ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

Σχετικά έγγραφα
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

Ακέραιος Γραμμικός Προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

max 17x x 2 υπό 10x 1 + 7x 2 40 x 1 + x 2 5 x 1, x 2 0.

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

Επιχειρησιακή έρευνα (ασκήσεις)

z = c 1 x 1 + c 2 x c n x n

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Επιχειρησιακή Έρευνα I

Γραμμικός Προγραμματισμός

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1

Επιχειρησιακή Έρευνα I

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Μοντελοποίηση προβληµάτων

Ανάλυση ευαισθησίας. Γκόγκος Χρήστος- Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΜΕΙΚΤΟΣ ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

3.7 Παραδείγματα Μεθόδου Simplex

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Γραμμικός Προγραμματισμός Μέθοδος Simplex

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

ILP (integer linear programming) βασιζόμενη εξαρτώμενη από τους πόρους μεταγλώττιση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Γραµµικός Προγραµµατισµός (ΓΠ)

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επίλυση Προβλημάτων 1

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

Το Πρόβλημα Μεταφοράς

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

Το µαθηµατικό µοντέλο του Υδρονοµέα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ IΙ

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

ISBN:

Προσεγγιστικοί Αλγόριθμοι

Τμήμα Εφαρμοσμένης Πληροφορικής

Στοχαστικές Στρατηγικές

Επιχειρησιακή Έρευνα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος

Επιχειρησιακή Έρευνα

Εισαγωγή στο Γραμμικό Προγραμματισμό

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

Δομές Δεδομένων και Αλγόριθμοι

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Γραμμικός Προγραμματισμός

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

Ηθικός Κίνδυνος. Το βασικό υπόδειγμα. Παρουσιάζεται ένα στοχαστικό πρόβλημα χρηματοδότησης όταν τα αντισυμβαλλόμενα μέρη έχουν συμμετρική πληροφόρηση.

Επιχειρησιακή Έρευνα

Ακέραιος Γραµµικός Προγραµµατισµός

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Ακέραιος Γραµµικός Προγραµµατισµός

Transcript:

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1

Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι δυσκολότερο να επιλυθεί από ό,τι το αντίστοιχο πρόβλημα που προκύπτει όταν αφαιρεθούν οι περιορισμοί ακεραιότητας. Προβλήματα μη ακέραιου γραμμικού προγραμματισμού με αρκετές χιλιάδες συνεχείς μεταβλητές μπορούν να επιλυθούν σε ικανοποιητικό χρόνο από εμπορικά πακέτα βελτιστοποίησης, ενώ η λύση προβλημάτων ακέραιου γραμμικού προγραμματισμού με λιγότερες από 100 μεταβλητές μπορεί σε αρκετές περιπτώσεις να δημιουργήσει πολλές δυσκολίες. 2

Σχέση γραμμικού και ακέραιου προγραμματισμού Μπορεί να δοθεί αρχικά η εντύπωση ότι τα προβλήματα ακέραιου προγραμματισμού είναι ακόμα πιο εύκολο να λυθούν αφού το σύνολο των εφικτών λύσεων σε αυτή την περίπτωση θα είναι ακόμα πιο περιορισμένο από αυτό του αντίστοιχου προβλήματος γραμμικού προγραμματισμού, και μάλιστα πεπερασμένο και μετρήσιμο. Έτσι, ίσως κάποιος να σκεφτεί ότι θα μπορούσε να απαριθμήσει όλες αυτές τις λύσεις και να βρει τη βέλτιστη. Αυτός ο τρόπος σκέψης είναι εσφαλμένος για δύο κυρίως λόγους: Ο πρώτος είναι ότι αν και το σύνολο λύσεων είναι πεπερασμένο και μετρήσιμο, για όλα τα πρακτικά προβλήματα ο συνολικός αριθμός των λύσεων είναι αστρονομικός. Αυτό σημαίνει ότι η απαρίθμησή τους είναι κάτι το απαγορευτικό αφού αυτό θα απαιτούσε υπολογιστικό χρόνο ο οποίος είναι εντελώς ανέφικτος. Ο δεύτερος λόγος είναι ότι η αφαίρεση κάποιων λύσεων (αυτών που δεν είναι ακέραιες) από το σύνολο των εφικτών λύσεων δυσχεραίνει αντί να διευκολύνει την εύρεση της βέλτιστης λύσης. Κατά την επίλυση ενός προβλήματος γραμμικού προγραμματισμού χρησιμοποιούμε τη μέθοδο simplex για να βρούμε τη βέλτιστη λύση. Με την προσθήκη των περιορισμών ακεραιότητας, έχουμε μία επιπλέον «συνθήκη» που πρέπει να εξασφαλίσουμε ότι πρέπει να ισχύει. Αυτή η συνθήκη δεν ικανοποιείται για τις περισσότερες από τις λύσεις που παίρνουμε με τη μέθοδο simplex και επομένως επιπρόσθετη προσπάθεια απαιτείται για την εύρεση της βέλτιστης λύσης του ακέραιου προβλήματος. 3

