ΚΕΦΑΛΑΙΟ 3 ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΩΣΗΣ - ΑΝΑΓΩΓΗΣ

Σχετικά έγγραφα
ΚΕΦΑΛΑΙΟ 3( ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΩΣΗΣ - ΑΝΑΓΩΓΗΣ!

2. Βασικές αρχές-α. Χημικές ισορροπίες Αντιδράσεις οξέων βάσεων Οξειδοαναγωγικές διεργασίες

ΚΕΦΑΛΑΙΟ 3 ΑΝΤΙ ΡΑΣΕΙΣ ΟΞΕΙ ΩΣΗΣ - ΑΝΑΓΩΓΗΣ

1. Οξειδοαναγωγικές αντιδράσεις στα φυσικά υδατικά συστήματα

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚEΣ ΓΕΩΧΗΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Αριάδνη Αργυράκη

Περιβαλλοντική Γεωχημεία

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΟΓΚΟΜΕΤΡΗΣΕΙΣ

Υδροχημεία. Ενότητα 10: Οξείδωση - Αναγωγή. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας

Άσκηση. Ισχυρό οξύ: Η 2 SeO 4 Ασθενές οξύ: (CH 3 ) 2 CHCOOH Ισχυρή βάση: KOH Ασθενής βάση: (CH 3 ) 2 CHNH 2

Περιεχόμενα. Σύστημα υπόγειου νερού. Αντιδράσεις υδρόλυσης πυριτικών ορυκτών. Ρύθμιση ph

ΔΙΑΓΡΑΜΜΑΤΑ LATIMER Επ. Καθηγητής Γερ. Μαλανδρίνος

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÓÕÍÅÉÑÌÏÓ. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ανόργανη Χημεία Ι. Ηλεκτροχημεία. Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ.

Ενεργότητα και συντελεστές ενεργότητας- Οξέα- Οι σταθερές ισορροπίας. Εισαγωγική Χημεία

Χηµικές Εξισώσεις Οξειδοαναγωγικών Αντιδράσεων

ΟΞΕΙΔΟΑΝΑΓΩΓΗ - ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Χρήστος Παππάς Επίκουρος Καθηγητής

Διάβρωση και Προστασία. Εαρινό εξάμηνο Ακ. Έτους Μάθημα 4ο

Γεωχημεία. Ενότητα 2: Γεωχημικές διεργασίες στην επιφάνεια της γης. Αριάδνη Αργυράκη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ

Πολυτεχνείο Κρήτης Τµήµα Μηχανικών Περιβάλλοντος ΥΔΑΤΙΚΗ ΧΗΜΕΙΑ. Σηµειώσεις

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

7. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ ΙΟΝΤΩΝ

Διάβρωση και Προστασία. Εαρινό εξάμηνο Ακ. Έτους Μάθημα 3ο

Πολυτεχνείο Κρήτης Σχολή Μηχανικών Περιβάλλοντος. Σηµειώσεις

13. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ

ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ

Ανόργανη Χημεία. Τμήμα Τεχνολογίας Τροφίμων. Ενότητα 2 η : Αντιδράσεις σε Υδατικά Διαλύματα. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής

Ζαχαριάδου Φωτεινή Σελίδα 1 από 7

Βαθμός ιοντισμού. Για ισχυρούς ηλεκτρολύτες ισχύει α = 1. Για ασθενής ηλεκτρολύτες ισχύει 0 < α < 1.

ÖñïíôéóôÞñéï Ì.Å ÅÐÉËÏÃÇ ÊÁËÁÌÁÔÁ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II

ΧΗΜΙΚΕΣ ΑΝΤΙ ΡΑΣΕΙΣ - ΧΗΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Περιβαλλοντική Χημεία - Γεωχημεία. Διαφάνειες 5 ου Μαθήματος Γαλάνη Απ. Αγγελική, Χημικός Ph.D. Ε.ΔΙ.Π.

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4)

Περιοριστικό αντιδρών

ΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

(είναι οι αντιδράσεις στις οποίες δεν μεταβάλλεται ο αριθμός οξείδωσης σε κανένα από τα στοιχεία που συμμετέχουν)

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

Όνομα :... Ημερομηνία:... /... /...

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Κατηγορίες οξειδοαναγωγικών αντιδράσεων.

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως Αρχή μεθόδου Θεωρία

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

Ονοματεπώνυμο: Χημεία Γ Λυκείου Υλη: Χημική Κινητική Χημική Ισορροπία Ιοντισμός (K a K b ) Επιμέλεια διαγωνίσματος: Τσικριτζή Αθανασία Αξιολόγηση :

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: ΔΙΑΡΚΕΙΑ: 3 ώρες

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΟΙΧΕΙΟΜΕΤΡΙΑΣ ΤΗΣ ΜΙΚΡΟΒΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ ΜΕ ΒΑΣΗ ΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

Τύποι Χημικών αντιδράσεων

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΧΗΜΕΙΑ

ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ

Πολυτεχνείο Κρήτης Σχολή Μηχανικών Περιβάλλοντος. Σηµειώσεις

ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

Ανόργανη Χημεία. Τμήμα Τεχνολογίας Τροφίμων. Ενότητα 12 η : Υδατική ισορροπία Οξέα & βάσεις. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Συνοπτική Θεωρία Χημείας Α Λυκείου. Χημικές αντιδράσεις. Πολύπλοκες

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ. Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8)

ΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

3. Βασικές αρχές-b Σύμπλοκα Κινητική αντιδράσεων μεταλλικών συμπλόκων Σύμπλοκα μεταλλικών ιόντων στα φυσικά ύδατα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΗ ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 14/06/2019

ΘΕΜΑΤΑ ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: EΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΟΜΗΝΙΑ: 29/03/2015 (ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ)

5η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ (Ηλεκτροχημεία)

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

Ερωτήσεις πολλαπλης επιλογής στην οξειδοαναγωγή (1ο κεφάλαιο Γ Θετική 2015)

XHMEIA ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2014 Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Πανελλήνιες σπουδαστήριο Κυριακίδης Ανδρεάδης. Προτεινόμενες λύσεις XHMEIA ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 15/06/2018 ΘΕΜΑ Α. Α1. β. Α2. β. Α3. γ. Α4. δ. Α5.

