ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Σχετικά έγγραφα
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

P(A ) = 1 P(A). Μονάδες 7

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

,,, και τα ενδεχόμενα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

(f(x) + g(x)) = f (x) + g (x).

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

f(x ) 0 O) = 0, τότε το x

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΘΕΜΑ 1ο. Στήλη ΙΙ Παράγωγος f (x) 1. -ημx. 2. x ρ-1 3. συνx 4. 1 Γ. x ρ, x > 0 και ρ ρητός. Β. x, x > ρ x ρ-1. Δ. ημx. Ε. συνx. 8.

f(x ) 0 O) = 0, τότε το x

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ)

P(A ) = 1 P(A). Μονάδες 7

c f(x) = c f (x), για κάθε x R

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει:

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

P(A ) = 1 P(A). Μονάδες 7

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

P A B P(A) P(B) P(A. , όπου l 1

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

A ένα σημείο της C. Τι

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

ΘΕΜΑ 1ο Α.1. Αν η συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ, τότε να αποδείξετε ότι:

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x

Transcript:

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f()= είναι f( =, ) για κάθε Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό ελάχιστο στο Α ; 0 Α. Να δώσετε τον ορισμό της διαμέσου (δ) ενός δείγματος ν παρατηρήσεων. Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για τη συνάρτηση f( ) =, 0 ισχύει ότι f ( ) = β) Για το γινόμενο δύο παραγωγίσιμων συναρτήσεων f,g ισχύει ότι f( ) g( ) = f ( ) g( ) + f( ) g( ) ( ) γ) Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποσοτικής μεταβλητής. δ) Η διάμεσος είναι ένα μέτρο θέσης, το οποίο επηρεάζεται από τις ακραίες παρατηρήσεις. ε) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω με Α Β, ισχύει ότι Ρ ( Α) > Ρ( Β) Μονάδες 0 ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Β Δίνεται ο δειγματικός χώρος Ω= { ω ω ω ω},,, και τα ενδεχόμενα 4 {, } και Β = { ω, ω } Α= ω ω 4 Για τις πιθανότητες των απλών ενδεχομένων { ω } και { } + + P( ω ) = lim + ω του Ω ισχύει ότι: H P( ω ) είναι ίση με το ρυθμό μεταβολής της f( ) ως προς, όταν =, όπου f () = ln, > 0 Β. Να αποδείξετε ότι P( ω ) = 4 και ω = P( ) Μονάδες 0 Β. Να αποδείξετε ότι P(A ) 4, όπου A το συμπληρωματικό του A. Β. Αν P(A ) = 4, τότε να βρείτε τις πιθανότητες P( ω ), ω 4 και P(Α -Β ), όπου Β το συμπληρωματικό του Β. P( ), P(A [ B) (B A) ] ΘΕΜΑ Γ Θεωρούμε ένα δείγμα ν παρατηρήσεων μιας συνεχούς ποσοτικής μεταβλητής X, τις οποίες ομαδοποιούμε σε 4 ισοπλατείς κλάσεις. Δίνεται ότι: η μικρότερη παρατήρηση είναι 50 η κεντρική τιμή της τέταρτης κλάσης είναι 4 = 85 η σχετική συχνότητα της τέταρτης κλάσης είναι διπλάσια της σχετικής συχνότητας της τρίτης κλάσης η διάμεσος των παρατηρήσεων του δείγματος είναι δ = 75 και η μέση τιμή των παρατηρήσεων του δείγματος είναι = 74 ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Γ. Να αποδείξετε ότι το πλάτος είναι c = 0 Γ. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συμπληρωμένο σωστά Kλάσεις [, ) [, ) [, ) [, ) Σύνολο Κεντρικές Τιμές i Σχετική Συχνότητα f i Γ. Δίνεται ότι f = 0,, f = 0,, f = 0, και f4 = 0,4 Να αποδείξετε ότι η μέση τιμή των παρατηρήσεων, που είναι μικρότερες του 80, είναι 00 Γ4. Επιλέγουμε κ παρατηρήσεις του αρχικού δείγματος με κ < ν, οι οποίες ακολουθούν κανονική κατανομή με το,5% των παρατηρήσεων αυτών να είναι τουλάχιστον 74 το 6% των παρατηρήσεων αυτών να είναι το πολύ 68 Να βρείτε τη μέση τιμή και την τυπική απόκλιση των παρατηρήσεων αυτών καθώς και να εξετάσετε αν το δείγμα των παρατηρήσεων αυτών είναι ομοιογενές. Μονάδες 6 ΘΕΜΑ Δ Θεωρούμε τη συνάρτηση f() = ln + κ, > 0, όπου κ ακέραιος με κ > και την,f(), η οποία εφαπτομένη (ε) της γραφικής παράστασης της f στο σημείο ( ) σχηματίζει με τους άξονες, τρίγωνο εμβαδού E, με E < Δ. Να αποδείξετε ότι κ = Μονάδες 5 ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Δ. Έστω,,..., 50 οι τετμημένες 50 σημείων της (ε) των οποίων οι αντίστοιχες τεταγμένες τους έχουν μέση τιμή y = α) Να αποδείξετε ότι = 0 β) Για τις τετμημένες των παραπάνω σημείων θεωρούμε ότι : Κάθε μία από τις τετμημένες,,..., 0 αυξάνεται κατά, οι επόμενες 5 τετμημένες παραμένουν σταθερές και κάθε μία από τις υπόλοιπες ελαττώνεται κατά λ με λ > 0. Να βρείτε το λ, ώστε η νέα μέση τιμή των τετμημένων να είναι ίση με (μονάδες 4) Δ. Αν < α < β < γ < e e μέση τιμή των τιμών Δ4. Θεωρούμε τον δειγματικό χώρο Μονάδες 6 α β γ 7 με α β γ = e,τότε να βρείτε το εύρος R και τη f(α),f(β), f(γ),f(e), f, όπου f() = ln + e Ω= t n, n =,,,...,0 : 0 < t < t <... < t0 < < t <... < t0 = e με ισοπίθανα απλά ενδεχόμενα, καθώς και τα ενδεχόμενα Α={ t Ω: η εφαπτομένη της γραφικής παράστασης της f στο σημείο ( t,f(t) ), να σχηματίζει με τον άξονα οξεία γωνία }, { } Β = t Ω : f(t) > f (t) +, όπου f(t) = tlnt + Να βρεθούν οι πιθανότητες: α) να πραγματοποιηθεί το ενδεχόμενο Α (μονάδες ) β) να πραγματοποιηθούν συγχρόνως τα ενδεχόμενα Α και Β (μονάδες 4) ΤΕΛΟΣ 4ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μην γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και ΜΟΝΟ για πίνακες, διαγράμματα κλπ.. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις () ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: 0.0 π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f()= είναι f( ) =, για κάθε Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό ελάχιστο στο Α ; 0 Α. Να δώσετε τον ορισμό της διαμέσου (δ) ενός δείγματος ν παρατηρήσεων. Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για τη συνάρτηση f( ) =, 0 ισχύει ότι f( ) = β) Για το γινόμενο δύο παραγωγίσιμων συναρτήσεων f,g ισχύει ότι: f( )g( ) = f( )g( ) + f( )g( ) ( ) γ) Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποσοτικής μεταβλητής. δ) Η διάμεσος είναι ένα μέτρο θέσης, το οποίο επηρεάζεται από τις ακραίες παρατηρήσεις. ε) Οι ποσότητες i, ν i, fi για ένα δείγμα συγκεντρώνονται σε ένα συνοπτικό πίνακα, που ονομάζεται πίνακας κατανομής συχνοτήτων. Μονάδες 0 