Παράδειγμα 3.1 Επειδή τα προβλήματα γραμμικού προγραμματισμού επιλύονται πολύ πιο εύκολα, κάποιος μπορεί εύκολα να μπει στον «πειρασμό» να λύσει ένα ακέραιο πρόβλημα αφού πρώτα αγνοήσει τους περιορισμούς ακεραιότητας, και μετά να στρογγυλοποιήσει τη λύση που προκύπτει, δίνοντας σε κάθε μεταβλητή την πλησιέστερη ακέραια τιμή. Γενικά αυτή θεωρείται μία κακή τεχνική που δεν αποφέρει το επιθυμητό αποτέλεσμα στις περισσότερες περιπτώσεις, όπως φαίνεται και στα δύο επόμενα παραδείγματα. Έστω το πρόβλημα: Max x 2 s.t. -x 1 + x 2 < 0.5 x 1 + x 2 < 3.5 x 1, x 2 > 0 και ακέραιοι 4

Παράδειγμα 3.1 Το σύνολο των εφικτών λύσεων του ακέραιου προβλήματος είναι το (x1,x2) = {(1,1), (2,1), (0,0), (1,0), (2,0), (3,0)}. Η βέλτιστη λύση του γραμμικού προβλήματος είναι η (x1,x2) = (1.5, 2) και η βέλτιστη τιμή της αντικειμενικής συνάρτησης είναι z* = 2. Οι μόνες λύσεις που προκύπτουν από τη στρογγυλοποίηση αυτής της λύσης είναι οι (2,2) και (1,2), οι οποίες είναι και οι δύο μη εφικτές για το αντίστοιχο ακέραιο πρόβλημα. Το ακέραιο πρόβλημα έχει δύο βέλτιστες λύσεις, την (1,1) και την (2,1) με z* = 1, οι οποίες φυσικά δεν μπορούν να προκύψουν με στρογγυλοποίηση από τη βέλτιστη λύση του γραμμικού προβλήματος. 5

Παράδειγμα 3.2 Έστω το πρόβλημα: Max x1 + 5x2 s.t. x1 + 10x2 <= 20 x1 <= 2 x1, x2 >= 0 και ακέραιοι Το σύνολο των εφικτών λύσεων του ακέραιου προβλήματος είναι το (x 1,x 2 ) = {(0,0), (0,1), (0,2), (1,0), (1,1), (2,0), (2,1)}. Η βέλτιστη λύση του γραμμικού προβλήματος είναι η (x 1,x 2 ) = (2, 9/5). Η πρώτη λύση που προκύπτει από τη στρογγυλοποίηση αυτής της λύσης είναι η (2,2), η οποία είναι μη εφικτή για το ακέραιο πρόβλημα. Η δεύτερη λύση είναι η (2,1), η οποία αν και εφικτή δίνει την τιμή 7 για την αντικειμενική συνάρτηση, η οποία είναι κατά πολύ χειρότερη από τη βέλτιστη που είναι 10 για (x 1,x 2 ) = (0, 2). Επομένως, και σε αυτή την περίπτωση η στρογγυλοποίηση της βέλτιστης λύσης του γραμμικού προβλήματος δεν οδηγεί στη βέλτιστη λύση του αντίστοιχου ακέραιου προβλήματος. 6