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 27 ΜΑΪΟΥ 2009 ΕΚΦΩΝΗΣΕΙΣ

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη Β τάξη Λυκείου ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Ερωτήσεις θεωρίας Τύπου Α

Πολυτεχνείο Κρήτης Σχολή Μηχανικών Περιβάλλοντος. Υδατική Χηµεία. Σηµειώσεις

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 2000

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ανόργανη Χημεία Ι. Ηλεκτροχημεία. Διδάσκοντες: Αναπλ. Καθ. Α. Γαρούφης, Επίκ. Καθ. Γ.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Στις ερωτήσεις 1.1 έως 1.4 να επιλέξετε τη σωστή απάντηση:

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑΣ ÑÏÌÂÏÓ. δ. CH 3 _ CH 3 Μονάδες 4

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΧΗΜΕΙΑ ΑΛΓΟΡΙΘΜΟΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005 ΕΚΦΩΝΗΣΕΙΣ

Ανάλυση Τροφίμων. Ενότητα 9: Υδατική ισορροπία Οξέα και βάσεις Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ. Τμήμα Τεχνολογίας Τροφίμων. Ακαδημαϊκό Έτος

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Η ηλεκτροχηµεία µελετά τις χηµικές µεταβολές που προκαλούνται από ηλεκτρικό ρεύµα ή την παραγωγή ηλεκτρισµού από χηµικές αντιδράσεις.

ΓΑΛΒΑΝΙΚΑ ΚΑΙ ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΚΕΛΙΑ

Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΑ 2-3) ( ) ΘΕΜΑ Α Α1.

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 2000

πόλος αποφόρτιση (γαλβανικό στοιχ.) φόρτιση (ηλεκτρολυτικό στοιχ.) (αυθόρµητη λειτουργία) (εξαναγκασµένη λειτουργία zfe c = w el (1) 7-1

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 ÅÐÉËÏÃÇ

Θέμα Α. Ονοματεπώνυμο: Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης. Αξιολόγηση :

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΟΜΟΚΕΝΤΡΟ» Α. ΦΛΩΡΟΠΟΥΛΟΥ

ΑΣΚΗΣΗ ΗΜΟΣΙΕΥΣΗΣ. ΞΑΝΘΟΥ 7 & 25ΗΣ ΜΑΡΤΙΟΥ ΑΙΓΑΛΕΩ ΤΗΛ:

Υδατική Χηµεία-Κεφάλαιο 3 1

ΟΞΕΑ, ΒΑΣΕΙΣ ΚΑΙ ΑΛΑΤΑ. ΜΑΘΗΜΑ 1 o : Γενικά για τα οξέα- Ιδιότητες - είκτες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ

ΘΕΜΑ Στις χημικές ουσίες Ο 3, CO 2, H 2 O 2, OF 2 ο αριθμός οξείδωσης του οξυγόνου είναι αντίστοιχα:

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Κεφάλαιο 3 Χημικές Αντιδράσεις

Παράδειγµα κριτηρίου σύντοµης διάρκειας

7. ΙΣΟΡΡΟΠΙΕΣ ΟΞΕΙ ΟΑΝΑΓΩΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΟΙΧΕΙΟΜΕΤΡΙΑΣ ΤΗΣ ΜΙΚΡΟΒΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ ΜΕ ΒΑΣΗ ΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

Transcript:

ΚΕΦΑΛΑΙΟ 3 ΑΝΤΙΔΡΑΣΕΙΣ ΟΞΕΙΔΩΣΗΣ - ΑΝΑΓΩΓΗΣ H γη είχε αναερόβια ατµόσφαιρα. Η διαδικασία της φωτοσύνθεσης άρχισε 3,5 δισεκατοµµύρια έτη. Aπό τότε οι υπάρχουσες οξειδοαναγωγικές συνθήκες συντηρούνται στην ατµόσφαιρα και στη γη. Οι σηµαντικότερες χηµικές διεργασίες που γνωρίζουµε υφίστανται εδώ και 600 εκατοµµύρια έτη.

CaSiO 3 + CO 2 SiO 2 + CaCO 3 Διάλυση πυριτικών αλάτων CO 2 + H 2 O CH 2 Ο + O 2 Φωτοσύνθεση O 2 + 4 FeSiO 3 2 Fe 2 O 3 + 4 SiO 2 Οξείδωση Fe (II) σε Fe (III) 15/8 O 2 + 1/2 FeS 2 + H 2 O H 2 SO 4 + 1/4 Fe 2 O 3 Οξείδωση Fe (II) & S -1 σε Fe (III) & S 6+ Ενώ κατά την αντίδραση της φωτοσύνθεσης παράγεται για κάθε CΗ 2 O ένα Ο 2 στα ιζήµατα έχουµε 50 φορές περισσότερο CΗ 2 O γιατί το Ο 2 καταναλώνεται οξειδώνοντας ουσίες όπως ο Fe (II). Στη Γη υφίσταται µία στατική κατάσταση µεταξύ οξείδωσης και αναγωγής

Έχουµε µία σταθερή «πλανητική» αντίδραση µεταξύ: οξέων (προερχόµενων από εκρήξεις ηφαιστείων) βάσεων (π.χ. τα πετρώµατα) Η «πλανητική αντίδραση» καθορίζει: τη χηµική σύσταση, το ph, και το δυναµικό Ο-Α (redox) της Γης. Πετρώµατα + Πτητικές Ουσίες Πυριτικά CO 2, SO 2 Ανθρακικά H 2 O, HF, HCl Οξείδια H +, e - Ατµόσφαιρα Θάλασσα Ιζήµατα/Εδάφη Ο 2 (21%) ph=8, E H =0,75 V Ανθρακικά, Πυριτικά Ν 2 (79%) CO 2 (0,03%)

