27 kg) που έχει ταχύτητα 5 10 7 m/s, και (β) ενός ανθρώπου βάρους 50 kg που περπατά με 2 m/s. (ħ = 1.05 10 34 J s) (α) (β) Δx 1F=10-15 m Δx 10-36 m 26

53 54 ΠΡΟΒΛΗΜΑΤΑ 2. Για V x = 0 ελέγξτε ποιες από τις παρακάτω είναι πιθανές λύσεις της χρονεξαρτημένης εξίσωσης Schrödinger για θετικά μη μηδενικά k και ω. (α) (β) (γ) (δ) (α) (γ) (δ) ΠΡΟΒΛΗΜΑΤΑ 3. Θεωρήστε την Γκαουσιανή κατανομή P χ = Αe λ χ α 2 Όπου Α, α και λ είναι θετικοί πραγματικοί αριθμοί. (α) Βρείτε το Α (β) Βρείτε τα <x>, <x 2 > και Δx (γ) Σχεδιάστε την P χ (α) (β) χ = α χ 2 = α 2 + 1 Δχ = 1 2λ 2λ (γ) P χ (β) 27

55 ΠΡΟΒΛΗΜΑΤΑ 4. Θεωρήστε την κυματοσυνάρτηση Ψ χ, t = Αe λ χ e iωt Όπου Α, λ και ω είναι θετικοί πραγματικοί αριθμοί. (α) Βρείτε το Α (β) Βρείτε τα χ, χ 2 (γ) Βρείτε το Δχ. Σχεδιάστε την Ψ 2 σα συνάρτηση του χ. Ποια είναι η πιθανότητα να βρείτε το σωματίδιο έξω από την περιοχή χ Δχ ; (α) (β) χ = 0 (γ) Α = χ 2 = 1 Δχ = λ 2λ 2 1 2λ Ψ ±Δχ 2 = λe 2 = 0.24 λ Δχ +Δχ 28