Ευρετικοί αλγόριθμοι Λόγω της μεγάλης δυσκολίας που εμφανίζουν τα προβλήματα ακέραιου προγραμματισμού, είναι συνήθης η ανάπτυξη ευρετικών αλγορίθμων (heuristic algorithms) για την επίλυσή τους. Οι αλγόριθμοι αυτοί έχουν το μειονέκτημα ότι δεν βρίσκουν απαραίτητα την ολικά βέλτιστη λύση του προβλήματος αλλά μία «καλή» λύση και το πλεονέκτημα ότι απαιτούν πολύ λιγότερο υπολογιστικό χρόνο από ό,τι οι αντίστοιχοι αναλυτικοί αλγόριθμοι που βρίσκουν την ολικά βέλτιστη λύση. Σε γενικές γραμμές, η αποτελεσματικότητα ενός ευρετικού αλγόριθμου εξαρτάται από την ποιότητα των λύσεων που δίνει (από το πόσο κοντά στη βέλτιστη λύση είναι αυτές) και από το χρόνο που απαιτείται για την εκτέλεσή του. 7

Ολικός ακέραιος γραμμικός προγραμματισμός Η μόνη διαφορά μεταξύ των προβλημάτων ακέραιου γραμμικού προγραμματισμού με αυτά του απλού γραμμικού προγραμματισμού έγκειται στο ότι μερικές από τις μεταβλητές απαιτείται να είναι ακέραιες. Αν όλες οι μεταβλητές πρέπει να είναι ακέραιες τότε μιλάμε για πρόβλημα ολικού ακέραιου γραμμικού προγραμματισμού (pure integer linear program). Έστω ένα πρόβλημα ολικού ακέραιου γραμμικού προγραμματισμού: Max 2x1 + 3x2 s.t. 3x1 + 3x2 <= 12 2/3x1 + x2 <= 4 x1 + 2x2 <= 6 x1, x2 >= 0 και ακέραιοι Το πρόβλημα του γραμμικού προγραμματισμού που προκύπτει από την αφαίρεση της απαίτησης ότι οι μεταβλητές πρέπει να είναι ακέραιες δηλώνεται ως "γραμμική χαλάρωση" (linear relaxation) του ακέραιου γραμμικού προβλήματος. 8

Μεικτό ακέραιο πρόβλημα Αν μερικές αλλά όχι όλες απαραίτητα οι μεταβλητές απόφασης σε ένα πρόβλημα πρέπει να είναι ακέραιες τότε έχουμε ένα μεικτό ακέραιο πρόβλημα (mixed integer program). Το ακόλουθο πρόβλημα είναι ένα μεικτό ακέραιο γραμμικό πρόβλημα με δύο μεταβλητές: Max 3x1 + 4x2 s.t. -x1 + 2x2 <= 8 x1 + 2x2 <= 12 2x1 + x2 <= 16 x1, x2 >= 0 και x2 ακέραιος 9

Παράδειγμα 3.3 Δίνεται το παρακάτω πρόβλημα ακέραιου προγραμματισμού: Max Z = 5x1 + x2 s.t. x1 + 2x2 <= 4 x1 x2 <= 1 4x1 + x2 <= 12 x1, x2 ακέραιοι >= 0 α) Βρείτε γραφικά τη βέλτιστη λύση. β) Βρείτε γραφικά τη βέλτιστη λύση του προβλήματος που προκύπτει όταν αφαιρεθούν οι περιορισμοί ακεραιότητας. Βρείτε όλες τις λύσεις που προκύπτουν από τη στρογγυλοποίηση αυτής της λύσης (δηλαδή από τη στρογγυλοποίηση κάθε μεταβλητής και προς τα πάνω και προς τα κάτω). Ελέγξτε κάθε μια από αυτές τις λύσεις για εφικτότητα και (αν είναι εφικτή) για βελτιστότητα. Είναι κάποια λύση βέλτιστη για το ακέραιο πρόβλημα? 10

Λύση Παράδειγμα 3.3 Λύση α) Η βέλτιστη λύση είναι x1 = 2, x2 = 3 και Ζ = 13. β) Η βέλτιστη λύση της γραμμικής χαλάρωσης είναι x1 = 2.6, x2 = 1.6 και Ζ = 14.6. Από τη στρογγυλοποίηση αυτής της λύσης προκύπτουν οι εξής λύσεις: x 1 x 2 Εφικτή? Ζ Βέλτιστη? 2 1 Ναι 11 Όχι 2 2 Ναι 12 Όχι 3 1 Όχι 3 2 Όχι Επομένως, η στρογγυλοποίηση της βέλτιστης λύσης της γραμμικής χαλάρωσης του προβλήματος δεν οδηγεί στην εύρεση της βέλτιστης λύσης του ακέραιου προβλήματος 11