Στη γη µεταξύ των κύκλων των διαφόρων ουσιών και στοιχείων (π.χ. αζώτου, άνθρακα) υπάρχει και ο κύκλος των ηλεκτρονίων. Ο κύκλος των ηλεκτρονίων διατηρείται στην επιφάνεια της γης χάρη στην ενέργεια που παρέχεται από τον ήλιο και που χρησιµοποιείται από την διαδικασία της φωτοσύνθεσης:

hν + 2 H 2 O 4 H (0) + O 2 (0) 4 H (0) + C (+IV) O 2 C (0) H 2 O + H 2 O Συνολικά hν + 6H 2 O + 6CO 2 [C 6 H 12 O 6 ] + 6O 2 ΔS= -262 J/K

Παρατηρήσεις: Ι) Από γεωλογική άποψη η οξειδοαναγωγική κατάσταση της γης έχει µεταβληθεί κατά τα τελευταία 3-6 x 10 9 έτη. ΙΙ) Η ατµόσφαιρα περιείχε µόνον N 2, CO 2, CH 4, HCN & NH 3. ΙΙΙ) Πως είχαµε αύξηση της οξειδοαναγωγής αφού ούτε παρήχθησαν ούτε αποµακρύνθηκαν ηλεκτρόνια;;; Απάντηση: Ή εισήχθη ένα οξειδωτικό ή αποµακρύνθηκε ένα αναγωγικό

Όταν λόγω της εξέλιξης της ζωής έγινε δυνατή η φωτοσύνθεση, η οξειδο-αναγωγική κατάσταση του συστήµατος γη/ατµόσφαιρα συνέχισε να αυξάνει καθώς: 1) Το αναγωγικό δηλ. η οργανική ύλη ή [CΗ 2 Ο], εισερχόταν µερικώς προς το εσωτερικό της γής. 2) Για κάθε [CΗ 2 Ο] εµφανίζεται ένα Ο 2 3) Το Ο 2 αν και αντιδρά µερικώς µε τα διάφορα αναγωγικά ευρισκόµενα στον γήινο φλοιό, σε σηµαντική ποσότητα του παραµένει στην διεπιφάνεια γης ατµόσφαιρας και καθορίζει το οξειδωτικό δυναµικό της. Στη γη οι συνθήκες είναι αερόβιες. Για τους οργανισµούς που ζούν κάτω από υπό αερόβιες συνθήκες κάθε αναγωγική ουσία θεωρείται παράγων ρύπανσης.

Αντιδράσεις οξειδοαναγωγής Aλλαγή της κατάστασης οξείδωσης των αντιδρώντων: Μεταφορά ηλεκτρονίων από το ένα αντιδρόν στο άλλο. Οι αντιδράσεις οξειδοαναγωγής είναι ιδιαίτερα σηµαντικές στο περιβάλλον, τόσο στα φυσικά ύδατα όσο και στα λύµατα. Παραδείγµατα: Cd 2+ + Fe Cd + Fe 2+ (αποµάκρυνση Cd από τα λύµατα µέσω Fe)

H αντίδραση αυτή χωρίζεται σε δύο ηµιαντιδράσεις: Cd 2+ + 3e - Cd αναγωγή του Cd 2+ Fe 2e - + Fe 2+ οξείδωση του Fe Η ταχύτητα οξείδωσης των λυµάτων είναι καθοριστική στους σταθµούς επεξεργασίας τους. Οξείδωση οργανικής ύλης στα φυσικά ύδατα επιφέρει µείωση της συγκέντρωσης οξυγόνου: [CH 2 O] οξειδώνεται + O 2 (ανάγεται) CO 2 + H 2 O

Η οξείδωση του NH 4 + σε NO 3 - ΝΗ 4 + + 2Ο 2 ΝΟ 3 - + 2Η + + Η 2 Ο Το αµµωνιακό άζωτο µετατρέπεται σε µια µορφή αφοµοιώσιµη από τα φύκη στο νερό. Η ενεργότητα του e - χρησιµοποιείται για να χαρακτηριστεί το νερό οξειδωτικό ή αναγωγικό. Φυσικά ύδατα που χαρακτηρίζονται από έντονη ενεργότητα e -, όπως στον βυθό µιας λίµνης, θεωρούνται αναγωγικά. Νερά µε χαµηλή ενεργότητα e -, όπως τα χλωριωµένα, θεωρούνται οξειδωτικά. Η µεταφορά e - στο περιβάλλον συνοδεύεται από µεταφορά Η +. Fe(H 2 O) 6 2+ e- + Fe(OH) 3 + 3 H 2 O + 3 H +

Οξειδοαναγωγικά στρωµατοποιηµένο σώµα νερού

pε = -log(α e- ) όπου α e- = ενεργότητα e - στο διάλυµα α=γ [συγκέντρωση], γ=συντελεστής ενεργότητας (ph = -log(α H+ ), όπου α H + =ενεργότητα του Η + ) Οι ενεργότητες των e - στο νερό ποικίλουν έως 20 τάξεις µεγέθους. Σε αραιά διαλύµατα οι ενεργότητες εξισώνονται µε τις συγκεντρώσεις (γ=1)

Οι τιµές του pe ορίζονται ως προς την ηµιαντίδραση: Ε =+0,0 V, pe =0,0 α H+ = 1 είναι σε ισορροπία µε το Η 2 p Α =1 atm α e- = 1 ή pe=0,0

Σύστηµα Fe 3+ /Fe 2+ Fe 3+ + e - Fe 2+ E =+0.77 V, pe =13,2. Όταν έχουµε διαλύµατα µε υψηλή αραίωση οι ενεργότητες των Fe 3+, Fe 2+ υποκαθίστανται από τις συγκεντρώσεις τους. pe = (E/[2,303.R.T]).F και pe ο = (Ε ο /[2,303.R.T]).F

Αριθµητικό παράδειγµα: [Fe 3+ ]=2.35 10-3, [Fe 2+ ]=7.85 10-5 M και pe o =13.2 n=1 pε=14,68

Διάφοροι µικροοργανισµοί παράγουν την ενέργειά τους λειτουργώντας ως καταλύτες χηµικών αντιδράσεων εκ των οποίων εκλαµβάνουν µέρος της εκλυόµενης ενέργειας. Α) Μικροβιακά καταλυόµενη ζύµωση οργανικής ύλης σε αερόβιες συνθήκες: µετατροπή σε CO 2 και H 2 O Β) Μικροβιακά καταλυόµενη ζύµωση οργανικής ύλης σε αναερόβιες συνθήκες: µετατροπή σε CH 4 Αλλαγές της ελεύθερης ενέργειας ΔG, για τις αντιδράσεις οξειδοαναγωγής.

