ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13 5. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...25 9. ύνθετη μέθοδος των τριών...29 10. Μερισμός...31 11. Ποσοστά...32 12. Σόκος...34 13. Εμβαδά επιπέδων σχημάτων...36 14. χέδιο υπό κλίμακα...40 15. τοιχεία Σριγωνομετρίας...41 16. τερεομετρία...44 17. Προβλήματα κινήσεως...46 18. τοιχεία τατιστικής...49 19. υνδυαστική...64 20. Πιθανότητες...70 Συπολόγιο...76 Θέματα Εξετάσεων...77
ΤΛΗ ΕΞΕΣΑΕΩΝ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Α. (α) Μέτρα και σταθμά, μονάδες μέτρησης (β) τοιχεία αριθμητικής: Διαιρετότητα. Δυνάμεις ακεραίων, κλασματικών και δεκαδικών αριθμών. Μέγιστος κοινός διαιρέτης, ελάχιστο κοινό πολλαπλάσιο. Κλασματικοί αριθμοί, ιδιότητες και πράξεις. Σροπή κλασμάτων σε δεκαδικούς και αντιστρόφως. Προβλήματα επί των ακεραίων, δεκαδικών και κλασματικών αριθμών. Λόγοι και αναλογίες. Ποσά ευθέως ανάλογα και αντιστρόφως ανάλογα. χέδιο υπό κλίμακα και σχετικά προβλήματα. Απλή και σύνθετη μέθοδος των τριών. Προβλήματα κινήσεως. ημείωση: Σα προβλήματα λύνονται είτε με πρακτική αριθμητική είτε με άλγεβρα (εξισώσεις ή συστήματα). Β. τοιχεία Γεωμετρίας: Πυθαγόρειο θεώρημα. Περίμετρος και εμβαδόν των ευθυγράμμων σχημάτων (τρίγωνο, τετράγωνο, παραλληλόγραμμο, ορθογώνιο). Εμβαδόν και περίμετρος κύκλου. Εμβαδά και όγκοι του κύβου, του ορθογωνίου παραλληλεπίπεδου και του κυλίνδρου. Γ. τοιχεία Σριγωνομετρίας: Σριγωνομετρικοί αριθμοί οξείας γωνίας ορθογωνίου τριγώνου. Χρήση τριγωνομετρικών αριθμών για επίλυση προβλημάτων. (Οι τιμές των τριγωνομετρικών αριθμών θα δίνονται). Δ.τοιχεία υνδυαστικής: Ορισμός του ν! Εφαρμογή της Αρχής της Απαρίθμησης στη λύση προβλημάτων. Τπολογισμός και εφαρμογή σε προβλήματα του αριθμού: των διατάξεων ν διαφορετικών αντικειμένων ανά κ και των συνδυασμών ν διαφορετικών αντικειμένων ανά κ. Ε.τοιχεία Πιθανοτήτων: Πείραμα τύχης, δυνατά αποτελέσματα πειράματος, ενδεχόμενο, πράξεις με ενδεχόμενα, βέβαιο ενδεχόμενο, αδύνατο ενδεχόμενο, συμπληρωματικά ενδεχόμενα, ασυμβίβαστα ενδεχόμενα. Τπολογισμός της πιθανότητας ενδεχομένου. Χρήση των ιδιοτήτων 0P(A)1, P(Ω)=1, P()=0, P(A )=1-P(A), P(AB)=P(A)+P(B)-P(AB), και P(A-B)=P(A) - P(AB). Σ.τοιχεία τατιστικής: (α) Βασικές έννοιες: Πληθυσμός, άτομο, δείγμα, στατιστικά δεδομένα, ποσοτική και ποιοτική μεταβλητή, (β) Παρουσίαση στατιστικών δεδομένων, πίνακας κατανομής συχνοτήτων και σχετικών συχνοτήτων, (γ) Ομαδοποίηση παρατηρήσεων, (δ) Ερμηνεία γραφικών παραστάσεων συχνοτήτων: Ραβδόγραμμα, κυκλικό διάγραμμα, διάγραμμα συχνοτήτων, πολύγωνο συχνοτήτων και ιστόγραμμα. (ε) Χαρακτηριστικές τιμές μιας κατανομής: Αριθμητικός μέσος, διάμεσος, επικρατούσα τιμή, τυπική απόκλιση.