Παράδειγμα 3.4 Η Εταιρεία Ασφαλείς Επενδύσεις Ακινήτων (ΑΕΑ) έχει κεφάλαιο 1.365.000$ που είναι διαθέσιμο για επενδύσεις σε νέα ακίνητα για εκμίσθωση. Μετά από μια αρχική έρευνα η εταιρεία έχει καταλήξει στις εναλλακτικές επενδύσεις. Πρόκειται για μια σειρά διαμερισμάτων και μια ομάδα πολυκατοικιών σε ένα μεγάλο συγκρότημα. Τα διαμερίσματα μπορούν να αγορασθούν σε τριάδες στην τιμή των 195.000$ ανά τριάδα αλλά υπάρχουν μόνο 4 τριάδες διαθέσιμες κατά τον παρόντα χρόνο. Κάθε πολυκατοικία περιλαμβάνει 12 οικιστικές μονάδες και πωλείται προς 273.000$. Οι ανεξάρτητες πολυκατοικίες μπορούν να αγορασθούν ξεχωριστά και ο κατασκευαστής έχει συμφωνήσει να κατασκευάσει όσες πολυκατοικίες η εταιρεία τυχόν αποφασίσει. Ο διαχειριστής των ακινήτων της εταιρείας μπορεί να διαθέσει 140 ώρες ανά μήνα σε αυτές τις επενδύσεις. Κάθε τριάδα διαμερισμάτων θα απαιτήσει 4 ώρες μηνιαίως από τον χρόνο του διαχειριστή, ενώ κάθε πολυκατοικία θα απαιτήσει 40 ώρες μηνιαίως. Η ετήσια απόδοση (μετά την αφαίρεση των συμβολαιογραφικών και των λειτουργικών εξόδων) εκτιμάται σε 2000$ ανά τριάδα διαμερισμάτων και 3000$ ανά κτιριακό συγκρότημα (πολυκατοικία). Η εταιρεία επιθυμεί να επενδύσει τα διαθέσιμα κεφάλαια έτσι ώστε να μεγιστοποιήσει την ετήσια απόδοση. Βρείτε γραφικά τη βέλτιστη λύση του προβλήματος που προκύπτει όταν αφαιρεθούν οι περιορισμοί ακεραιότητας. Βρείτε όλες τις λύσεις που προκύπτουν από τη στρογγυλοποίηση αυτής της λύσης (δηλαδή από τη στρογγυλοποίηση κάθε μεταβλητής και προς τα πάνω και προς τα κάτω). Ελέγξτε κάθε μια από αυτές τις λύσεις για εφικτότητα και (αν είναι εφικτή) για βελτιστότητα. Είναι κάποια λύση βέλτιστη για το ακέραιο πρόβλημα? 12

Λύση Παράδειγμα 3.4 Για να δημιουργήσουμε το κατάλληλο μαθηματικό μοντέλο για αυτό το πρόβλημα ορίζουμε αρχικά τις εξής μεταβλητές απόφασης. x1 = αριθμός τριάδων διαμερισμάτων που θα αγορασθούν x2 = αριθμός πολυκατοικιών που θα αγορασθούν Η αντικειμενική συνάρτηση που αναπαριστά την ετήσια απόδοση (σε χιλιάδες δολλάρια) γράφεται ως εξής : Max 2x1 + 3x2 Υπάρχουν τρεις απαιτήσεις που πρέπει να ικανοποιούνται: 195x1 + 273x2 < 1365 (διαθέσιμα κεφάλαια σε χιλιάδες δολλάρια) 4x1 + 40x2 < 140 (διαθέσιμος χρόνος διαχειριστή σε ώρες) x1 < 4 (διαθέσιμες τριάδες διαμερισμάτων) 13