{ΔG= -n.f.e, pe = E/0.06 & E = (0.06/n) logk} Για µια αντίδραση οξειδοαναγωγής, όπου παίρνουν µέρος n e - σε απόλυτη θερµοκρασία Τ το ΔG είναι: ΔG = -2.303 nrt(pe) Υπό κανονικές συνθήκες : ΔG = -2.303 nrt(pe ) Παράδειγµα: Νιτροποίηση στα υδατικά συστήµατα (8 e - ). (pe =5.85) Aρχή της µεταφοράς «1 mole e -». (pe =5.85)

ΔG =-2.303 n.r.t.pe Για 1 e- mole ΔG = -2.303 R.T.pE Σύγκριση των pe αντιδράσεων σύγκριση των ΔG Γνωρίζουµε ότι για 1 e- mole: logk = n (pe ) ή logk = pe Για την νιτροποίηση: pe = +5,85 [ ] 18 H + + [ NH 4 ] 18 1 po 4 2 K = NO 3 [ ] 1 4 logk = pe = 5.85 βρίσκουµε: K=7.08 10 5

Η τάση µιας αντίδρασης: Πρόβλεψη µέσω ηµι-αντιδράσεων Παραδείγµατα αντιδράσεων: Hg 2+ +2e - Hg, pe =13.35 Fe 3+ +e - Fe 2+ Cu 2+ +2e - Cu, 2H + +2e - H 2, Pb 2+ +2e - Pb, pe =13.2 pe =5.71 pe =0.00 pe =-2.13

Παράδειγµα: Πως µπορεί να ερµηνευθεί το γεγονός ότι όταν ένα διάλυµα Cu 2+ ρέει µέσα σε έναν αγωγό µολύβδου ο αγωγός καλύπτεται µε ένα στρώµα χαλκού; Οφείλεται στην αντίδραση: Cu 2+ + Pb Cu +Pb 2+ pe>0: Η ηµιαντίδραση πηγαίνει προς τα δεξιά. (Α) Cu 2+ + 2e- Cu pe =5.71 pe<0: η ηµιαντίδραση πηγαίνει µάλλον προς τα αριστερά. (Β) Pb 2+ +2e- Pb pe =-2.13 (A-B) Cu 2+ + Pb Cu + Pb 2+, pe =7.84 pe ο >0 : Παρουσία Cu 2+ σε αγωγούς από µόλυβδο, απελευθερώνονται τοξικά ιόντα Pb 2+

pe = pe + 1 n [ ] [ ] = 7.84 + 1 2 Cu2+ log Pb 2+ [ ] [ Pb 2+ ] 2+ Cu log Κατάσταση ισορροπίας ισχύει pe=0 και µπορεί έτσι να υπολογισθεί η σταθερά ισορροπίας της αντίδρασης Κ: Cu 2+ + Pb Cu + Pb 2+, pe =7.84 [ ] [ Cu 2+ ] K = Pb2+ pe = pe + 1 n [ ] [ ] = pe + 1 n log 1 K Cu2+ log Pb 2+ pe = 0 = 7.84 + 1 2 log 1 K pe = 7.84 1 2 logk 7.84 x 2 = log K log K = 15.68 K = 10 15.68

Παράδειγµα: Ποιος είναι ο λόγος Hg 2+ µε Cu 2+ σε ισορροπία σε καθαρό νερό όταν είναι σε επαφή µε Hg 0 και Cu 0 ; (Για τον Ηg pe 0 =13.35 και για τον Cu pe 0 =5.71) Λύση Η συνολική αντίδραση είναι: Hg 2+ + Cu 0 Cu 2+ + Hg 0 Οι ηµιαντιδράσεις: Hg 2+ + 2e- Hg 0 pe 0 =13.35 Cu 2+ + 2e- Cu 0 pe 0 =5.71 Για την συνολική: pe 0 =13.35-5.71=7.64

Hg 2+ + Cu 0 Hg 0 + Cu 2+ Nernst: Σύστηµα είναι σε ισορροπία:

Οι οριακές τιµές του pe στο H 2 O Υπάρχουν τιµές pe για τις οποίες το νερό είναι θερµοδυναµικά σταθερό. Οι οριακές αυτές τιµές του pe στο νερό εξαρτώνται από το ph. Το νερό οξειδούται: και ανάγεται: Αυτές οι δύο αντιδράσεις καθορίζουν τα όρια του pe στο νερό.

Η τιµή του po 2, από την οξείδωση του νερού, θεωρείται ως οριακή τιµή όταν είναι 1 atm. Αντιστοίχως πίεση 1 atm για το Η 2 θεωρείται ως οριακή τιµή για την αναγωγή του νερού. Γράφουµε τις αντιδράσεις για 1 e- mole: pe = 20.75 pe = pε ο + log 1/K όπου K = 1/O 2 1/4 [H + ] pe = pe + log( 1 O 4 [ 2 H + ]) όταν po 2 = 1.00 pe = 20.75-pH οξειδωτικό όριο του νερού

Η σχέση pe-ph για το αναγωγικό όριο του νερού: pe = 0.0 pe = pe + log[h + ] pe = -ph αναγωγικό όριο του νερού Όταν το ph = 7 Οξειδωτικό όριο: pe = 13.75 και Αναγωγικό όριο: pe = -7.00

Το Διάγραµµα ph pe για το νερό Με διάφορες προσθήκες ουσιών το νερό µπορεί να έχει τιµές pe πιο αρνητικές ή πιο θετικές από το αναγωγικό ή το οξειδωτικό του όριο (πχ. το υδατικό διάλυµα χλωρίου)