1.ΚΛΑΜΑΣΑ Γενικά: Σο κλάσμα είναι μέρος του όλου ( όπου α = αριθμητής και β = παρονομαστής, β ) π.χ. 1 ευρώ έχει 100 σεντς. Σα 20 σεντς είναι τα του ευρώ. 1 κιλό έχει 1000 γραμμάρια. Σα 18 γραμμάρια είναι τα του κιλού. Ομώνυμα λέγονται τα κλάσματα που έχουν τον ίδιο παρονομαστή π.χ 3 5 7,, 8 8 8 Ετερώνυμα λέγονται τα κλάσματα που έχουν διαφορετικό παρονομαστή π.χ 3 4 1,, 5 9 2 Μεικτός αριθμός ονομάζεται ο αριθμός που αποτελείται από ένα ακέραιο και ένα κλάσμα το οποίο είναι μικρότερο από την μονάδα π. χ 3 ½ = 3 + ½ (αποτελείται από 3 ακέραιους και από το κλάσμα ½) Οι μεικτοί αριθμοί γίνονται κλασματικοί όταν πολλαπλασιάσω τον ακέραιο επί τον παρονομαστή, προσθέσω και τον αριθμητή και τον γράψω ως αριθμητή, ο παρονομαστής μένει ο ίδιος. π.χ 2 ¾ = 2.4 3 11 4 4, 5 ½ = 5.2 1 11 2 2 Όταν το κλάσμα έχει αριθμητή μεγαλύτερο από τον παρονομαστή τότε το κλάσμα περιέχει ακέραιες μονάδες. Για να βρω τις ακέραιες μονάδες διαιρώ τον αριθμητή δια τον παρονομαστή, το πηλίκο της διαίρεσης είναι οι ακέραιες μονάδες και το υπόλοιπο είναι ο αριθμητής του κλάσματος. π.χ 35 9 = 35 : 9 = 3, 28 8 = 3 Προτεραιότητα Πράξεων: 1. Αγκύλες / Παρενθέσεις 2. Πολλαπλασιασμός / Διαίρεση 3. Πρόσθεση / Αφαίρεση
Πράξεις Κλασμάτων Πρόσθεση/ Αφαίρεση Ομώνυμων Κλασμάτων : Προσθέτω/ Αφαιρώ τους αριθμητές και ο παρονομαστής μένει ο ίδιος. π.χ α) 2 1 3 5 5 5, β) 3 1 4 4 4 4 δ) 1 2 3 3 4 7 5 5, ε) 6 1 2 1 13 5 18 9 5 2 2 2 2 2 Πρόσθεση/ Αφαίρεση Ετερώνυμων Κλασμάτων : =1, γ) 5 1 4, 6 6 6 Πρέπει πρώτα να μετατρέψω τα κλάσματα σε ομώνυμα. Για να μετατρέψω τα ετερώνυμα κλάσματα σε ομώνυμα πρέπει να βρω το Ε.Κ.Π(Ελάχιστο Κοινό Πολλαπλάσιο) των παρονομαστών. Εύρεση Ε.Κ.Π α) Όταν οι παρονομαστές δεν διαιρούνται μεταξύ τους, τότε το Ε.Κ.Π των κλασμάτων είναι το γινόμενο των παρονομαστών π. χ Να μετατραπούν σε ομώνυμα τα κλάσματα 3 και ½. 5 Ε. Κ.Π = 5.2 = 10 3 3.2 6 και 1 1.5 5 5 2.5 10 2 2.5 10 β) Όταν ο ένας παρονομαστής διαιρείται από τον άλλο τότε το Ε. Κ. Π είναι ο μεγαλύτερος παρονομαστής π.χ Να μετατραπούν σε ομώνυμα τα κλάσματα 3/4 και 1/8. Ε.Κ.Π = 8 3 3.2 6 4 4.2 8 γ) Όταν οι παρονομαστές διαιρούν και οι δύο τον ίδιο αριθμό τότε το Ε. Κ.Π είναι ο αριθμός αυτός. π.χ Να μετατραπούν σε ομώνυμα τα κλάσματα 3/4 και 5/6. Ε.Κ.Π = 12 3 3.3 9 και 5 5.2 10 4 3.4 12 6 6.2 12 Πολλαπλασιασμός κλασμάτων: Δεν γίνονται ομώνυμα!! Πολλαπλασιάζω αριθμητή με αριθμητή και παρονομαστή με παρονομαστή. π.χ α) 1. 2 2, β) 3. 2 6, 3 4 12 5 7 35 γ) 4 30 120 6. 5 44 220, δ) 3 1.1 3 7. 7 49 6 1 11 2 4 2 4 8 8