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Β ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ Δίνεται η συνάρτηση f: με τύπο: f() = α + β + γ, α, β,γ Β. Να υπολογίσετε το γ, αν είναι γνωστό ότι 9 γ = lim + 6 Β. Να υπολογίσετε τα αβ, αν οι εφαπτόμενες της γραφικής παράστασης της f, στα σημεία με τετμημένες και είναι παράλληλες στον άξονα. Β. Για α =, β = και γ = 6 να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία και τα ακρότατα. Μονάδες 0 ΘΕΜΑ Γ Θεωρούμε ένα δείγμα ν παρατηρήσεων μιας συνεχούς ποσοτικής μεταβλητής X, τις οποίες ομαδοποιούμε σε 4 ισοπλατείς κλάσεις. Δίνεται ότι: η μικρότερη παρατήρηση είναι 50 η κεντρική τιμή της τέταρτης κλάσης είναι = 85 4 η σχετική συχνότητα της τέταρτης κλάσης είναι διπλάσια της σχετικής συχνότητας της τρίτης κλάσης η διάμεσος των παρατηρήσεων του δείγματος είναι δ=75 και η μέση τιμή των παρατηρήσεων του δείγματος είναι =74 Γ. Να αποδείξετε ότι το πλάτος είναι c = 0 Γ. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συμπληρωμένο σωστά Kλάσεις [, ) [, ) [, ) [, ) Σύνολο Κεντρικές Τιμές i Σχετική Συχνότητα f i Μονάδες 0 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ Γ. Δίνεται ότι f = 0,, f = 0,, f = 0, και f4 = 0,4 Να αποδείξετε ότι η μέση τιμή των παρατηρήσεων, που είναι μικρότερες του 80, είναι 00 ΘΕΜΑ Δ Θεωρούμε τη συνάρτηση f() = + κ +,, όπου κ ακέραιος με κ > και την εφαπτομένη (ε) της γραφικής παράστασης της f στο σημείο (, f () ), η οποία σχηματίζει με τους άξονες, τρίγωνο εμβαδού E, με E< 4 Δ. Να αποδείξετε ότι κ = Δ. Έστω,,..., 50 οι τετμημένες 50 σημείων της (ε) των οποίων οι αντίστοιχες τεταγμένες τους y, y,..., y 50 έχουν μέση τιμή y = 6. α) Να αποδείξετε ότι = 0 (μονάδες 5) β) Για τις τετμημένες των παραπάνω σημείων θεωρούμε ότι : Κάθε μία από τις τετμημένες,,..., 0 αυξάνεται κατά. Οι επόμενες 5 τετμημένες παραμένουν σταθερές, και κάθε μία από τις υπόλοιπες ελαττώνεται κατά λ με λ > 0. Να βρείτε το λ, ώστε η νέα μέση τιμή των τετμημένων να είναι ίση με ( μονάδες 5) Μονάδες 0 Δ. Αν 0 < α< β< γ < με α +β + γ =6, τότε να βρείτε το εύρος R και τη μέση τιμή των τιμών f(α), f(β), f(γ), f(), f (0), όπου f() = + 4 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μην γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και ΜΟΝΟ για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις () ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: 0.0 π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΙΟΥΝΙΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και A ισχύει: P(A ) = - P(A) Α. Να ορίσετε το μέτρο διασποράς εύρος ή κύμανση. Α. Τι ονομάζεται παράγωγος μιας συνάρτησης f στο σημείο o του πεδίου ορισμού της; Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) lim (συν) = συνo o β) ( c f() ) = c f () γ) Σε μια ποσοτική μεταβλητή αντί του ραβδογράμματος χρησιμοποιείται το διάγραμμα συχνοτήτων. δ) Ένα δείγμα τιμών μιας μεταβλητής Χ χαρακτηρίζεται ομοιογενές, όταν ο συντελεστής μεταβολής ξεπερνά το 0% ε) Δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω λέγονται ασυμβίβαστα, όταν Α Β Ø Μονάδες 0 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Β Δίνεται η συνάρτηση ( ) f() = e, Θεωρούμε επίσης δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω με f( ) = 6 e P(A) = και P( Β) όπου η f παρουσιάζει ελάχιστο στο Β. Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία και τα ακρότατα. Μονάδες 6 Β. Να αποδείξετε ότι P( A ) = και PB ( ) = Β. Να αποδείξετε ότι τα ενδεχόμενα Α και Β δεν είναι ασυμβίβαστα και Β4. Να αποδείξετε ότι P( Α Β ) ΘΕΜΑ Γ 6 Μονάδες 6 Μονάδες 5 Εξετάζουμε ένα δείγμα μεγέθους ν ως προς μία ποσοτική μεταβλητή Χ και ομαδοποιούμε τις παρατηρήσεις του δείγματος σε 5 ισοπλατείς κλάσεις πλάτους c, όπως φαίνεται στον παρακάτω πίνακα: Κλάσεις [α, ) Κεντρικές τιμές i f i % F i F i % λ [, ) λ + 0 [, ) [, ) κλ λ + 0 [, ) κλ λ + 0 Σύνολα Δίνεται ότι οι αθροιστικές σχετικές συχνότητες F και F 5 είναι οι ρίζες της εξίσωσης: 5 8 + κ = 0, όπου και κ ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ Γ. Να αποδείξετε ότι κ = και λ = 0 Γ. Να αποδείξετε ότι f % = 0, f % = 0, f % = 0, f 4 % = 0 και f 5 % = 0 Μονάδες 5 Γ. Αν το 5% των παρατηρήσεων είναι μικρότερες του 6 και το 5% των παρατηρήσεων είναι μεγαλύτερες ή ίσες του 4, τότε να αποδείξετε ότι α = 0 και c = 4 (μονάδες 4) Στη συνέχεια να μεταφέρετε στο τετράδιό σας τον παραπάνω πίνακα κατάλληλα συμπληρωμένο. (μονάδες 4) Γ4. Αν το πλήθος των παρατηρήσεων που είναι μεγαλύτερες ή ίσες του είναι 800, τότε να υπολογίσετε το μέγεθος του δείγματος. ΘΕΜΑ Δ Δίνεται η συνάρτηση f() = +, και ο δειγματικός χώρος + Ω = { ω, ω, ω, ω 4}, όπου ω = -, ω = 0 και < ω < ω 4 Δίνονται, επίσης, οι πιθανότητες ( ) P ω f( ω ) i = i, όπου i =, και P( ω ) = li m 6 f() Δ. Θεωρούμε τα ενδεχόμενα Α, Β και Γ του δειγματικού χώρου Ω με { }, Β = { ω Ω f(ω) > } A = ω Ω f(ω) 0 και Γ = ω Ω + ω για κάθε 4 α) Να βρείτε τις πιθανότητες P( ω ), P ( ω ), P ( ω ) και P( ω ) 4 (μονάδες 8) ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ β) Να βρείτε τις πιθανότητες P(Α), P(Β), P(Γ) και P(A-B) (μονάδες 8) Μονάδες 6 Δ. Να βρείτε την εξίσωση της εφαπτομένης (ε) της γραφικής παράστασης της f, η οποία σχηματίζει με τον άξονα γωνία 45 ο Δ. Αν Μ κ (ω κ, y κ ), κ =,,, 4 είναι σημεία της εφαπτομένης (ε): y = + με δ = δ και ω κ y κ Ry κ = 5 τότε να υπολογίσετε τα ω και ω 4 του δειγματικού χώρου Ω, όπου δ ω κ : η διάμεσος των τετμημένων των σημείων Μ κ, δ y κ : η διάμεσος των τεταγμένων των σημείων Μ κ και R y κ : το εύρος των τεταγμένων των σημείων Μ κ Μονάδες 5 ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μην γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και ΜΟΝΟ για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις () ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: 8:5 KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΙΟΥΝΙΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι: ( f() + g() ) = f () + g (), Α. Να ορίσετε το μέτρο διασποράς εύρος ή κύμανση. Α. Τι ονομάζεται παράγωγος μιας συνάρτησης f στο σημείο o του πεδίου ορισμού της; Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) lim (συν) = συνo