Τιµές pe στα φυσικά υδατικά συστήµατα Δεν είναι εύκολο να µετρήσουµε µε ακρίβεια το pe στα φυσικά νερά µέσω ποτενσιοµετρικών µεθόδων. Οι τιµές του pe µπορούν να υπολογιστούν µέσω του προσδιορισµού των χηµικών ουσιών που βρίσκονται σε κατάσταση ισορροπίας στο νερό. 1 pe = pe + log po 4 2 [ ] H + [ ] Όταν το ουδέτερο νερό βρίσκεται σε κατάσταση θερµοδυναµικής ισορροπίας µε την ατµόσφαιρα: po 2 = 0.21 atm, [H + ] = 1.0 10-7

pe = 20.75 + log ( 0.21) 1 4 ( 1.00 10 7 ) pe = 13.8 για «αερόβιο» νερό Όταν οι συνθήκες είναι αναερόβιες και CO 2, CH 4 παράγονται από µικροοργανισµούς: ph=7.00

Εξίσωση του Nernst: 1 8 H + [ ] pe = 2.87 + log p CO 2 1 = 2.87 + log H + 8 p CH 4 [ ] pe = 2.87-7.00 = -4.13 H µερική πίεση του Ο 2 σε ένα ουδέτερο νερό µε τόσο χαµηλό pe? pe = pe + log p O2 1 4 H + [ ] 4.13 = 20.75 + log( 1 po 4 2 1.00 10 7 ) po 2 = 3.00 10 72 atm Σε συνθήκες χαµηλής πίεσης Ο 2 δεν εγκαθίσταται κατάσταση ισορροπίας

Παράδειγµα: Aναγωγή του οξυγόνου σε νερό Σύνθετη διεργασία που αποτελείται από αρκετά στάδια. Το υπεροξείδιο του υδρογόνου H 2 O 2 είναι ένα σταθερό ενδιάµεσο αυτής της διαδικασίας. Το οξειδοαναγωγικό ζεύγος O 2 /H 2 O 2 είναι αυτό που καθορίζει το pe. Η συγκέντρωση του Η 2 Ο 2 είναι 10-9 Μ. ph=7 και po 2 =0.21 Ι)Ποια θα είναι η τιµή του pe; ΙΙ)Πως συγκρίνεται αυτή η τιµή του pe µε το pe του οξειδοαναγωγικού ζεύγους Ο 2 /Η 2 Ο (pe o =20.75);

Ο 2(g) + 2H + + 2e - H 2 O 2 logk=23 Μετατρέπουµε το logk σε pe o : pe o = (1/n)logK =11,5 Εξίσωση Nernst: pe=pe o +1/nlog [po 2 [H + ]/H 2 O 2 ]=11.5-pH+1/2log(0.21x10 9 )=8.66 1 pe = pe + log po 4 2 [ ] H + [ ] =13,6

Παράδειγµα: Να υπολογιστούν οι τιµές pe των παρακάτω συστηµάτων τα οποία βρίσκονται σε ισορροπία στους 25 ο C. α) Όξινο διάλυµα που περιέχει 10-5 Μ Fe 3+ και 10-3 M Fe 2+ (pe 0 =13.2) β) Φυσικό νερό µε ph=9.5 σε ισορροπία µε την ατµόσφαιρα (po 2 =0.21 Atm) (pe 0 =20.78) γ) Φυσικό νερό µε ph=8 το οποίο περιέχει 10-5 M Mn 2+ σε ισορροπία µε MnO 2 (s) (pe 0 =20.42) α) Fe 3+ + e - Fe 2+ pe 0 =13.2 pe=pe o + log[fe 3+ ]/[ Fe 2+ ] pe=13,2 + log[10-5 ]/[ 10-3 ]= 11,2

pe 0 =20,78 pe=pe o + log[po 2 ] 1/4 [ H + ] pe=20,78 + 1/4log[0.21] + log[h + ] pe=20.78 0.17 9.5=11.11 γ) MnO 2 (s) + 4H + + 2e - Mn 2+ + 2H 2 O(l) pe 0 =20.42 pe=pe o + 1/2log[H + ] 4 /[ Mn 2+ ] pe=20.42 2pH 1/2log[10-5 ] pe=20.42 16 + 2.5=6.92

Διαγράµµατα pe-ph Περιοχές σταθερότητας και συνοριακές γραµµές συνύπαρξης διαφόρων µορφών των χηµικών ενώσεων στο περιβάλλον Διάγραµµα pe ph του ζεύγους Fe (II) /Fe (III) (max συγκ. 10-5 Μ) Ι) pe = +13.2 ΙΙ) ΙΙΙ) K sp = Fe2+ [ ] [ H + ] = 2 8.0 1012 ΙV) V) K sp' = Fe3+ [ ] [ H + ] = 3 9.1 103

Κάνουµε την παραδοχή ότι οι µορφές του Fe όπως Fe(OH) 2+, Fe(OH) 2+, FeCO 3 & FeS δεν είναι σηµαντικές για τους υπολογισµούς παρόλο που µπορεί να έχουν σηµαντική παρουσία στο περιβάλλον. Κατασκευή διαγράµµατος pe-ph: Οριακές καταστάσεις Ι) Τα οξειδωτικά και αναγωγικά όρια του νερού pe = 20.75-pH pe = -ph υψηλές τιµές pe χαµηλές τιµές pe ΙΙ) Ζεύγος Fe 3+ /Fe 2+ ΙΙ.1) Σε ph<3 ο Fe 3+ συνυπάρχει σε ισορροπία µε τον Fe 2+ Fe 3+ +e - Fe 2+, E = 0.77 V, pe = 13.2 Όταν [Fe 3+ ] = [Fe 2+ ] (οριακή κατάσταση)

II.2 Fe 3+ /Fe(OH) 3 pe =13.2 + log Fe3+ [ ] [ Fe 2+ ] =13.2 pe & ph Fe(OH) 3 καθιζάνει από το διάλυµα του Fe 3+. Η τιµή του ph που αρχίζει η καθίζηση του Fe(OH) 3 εξαρτάται από την [Fe 3+ ] [Fe 3+ ] max = 10-5 M [ K ' sp = Fe3+ ] [ H + ] [ H + ] 3 = [ Fe3+ ] 3 K ' sp = 1.00 10 5 9.1 10 3 ph = 2,99 H καθίζηση αρχίζει στο ph=2,99.