Διαίρεση κλασμάτων: Δεν γίνονται ομώνυμα!! Αντιστρέφω το δεύτερο κλάσμα και κάνω πολλαπλασιασμό (πολλαπλασιάζω αριθμητή με αριθμητή και παρονομαστή με παρονομαστή) π.χ α) 4 8 4 10 40 :. 1 5 10 5 8 40 και β) 1 2 1 7 1 5 5 :1 :. 2 5 2 5 2 7 14 ύνθετα κλάσματα: Η διαίρεση μπορεί να γραφτεί και με την μορφή κλάσματος.. π.χ 3 5 3.7 21 2 1 2 5.2 10 10 7 ΑΚΗΗ 1.1 Α. Να γίνουν απλά τα σύνθετα κλάσματα 4 8 4 5 2 5 12 9 6 8 14 20 5 11 5 7 3 6 Β. Να γίνουν οι πράξεις : 1. 2 3 3 5 2. 1 1 2 3 3. 1 2 5 4. 1 2 3 2 5 2 3 4 5. 5 2 2 5 6. 5 2 20 8 6 3 5 6 3 7. 1 2 3 8. 2 3 4 9. 2 3 3 5 1 10. 8 25 3 21 3 5 4 2 10 9 49 4 10 11. 3 1 5 1 3 1 1 2 1 1 4 2 2 3 4 5 12. 2 5 2 4 2 5 1 3 6 3 3
13. 1 3 5 4 2 1 3 4 24 14. 2 5 6 1 3 3 3 2 3 2 5 3 5 15. 1 3 4 1 3 2 2 16. 3 2 1 4 3 5 4 2 3 17. 8 1 7 3 3 2 4 2 2 4 3 9 3 18. 2 1 1 1 7 5 3 2 2 15 5 8 19. 5 2 1 4 3 9 3 1 4 2 4 2 5 20. 4 1 5 1 5 3 2 6 4 2 1 5 15 5 1 3 2 21. 1 2 4 5 2 1 5 3 3 2 22. 2 1 14 4 3 3 2 3 3 1 4 8 23. 3 1 1 5 2 2 1 2 3 2 5 24. 8 3 1 7 3 2 4 2 2 4 3 9 3 ( Απαντήςεισ : 1. 1, 2., 3., 4., 5., 6. 29, 7. 8., 9., 10., 11. 1, 12. 5, 13. 1, 14. 1 15., 16., 17. 7, 18. 10, 19., 20., 21. 22., 23. 6, 24. 7 )
15. ΣΟΙΧΕΙΑ ΣΡΙΓΩΝΟΜΕΣΡΙΑ Όλα τα πιο κάτω λέγονται τριγωνομετρικοί αριθμοί μιας οξείας γωνίας. Ημίτονο: ημγ απέναντι κάθετη τησ Γ υποτείνουςα Συνημίτονο: συνγ προςκείμενη κάθετη τησ Γ υποτείνουςα Εφαπτομένη: εφγ απέναντι κάθετη τησ ω προςκείμενη κάθετη τησ Γ Συνεφαπτομένη: σφγ προςκείμενη κάθετη τησ ω απέναντι κάθετη τησ Γ Μπορούμε να επιλύσουμε ένα τρίγωνο (δηλ. να βρούμε όλα τα κύρια στοιχεία του (πλευρές,γωνιές): Αν γνωρίζουμε το μήκος της μιας πλευράς του τριγώνου και μια γωνιά του τότε μπορούμε να βρούμε το μήκος όλων των πλευρών του χρησιμοποιώντας τους τριγωνομετρικούς αριθμούς της γνωστής γωνίας. Αν γνωρίζουμε το μήκος δύο πλευρών του τότε μπορούμε να βρούμε την τρίτη πλευρά χρησιμοποιώντας το Πυθαγόρειο Θεώρημα και το μέτρο των γωνιών του τριγώνου χρησιμοποιώντας τους τριγωνομετρικούς αριθμούς που ορίσαμε πιο πάνω. ΑΚΗΗ 15.1 1. Να βρείτε τους τριγωνομετρικούς αριθμούς της γωνιάς στο διπλανό σχήμα.
2. το διπλανό σχήμα να υπολογίσετε το ύψος του σπιτιού, αν γνωρίζετε ότι: ημ24 0,41 συν24 0,91 εφ24 0,45 3. Όταν βρισκόμαστε στην όχθη ενός ποταμού βλέπουμε στην απέναντι όχθη ένα δένδρο με γωνία ύψους 60 0. Αν όμως απομακρυνθούμε κατά 20 μέτρα, τότε βλέπουμε το δένδρο με γωνία ύψους 30 0.Να υπολογίσετε: i) Σο πλάτος του ποταμού ψ. ii) Σο ύψος του δένδρου χ. 4. το διπλανό σχήμα δίνεται τρίγωνο ΑΒΓ, το ύψος του ΑΔ και το τετράγωνο ΒΔΕΖ που έχει εμβαδόν 16cm 2. Αν ΓΔ = 12cm και Α, να προσδιορίσετε τα μήκη των πλευρών χ, ψ, ω και το εμβαδόν του τριγώνου ΑΒΓ το οποίο είναι ορθογώνιο.