Λύση Παράδειγμα 3.4 Επιπλέον, οι μεταβλητές πρέπει να είναι θετικές και ακέραιες, εφόσον κλασματικές τιμές για τον αριθμό ομάδων διαμερισμάτων ή πολυκατοικιών που θα αγορασθούν δεν είναι αποδεκτές. Άρα, οι μεταβλητές απόφασης x1 και x2 πρέπει να είναι ακέραιες. Επομένως, το κατάλληλο μαθηματικό μοντέλο για την εταιρεία είναι το ακόλουθο ολικό-ακέραιο γραμμικό πρόβλημα: Max 2x1 + 3x2 s.t. 195x1 + 273x2 <= 1365 4x1 + 40x2 <= 140 x1 <= 4 x1, x2 >= 0 και ακέραιοι 14

Λύση Παράδειγμα 3.4 Το χαλαρό γραμμικό πρόβλημα που προκύπτει από την αφαίρεση της απαίτησης ότι οι μεταβλητές πρέπει να είναι ακέραιες (LP relaxation) είναι το εξής: Max 2x 1 + 3x 2 s.t. 195x 1 + 273x 2 < 1365 4x 1 + 40x 2 < 140 x 1 < 4 x 1, x 2 > 0 Η βέλτιστη λύση για το χαλαρό γραμμικό πρόβλημα είναι x 1 = 2.44 και x 2 = 3.26. Η τιμή της αντικειμενικής συνάρτησης για τη λύση αυτή είναι 14.66 που αντιστοιχεί σε ετήσια απόδοση 14.660$. Όμως η λύση αυτή είναι μη αποδεκτή για το ακέραιο γραμμικό πρόβλημα δεδομένου ότι οι μεταβλητές απόφασης έχουν κλασματικές τιμές. 15

Λύση Παράδειγμα 3.4 Στρογγυλλοποιώντας τις μεταβλητές στους πλησιέστερους ακέραιους προκύπτει η λύση x1 = 2 και x2 = 3 με τιμή της αντικειμενικής συνάρτησης ίση με 13 ή 13.000$ ετήσια απόδοση. Η στρογγυλοποιημένη λύση x1 = 2 και x2 = 3 δεν είναι βέλτιστη για το ακέραιο πρόβλημα. Όπως μπορεί να διαπιστώσει κανείς, η βέλτιστη λύση είναι η x1 = 4 και x2 = 2 με τιμή της αντικειμενικής συνάρτησης ίση με 14 ή 14,000$ ετήσια απόδοση. Για την εταιρεία ΑΕΑ η προσέγγιση της στρογγυλοποίησης της λύσης του γραμμικού προβλήματος στον πλησιέστερο ακέραιο δεν είναι μία καλή στρατηγική, καθώς παρουσιάζει χαμηλότερη απόδοση κατά 1000$ σε ετήσια βάση. 16

Παράδειγμα 3.5 Μια εταιρεία μπορεί να επενδύσει τα κεφάλαιά της σε μια σειρά εταιρικών δραστηριοτήτων που έχουν ποικίλες απαιτήσεις σε κεφάλαια κατά τα επόμενα 4 χρόνια. Λόγω των περιορισμένων κεφαλαίων, η εταιρεία πρέπει να επιλέξει τις πιο επικερδείς δραστηριότητες για την επέκταση των κεφαλαιουχικών αγαθών. Το αναμενόμενο κέρδος κάθε δραστηριότητας και οι απαιτήσεις σε χρηματοδότηση παρατίθενται στον παρακάτω πίνακα: 17

Παράδειγμα 3.5 Δραστηριότητα (Έργο) Κέρδος ($) Έτος 1 Έτος 2 Έτος 3 Έτος 4 Επέκταση εγκαταστάσεων 90000 15000 20000 20000 15000 Επέκταση αποθηκών 40000 10000 15000 20000 5000 Νέος εξοπλισμός 10000 10000 0 0 4000 Έρευνα για νέα προϊόντα 37000 15000 10000 10000 10000 Διαθέσιμα κεφάλαια 40000 50000-40000 35000 18