II.3 Fe 2+ /Fe(OH) 2 [Fe 2+ ]=1,00 10-5 Μ στην οριακή περίπτωση Fe 2+ και Fe(OH) 2 [ H + ] 2 = [ 2+ Fe ] Ksp = 1 10 5 ph = 8.95 12 8.0 10 II.4 Fe n+ /Fe(OH) x Σε ένα ευρύ φάσµα τιµών pe-ph: Fe 2+ είναι το κυρίως διαλυτοποιηµένο ιόν µε τον Fe 3+ ως Fe(OH) 3. Η διαχωριστική γραµµή µεταξύ τους εξαρτάται από το pe και το ph: [ ] K ' sp = Fe3+ [ H + ] [ 3+ ] Fe 2+ [ ] 3, pe =13.2 + log Fe pe =13.2 + log K ' [ sp H + ] 3 [ Fe 2+ ] pe=13.2 + log(9,1 10 3 ) log(1,0 10-5 ) + 3log[H + ] pe= 22.2-3pH

Η διαχωριστική γραµµή µεταξύ των στερεών φάσεων Fe(OH) 2 και Fe(OH) 3 είναι συνάρτηση του pe και ph αλλά όχι του [Fe n+ ] διαλυτός. [ 3+ ] Fe 2+ [ K sp = Fe2+ ] [ H + ],K [ ' 2 sp = Fe 3+ ] pe =13,2 + log Fe [ H + ] 3 [ ] & pe =13,2 + log K ' [ sp H + ] 3 K [ sp H + ] 2 pe =13,2 + log 9,1 103 + log[ + H ] pe = 4,3 ph 12 8,0 10

Εποµένως για το διάγραµµα pe ph έχουµε κατά περίπτωση τις εξής εξισώσεις: 1 Η 2 Ο/Ο 2 pe = 20,75 - ph 2 Η 2 /Η 2 Ο pe = - ph 3 Fe 3+ /Fe 2+ pe = 13,2 4 Fe 3+ /Fe(OH) 3 ph = 2,99 5 Fe 2+ /Fe(OH) 2 ph = 8,95 6 Fe 2+ /Fe(OH) 3 pe = 22,2 3 ph 7 Fe(OH) 2 /Fe(OH) 3 pe = 4,3 - ph

Fe 3+ O 2 pe = 20,75 - ph ph = 2,99 Η 2 Ο/Ο 2 pe = 13,2 Fe 3+ /Fe 2+ Fe 3+ /Fe(OH) 3 pe Fe 2+ pe = 22,2 3 ph ph = 8,95 Fe(OH) 3 Fe 2+ /Fe(OH) 3 Fe(OH) 2 /Fe(OH) 3 pe = 4,3 - ph Fe 2+ /Fe(OH) 2 pe = - ph Η 2 /Η 2 Ο H 2 Fe(OH) 2 ph

Fe 3+ O 2 pe Fe 2+ Fe(OH) 3 Φυσικά Ύδατα H 2 Fe(OH) 2 5 9 ph

Ο µεταλλικός σίδηρος µπορεί να υπάρξει στα φυσικά ύδατα; Fe 2+ + 2 e - Fe pe o = -7,45 pe= -7,45 + 0,5 log[fe 2+ ] αν [Fe 2+ ]=1,0 x 10-5 M pe= -7,45 0,5 log 1,0 x 10-5 = -9,95 pe < pe H 2 O (pe=-7.0).

Fe 3+ O 2 pe Fe 2+ Fe(OH) 3 Fe 2+ + 2 e - Fe pe= -9,95 pε= -7 H 2 H 2 O (pe=-7,0) Fe(OH) 2 ph

Παράδειγµα: Υπολογισµός της [Fe 3+ ], του pe και του ph στο σηµείο του διαγράµµατος pe-ph οξειδο-αναγωγικών καταστάσεων του σιδήρου όπου: [Fe 2+ ]=10-5 M και Fe(OH) 2, Fe(OH) 3 βρίσκονται σε ισορροπία. Η οριακή γραµµή για την ισορροπία των Fe(OH) 2 /Fe(OH) 3 στο διάγραµµα pe-ph του Fe: pe=4.3-ph [ H + ] 2 = [ ] [ H + ] Ksp = Fe2+ 2+ [ Fe ] Ksp 2 = 8,0 1012 = 1 10 5 ph = 8,95 12 8,0 10 pe=4.3 ph = 4.3 8.95 = -4.65

H συγκέντρωση του διαλυµένου [Fe 3+ ]: Fe 3+ +e - Fe 2+, pe = 13.2 pe =13.2 + log Fe3+ [ ] [ Fe 2+ ] =13.2 pe = -4.65=13.2 + log ([Fe 3+ ]/10-5 ) pe= -4.65=13.2 + log [Fe 3+ ] + 5 log [Fe 3+ ] = -22.9 [Fe 3+ ] = 1,25 10-23 (πολύ µικρή)

Ισορροπίες οξειδοαναγωγής του χλωρίου σε υδατικό διάλυµα Σε ποιες συνθήκες το Cl - οξειδούται σε Cl 2 ή HOCl (OCl - ) κατά την διαδικασία της απολύµανσης του νερού µε χλώριο. Σε ένα υδατικό διάλυµα στους 25 o C η [Cl] T είναι: Cl T = 2[Cl 2 ] (aq) + [HOCl] + [OCl - ] + [Cl - ] 10-3 Μ Μέσω θερµοδυναµικών δεδοµένων υπολογίζουµε τις Κ των αντιδράσεων: (1)HClO + H + + e - ½ Cl 2(aq) + H 2 O log K = 26,9 & E H o = 1,59 (2) ½ Cl 2(aq) + e - Cl - log K = 23,6 & E H o = 1,40 (3) HClO ClO - + H + log K = -7,3

pε ο = 1/n log K Εξίσωση του Nerst: HClO + H + + e - ½ Cl 2 (aq) + H 2 O (1) pe = 26,9 + log [HClO]/[ Cl 2 ] 1/2 (aq) - ph (1) ½ Cl 2(aq) + e - Cl - (2) pe = 23,6 + log ([ Cl 2 ] 1/2 (aq) /[Cl - ]) (2) Αναγωγή του HClO σε Cl - : (1) και (2) HClO + H + + 2e - Cl - + H 2 O K = [Cl - ]/([HClO].[H + ].[e] 2 )

log K = log ([Cl - ]/[HClO]) + log (1/[H + ]) +log (1/[e] 2 ) log K = log ([Cl - ]/[HClO]) + ph + 2 pe ½ log K = - ½ log ([HClO]/[Cl - ]) + ½ ph + pe pe = ½ log K + ½ log ([HClO]/[Cl - ]) - ½ ph pe = 25,25 + ½ log ([HClO]/[Cl - ]) - ½ ph (3)