o β) ( c f() ) = c f () γ) Σε μια ποσοτική μεταβλητή αντί του ραβδογράμματος χρησιμοποιείται το διάγραμμα συχνοτήτων. δ) Ένα δείγμα τιμών μιας μεταβλητής Χ χαρακτηρίζεται ομοιογενές, όταν ο συντελεστής μεταβολής ξεπερνά το 0% ε) Για τις σχετικές συχνότητες f i, όπου i =,,...,κ των τιμών i μιας μεταβλητής Χ, ισχύει: f + f +... + f κ = Μονάδες 0 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Β ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΣΠΕΡΙΝΩΝ Δίνεται η συνάρτηση f() = α β + 5, και α, β, της οποίας η γραφική παράσταση διέρχεται από το σημείο Α(-, 9) και ισχύει ότι: lim +7 = 4 α Β. Να αποδείξετε ότι α = και β = 6 Μονάδες 9 Β. Για α = και β = 6 να βρείτε τα σημεία της γραφικής παράστασης της συνάρτησης f στα οποία η εφαπτομένη είναι παράλληλη στον άξονα. Β. Να βρείτε την τιμή του για την οποία ο ρυθμός μεταβολής της συνάρτησης f γίνεται ελάχιστος. ΘΕΜΑ Γ Δίνεται η συνάρτηση g() = +, +. Αν,,, 4 είναι οι τιμές μιας μεταβλητής Χ με αντίστοιχες σχετικές συχνότητες f, f, f, f 4, όπου: = -, = 0, < < 4, f = g(), f = g() και f = 6 lim g() Τότε : Γ. να βρείτε την εξίσωση της εφαπτομένης (ε) της γραφικής παράστασης της g, η οποία σχηματίζει με τον άξονα γωνία 45 ο Μονάδες 6 Γ. να μελετήσετε τη συνάρτηση g ως προς την μονοτονία και τα ακρότατα. Μονάδες 6 Γ. αν η εφαπτομένη (ε) έχει εξίσωση y = + και σε αυτήν ανήκουν τα σημεία Μ κ ( κ, y κ ), όπου κ =,,, 4 για τα οποία ισχύει δ = δ και κ y κ Ry κ = 5 τότε να υπολογίσετε τις τιμές και 4 της μεταβλητής Χ, όπου ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΣΠΕΡΙΝΩΝ δ κ : η διάμεσος των τετμημένων των σημείων Μ κ, δ y κ R y κ : η διάμεσος των τεταγμένων των σημείων Μ κ και : το εύρος των τεταγμένων των σημείων Μ κ Μονάδες 5 Γ4. να υπολογίσετε τη μέση τιμή των τιμών,,, 4 ΘΕΜΑ Δ Εξετάζουμε ένα δείγμα μεγέθους ν ως προς μία ποσοτική μεταβλητή Χ και ομαδοποιούμε τις παρατηρήσεις του δείγματος σε 5 ισοπλατείς κλάσεις πλάτους c, όπως φαίνεται στον παρακάτω πίνακα: Κλάσεις [α, ) Κεντρικές τιμές i f i % F i F i % λ [, ) λ + 0 [, ) [, ) κλ λ + 0 [, ) κλ λ + 0 Σύνολα Δίνεται ότι οι αθροιστικές σχετικές συχνότητες F και F 5 είναι οι ρίζες της εξίσωσης: 5 8 + κ = 0, όπου και κ Δ. Να αποδείξετε ότι κ = και λ = 0 Δ. Να αποδείξετε ότι f % = 0, f % = 0, f % = 0, f 4 % = 0 και f 5 % = 0 Μονάδες 5 Δ. Αν το 5% των παρατηρήσεων είναι μικρότερες του 6 και το 5% των παρατηρήσεων είναι μεγαλύτερες ή ίσες του 4, τότε να αποδείξετε ότι α = 0 και c = 4 (μονάδες 4) ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΣΠΕΡΙΝΩΝ Στη συνέχεια να μεταφέρετε στο τετράδιό σας τον παραπάνω πίνακα κατάλληλα συμπληρωμένο. (μονάδες 4) Δ4. Αν το πλήθος των παρατηρήσεων που είναι μεγαλύτερες ή ίσες του είναι 800, τότε να υπολογίσετε το μέγεθος του δείγματος. ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μην γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και ΜΟΝΟ για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις () ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: 8:5 KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