Λύση Παράδειγμα 3.5 Λύση Ορίζουμε τις εξής μεταβλητές απόφασης : x 1 = 1 αν η επέκταση εγκαταστάσεων αποφασισθεί και 0 αν όχι x 2 = 1 αν η επέκταση αποθηκών αποφασισθεί και 0 αν όχι x 3 = 1 αν ο νέος μηχανολογικός εξοπλισμός αποφασισθεί και 0 αν όχι x 4 = 1 αν η έρευνα για νέα προϊόντα αποφασισθεί και 0 αν όχι Στη συνέχεια, το πρόβλημα μορφοποιείται ως εξής: (οι μονάδες εκφράζουν χιλιάδες δολλάρια): 19

Λύση Παράδειγμα 3.5 Max 90x 1 + 40x 2 + 10x 3 + 37x 4 s.t. 15x 1 + 10x 2 + 10x 3 + 15x 4 < 40 20x 1 + 15x 2 + 10x 4 < 50 + 40-15x 1-10x 2-10x 3-15x 4 20x 1 + 20x 2 + 10x 4 < 50-35x 1-25x 2-10x 3-25x 4 15x 1 + 5x 2 + 4x 3 + 10x 4 < 85-55x 1-45x 2-10x 3-35x 4 x 1, x 2, x 3, x 4 δυαδικές 20

Λύση Παράδειγμα 3.5 Η βέλτιστη λύση αυτού του προβλήματος είναι: x 1 = 0, x 2 = 0, x 3 = 1 και x 4 = 1, με ολικό αναμενόμενο κέρδος 47000$. Σημειωτέον ότι η βέλτιστη αυτή λύση δεν προκύπτει από την στρογγυλοποίηση της βέλτιστης λύσης του αντίστοιχου γραμμικού προβλήματος. Πράγματι, η βέλτιστη λύση του αντίστοιχου γραμμικού προβλήματος είναι x 1 = 0.909, x 2 = 0, x 3 = 0 και x 4 = 0, με ολικό αναμενόμενο κέρδος 81818.2$. Από τις 2 λύσεις που μπορούν να προκύψουν με στρογγυλοποίηση της λύσης αυτής, η πρώτη (x 1 = 1, x 2 = 0, x 3 = 0 και x 4 = 0) είναι μη εφικτή, ενώ η δεύτερη (x 1 = 0, x 2 = 0, x 3 = 0 και x 4 = 0) έχει τιμή αντικειμενικής συνάρτησης 0. Η τιμή αυτή είναι σημαντικά κατώτερη από την αντίστοιχη βέλτιστη λύση του ακέραιου προβλήματος που βρήκαμε παραπάνω. 21

Παραδείγματος 3.5-β Ας υποθέσουμε ότι αντί του ενός σχεδίου επέκτασης μιας αποθήκης, η εταιρεία του παραδείγματος 3.5 εξετάζει τρία σχέδια επέκτασης αποθηκών. Μία επέκταση θεωρείται αναγκαία λόγω αύξησης της ζήτησης αλλά δεν αιτιολογείται η επέκταση περισσοτέρων της μιας αποθηκών. Οι κατωτέρω μεταβλητές απόφασης και οι περιορισμοί πολλαπλών επιλογών μπορούν να ενσωματωθούν στο προηγούμενο 0-1 ακέραιο γραμμικό πρόβλημα. 22

Παραδείγματος 3.5-β Έστω: x 2 = 1 αν η επέκταση της αρχικής αποθήκης αποφασισθεί και 0 αν όχι x 5 = 1 αν η επέκταση της δεύτερης αποθήκης αποφασισθεί και 0 αν όχι x 6 = 1 αν η επέκταση της τρίτης αποθήκης αποφασισθεί και 0 αν όχι Ο περιορισμός που αντιστοιχεί στην απαίτηση ότι το πολύ ένα από τα σχέδια επέκτασης μπορεί να επιλεγεί είναι ο εξής : x 2 + x 5 + x 6 < 1 Ο περιορισμός αυτός περιλαμβάνει και την περίπτωση που δεν έχουμε καμία επέκταση αποθήκης (x 2 = x 5 = x 6 = 0) και ταυτόχρονα δεν επιτρέπει την επέκταση περισσοτέρων της μιας αποθηκών. Οι περιορισμού αυτού του είδους καλούνται περιορισμοί κοινού αποκλεισμού. 23