Αναγωγή του ClO - σε Cl - : HClO + H + + 2 e - Cl - + Η 2 Ο ClO - + H + HClO ClO - + 2 H + + 2 e - Cl - + H 2 O K = [Cl - ]/[ ClO - ].[H + ] 2.[e - ] 2 log K = log ([Cl - ]/[ ClO - ]) log [H + ] 2 log [e - ] 2 ½ log K = ½ log ([Cl - ]/[ ClO - ]) + ph + pe pe = ½ log K + ½ log ([ClO - ]/[Cl - ]) - ph pe = 28,9 + ½ log ([ClO - ]/[Cl - ]) - ph (4)

Η συνολική συγκέντρωση του χλωρίου είναι: Cl T = 2[Cl 2 ] (aq) + [HOCl] + [OCl - ] + [Cl - ] = 0.04 Μ Χρησιµοποιούµε τις εξισώσεις (1), (2), (3) και (4): Υπολογίζουµε τις συγκεντρώσεις στις οριακές καταστάσεις. pe = 26,9 + log [HClO]/[ Cl 2 ] (aq) 1/2 - ph (1) pe = 23,6 + log ([ Cl 2 ] (aq) 1/2 /[Cl - ]) (2) pe = 25,25 + ½ log ([HClO]/[Cl - ]) - ½ ph (3) pe = 28,9 + ½ log ([ClO - ]/[Cl - ]) - ph (4)

Η συνολική συγκέντρωση του χλωρίου είναι: Cl T = 2[Cl 2 ] (aq) + [HOCl] + [OCl - ] + [Cl - ] = 0.04 Μ Ι) Cl 2(aq) /HOCl & Cl T = 2[Cl 2 ] (aq) + [HOCl] [HOCl] = 1/2 Cl T = 0.02 Μ και [Cl 2 ] (aq) = 1/4 Cl T = 0.01 Μ ΙΙ) Cl 2(aq) /Cl - & Cl T = 2[Cl 2 ] (aq) + [Cl - ] [Cl - ] = 1/2 Cl T = 0.02 Μ και [Cl 2 ] (aq) = 1/4 Cl T = 0.01 Μ ΙΙΙ) HOCl/OCl - & Cl T = [HOCl] + [OCl - ] log ([HOCl]/[OCl - ]) + ph = 7,3

pe=26,9+log[hclo]/[ Cl 2 ] (aq) 1/2 -ph Cl 2 HOCl pe=25,25+½ log([hclo]/[cl - ])-½ ph O 2 OCl - H 2 O Cl - pe=28,9+½log([clo - ]/[Cl - ])-ph pe=23,6+log ([ Cl 2 ] (aq) 1/2 /[Cl - ]) pe E H (V) pe = 20,75 - ph H 2 O H 2 pe = - ph ph

Προσθήκη Cl 2 στο νερό µας δίνει HOCl και OCl - Το Cl 2 (aq) µόνο σε χαµηλά ph Cl 2(aq),HOCl,OCl - είναι θερµοδυναµικά ασταθή: Το Cl 2 (aq)/hocl/ocl - ισχυρότερο οξειδωτικό από το Ο 2. Cl 2(aq) +H 2 O HOCl+H + +Cl - Σε όλο το εύρος pe/ph των φυσικών υδάτων το Cl - είναι η σταθερότερη µορφή και δεν οξειδούται από το Ο 2

Κινητική της οξειδοαναγωγής Οι διεργασίες µεταφοράς των ηλεκτρονίων στο περιβάλλον είναι αργές. Οι αντιδράσεις οξειδοαναγωγής δεν συµβαίνουν χωρίς κατάλυση. Η οξείδωση της οργανικής ύλης: C 6 H 12 O 6 + 6 O 2 6 CO 2 + 6 H 2 O

Παράδειγµα: Οξείδωση του Fe (II) σε Fe (III) από το O 2 Fe (II) + ¼ O 2 + 2 OH - + ½ H 2 O Fe(OH) 3(s) Mελέτη της κινητικής της αντίδρασης: Ρυθµιστικό στο διάλυµα του Fe (II) : HCO 3- /CO 2. Φωσφορικά ή οξικά θα επηρέαζαν την αντίδραση. Στο διάλυµα εισάγουµε οξυγόνο ώστε να έχουµε µία µερική πίεση po 2 =0,2 atm. Διεξάγουµε το πείραµα σε θερµοκρασία 20 o C. Προσδιορίζουµε σε διάφορα ph τις συγκεντρώσεις του Fe (II).

Διάγραµµα log(συγκέντρωσης)/ph Διαλυτότητες των διαφόρων χηµικών µορφών του σιδήρου στο διάλυµα σε σχέση µε το ph -2-4 Log Conc. -6-8 -10

Η συνολική συγκέντρωση όλων των µορφών του Fe (III) : Fe (III) T = [Fe3+ ] + [FeOH 2+ ] + [Fe(OH) 2+ ] + [Fe(OH) 4- ] Η συγκέντρωση του διαλυτού Fe (II) ορίζεται από τη διαλυτότητα του FeCO 3 : log [Fe 2+ ] = log K sp log [CO 3 2- ]

Πειραµατικά αποτελέσµατα: Κατασκευάζουµε διαγράµµατα log ([Fe 2+ ] t /[Fe 2+ ] 0 ) = f (t) σε διάφορα ph: [Fe (II) ] T [Fe (II) ] 0 min

-d[fe (II) ]/dt = k o [Fe (II) ] -d(ln [Fe (II) ])/dt = k o Εχουµε µία κινητική «πρώτης τάξης»: -d(log [Fe (II) ])/dt. 2,3026 = -d(ln [Fe (II) ])/dt = k o & k o = k o /2,3026 Για διάφορες τιµές του ph παίρνουµε τις αντίστοιχες τιµές k o και κατασκευάζουµε ένα διάγραµµα:

Για κάθε αύξηση της τιµής του ph κατά µία µονάδα η ταχύτητα της αντίδρασης αυξάνεται 100 φορές

Η ταχύτητα είναι 2 ας τάξεως ως προς το Η + ([Η + ]) -2 ή ([ΟΗ - ]) 2 Ο νόµος της ταχύτητα της οξείδωσης του Fe (II) από το Ο 2 εκφράζεται: -d[fe (II) ]/dt = k [Fe (II) ].[OH - ] 2 po 2 k [M -2 atm -1 min -1 ] Tα [OH - ] 2 και po 2 αποτελούν τον παράγοντα περιβάλλοντος -d[fe (II) ]/dt = k [Fe (II) ].

Ηµι-αντίδραση αναγωγής: H + H 2(g) Ηµι-αντίδραση οξείδωσης: H 2(g) H + ΔG o = -n.f.e H o F = σταθερά του Faraday n = αριθµός των ηλεκτρονίων E H o = δυναµικό οξειδοαναγωγής E H = 2,3 (R.T/F). pe

½ H 2(g) H + + e - Fe 3+ + ½ H 2(g) Fe 2+ + H + ΔG = ΔG o + R T ln ([Fe 2+ ][H + ]/[Fe 3+ ].ph 2 1/2 ) (ph 2 =1, [H + ]=1) ΔG = ΔG o + R.T.ln ([Fe 2+ ]/[Fe 3+ ]) E H = E H o + (R T/n F) ln([fe 3+ ]/[Fe 2+ ]) Yπό ιδανικές συνθήκες το δυναµικό οξειδοαναγωγής µπορεί να µετρηθεί µε το ηλεκτρόδιο του υδρογόνου

Είναι πιό πρακτικό να µετράµε το E H µε το ηλεκτρόδιο του καλοµέλανος (calomel): Hg 2 Cl 2(s) + 2e - 2Hg (l) + 2Cl - Στα φυσικά νερά όµως η µέτρηση του δυναµικού της οξειδοαναγωγής είναι δυνατή µόνον αν οι χηµικές ουσίες οξειδωτικές ή αναγωγικές ανταλλάζουν ηλεκτρόνια µε τα ηλεκτρόδια που χρησιµοποιούµε Pt, Au Χηµικές ουσίες που βρίσκονται στα φυσικά ύδατα: O 2, N 2, NH 4+, SO 4 2-, CH 4 δεν έχουν την ικανότητα ανταλλαγής ηλεκτρονίων

Όρια του pe στα οποία οι µετρήσεις µε ηλεκτρόδια µπορούν να είναι ακριβείς ή λανθασµένες O 2, N 2, NO 3-, SO 4 2- : είναι σχετικά αδρανή ως προς τα ηλεκτρόδια Fe(OH) 3(s), Fe 2+ : αντιδρούν µε τα ηλεκτρόδια

Υπολογίζουµε ή µετρούµε τις συγκεντρώσεις ουσιών όπως: O 2, Mn 2+, CO 2, HS -, NH 4+, SO 4 2-, CH 4. Γνωρίζοντας τις συγκεντρώσεις αυτές µπορούµε βασιζόµενοι στις εξισώσεις που µελετήσαµε να υπολογίσουµε το pe των φυσικών υδάτων.

Παραδείγµατα: Α) Διεπιφάνεια ίζηµα/η 2 Ο που περιέχει FeS (s) σε ph = 6 και [SO 4 2- ] = 2.10-3 M. Η αντίδραση που γνωρίζουµε για το σύστηµα αυτό είναι: SO 4 2- + FeCO 3 (s) + 9 H + + 8 e - FeS (s) + HCO 3 - + 4 H 2 O Σταθερά ισορροπίας της αντίδρασης µέσω γνωστών θερµοδυναµικών δεδοµένων: Κ = 10 38 Ε Η µέσω του pe: pe = 4,75-9/8 ph + 1/8 (phco 3 - - pso 4 2- ) Φυσικά νερά: 2 < phco 3 - < 3 Εποµένως: pe = - 2± 0,22 E H = -0,12 V

B) Επιφανειακό νερό που περιέχει 3,2 mg/l O 2 σε ph = 7 O 2(aq) + 4 e - + 4 H + 2 H 2 O & log K = 85,97 pe = 1/4 (85,97) - 4 ph + log [O 2(aq) ] [O 2(aq) ] = 10-4 M & pe = 13,5 ή Ε Η = + 0,8 V Το pe δεν επηρεάζεται ιδιαίτερα από τη [Ο 2(aq) ] Μείωση κατά 4 τάξεις µεγέθους της [Ο 2(aq) ]: Μείωση του Ε Η κατά 0,06 V

Γ) Υπόγειο νερό σε ph =5 και [Fe (II) ] = 10-5 M Fe (OH) 3(s) + e - + 3 H + Fe 2+ + 3 H 2 O Ελεύθερη ενέργεια σχηµατισµού του Fe(OH) 3 (s) είναι: ΔG f o = -700 kj mol -1 Υπολογίζουµε την σταθερά ισορροπίας: log K = 14,1 pe = 15,8 3 ph + p Fe 2+ pe = 1,3 & E H = 0,077 V

Δ) Νερό λίµνης σε µεγάλο βάθος µε τα εξής χαρακτηριστικά: [SO 4 2- ] = 10-3 M, [H 2 S] = 10-6 M, ph = 6 Το δυναµικό οξειδοαναγωγής µπορούµε να το υπολογίσουµε µέσω της χηµικής ισορροπίας: SO 4 2- + 10 H + + 8 e - H 2 S (aq) + 4 H 2 O Όπου log K = 41,0 pe = 1/8 (41,0 10 ph - pso 4 2- + ph 2 S) και pe = -2 ή E H = -0,12 V