Παραδείγματος 3.5-β Αν υπήρχε η απαίτηση ότι απαραιτήτως μία από τις τρεις αποθήκες πρέπει να επεκταθεί, τότε ο περιορισμός θα μεταβαλλόταν ως εξής: x 2 + x 5 + x 6 = 1 Σημειωτέον ότι αν επιτρέπονταν κλασματικές τιμές στις μεταβλητές (όπως στον γραμμικό προγραμματισμό) τότε ο παραπάνω περιορισμός δεν θα εξασφάλιζε την επιλογή ενός μόνο σχεδίου επέκτασης. 24

Παραδείγματος 3.5-β Επιλογή κ μεταξύ ν εναλλακτικών Αποτελεί επέκταση των περιορισμών πολλαπλών επιλογών και χρησιμοποιείται για την περιγραφή (μοντελοποίηση) καταστάσεων όπου κ σχέδια-δραστηριότητες πρέπει να επιλεγούν ανάμεσα σε ν εναλλακτικά. Έστω ότι οι μεταβλητές x 2, x 5, x 6, x 7 και x 8 αναπαριστούν πέντε δυνητικές επεκτάσεις αποθηκών και ότι θεωρείται αναγκαίο να υιοθετηθούν δύο από τα πέντε σχέδια. Ο παρακάτω περιορισμός εγγυάται την πραγματοποίηση αυτής της απαίτησης. x 2 + x 5 + x 6 + x 7 + x 8 = 2 Αν απαιτείται η αποδοχή όχι περισσότερων από δύο σχεδίων τότε χρησιμοποιούμε την κατωτέρω ανίσωση: x 2 + x 5 + x 6 + x 7 + x 8 < 2 Επιπλέον, κάθε μία από τις παραπάνω μεταβλητές πρέπει να περιορισθεί στις τιμές 0-1. 25

Παραδείγματος 3.5-β Υπό συνθήκη και συναπαιτούμενοι περιορισμοί Πολλές φορές η αποδοχή μιας δραστηριότητας εξαρτάται από την αποδοχή μιας άλλης. Για παράδειγμα, έστω ότι η επέκταση αποθήκης εξαρτάται από την πραγματοποίηση του σχεδίου επέκτασης εγκαταστάσεων. Επομένως, η εταιρεία δεν θα μελετήσει την επέκταση αποθήκης αν το σχέδιο επέκτασης εγκαταστάσεων δεν υιοθετηθεί. Με τη μεταβλητή x 1 αναπαριστάνουμε την επέκταση εγκαταστάσεων ενώ με τη μεταβλητή x 2 αναπαριστάνουμε την επέκταση αποθήκης. Οι ακόλουθοι υπό συνθήκη περιορισμοί πρέπει να εισαχθούν για να υποστηρίξουν αυτή την απαίτηση. x 2 < x 1 ή x 2 x 1 < 0. Εφ' όσον και οι δύο μεταβλητές x 1 και x 2 υποχρεούνται να είναι 0 ή 1, παρατηρούμε ότι όταν η x 1 είναι 0 τότε η x 2 αναγκάζεται να είναι κι αυτή 0. Όταν η x 1 είναι 1 τότε η x 2 επιτρέπεται να είναι 1. Άρα και τα δύο σχέδια επέκτασης μπορούν να πραγματοποιηθούν. Όμως παρατηρούμε ότι ο παραπάνω περιορισμός δεν εξαναγκάζει την πραγματοποίηση της επέκτασης αποθηκών όταν το σχέδιο επέκταση εγκαταστάσεων έχει γίνει δεκτό, (x 1 = 1, x 2 = 0). 26

Παραδείγματος 3.5-β Αν επιπλέον απαιτούμε η επέκταση αποθηκών να γίνει υποχρεωτικά δεκτή εφ' όσον η επέκταση εγκαταστάσεων υιοθετηθεί και αντίστροφα τότε λέμε ότι οι μεταβλητές x 1 και x 2 είναι συνεπιτακτικές (ταυτόχρονα αποδεκτές ή μη). Για να μοντελοποιήσουμε μια τέτοια κατάσταση γράφουμε τον παραπάνω περιορισμό ως μια ισότητα x 2 = x 1 ή x 2 x 1 = 0 Ο περιορισμός αυτός εξαναγκάζει τις μεταβλητές x 1 και x 2 να πάρουν τις ίδιες τιμές. 27