ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ



Σχετικά έγγραφα
Μοντελοποίηση προβληµάτων

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο.

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

Αναγνώριση Προτύπων Ι

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Επιχειρησιακή Έρευνα ΕΜΠ - Τοµέας Προγραµµατισµού & ιαχείρισης Τεχνικών Έργων

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Το µαθηµατικό µοντέλο του Υδρονοµέα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

(S k R n ) (C k R m )

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης

6. Στατιστικές μέθοδοι εκπαίδευσης

ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ

Εισαγωγή στην Επιχειρησιακή Έρευνα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγή. Εαρινό Εξάμηνο, 2018

Επιχειρησιακή Έρευνα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΠΑΡΑΡΤΗΜΑ 2 Μεταβατικές Διατάξεις

Γιατί μας ενδιαφέρει; Αντιπλημμυρική προστασία. Παροχή νερού ύδρευση άρδευση

Δυναμική Ηλεκτρικών Μηχανών

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ IΙ

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

Διαχείριση Υδατικών Πόρων Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Εισαγωγή στο Γραμμικό Προγραμματισμό

z = c 1 x 1 + c 2 x c n x n

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση

Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100)

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Συνδυαστική Βελτιστοποίηση

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;)

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Επιχειρησιακή Έρευνα 1. Εισαγωγή

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

Επιχειρησιακή Έρευνα I

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2.

ΑΝΩΤΑΤΟ ΣΤΡΑΤΙΩΤΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΤΜΗΜΑ ΝΑΥΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Τοποθέτηση προβλήματος

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Αστικά υδραυλικά έργα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

Στοχαστικές Στρατηγικές

Transcript:

3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και προσφερονται για την αναλυση πολλων αποψεων ενος προβληματος. Σαν μοντελο συστηματος οριζεται ενα σετ εξισωσεων που περιγραφει και αναπαριστα το φυσικο συστημα. Το συστημα των εξισωσεων περιγραφει τις διαφορες οψεις του προβληματος, προσδιοριζει τις συναρτησιακες σχεσεις αναμεσα στα στοιχεια (παραμετρους) του συστηματος και του περιβαλλοντος του, και κατ' αυτον τον τροπο, προσφερει μια ποιοτικη και ποσοτικη διαπραγματευση του προβληματος, ενω συγχρονως υποδεικνυει ποια στοιχεια πρεπει να συλλεγουν για την ποσοτικοποιηση του προβληματος. Οι εξισωσεις του συστηματος μπορει να ειναι αλγεβρικες, διαφορικες ή αλλες, γεγονος που εξαρταται απο τη φυση του μοντελαρισμενου συστηματος. Ο Πινακας 3-1 (Haimes, 1977) αναπαριστα μια διαδικασια μοντελοποιησης και βελτιστοποιησης ενος φυσικου συστηματος. Το πραγματικο συστημα προσομοιωνεται με ενα μαθηματικο μοντελο. Η ιδια εισοδος (input) πραγματικου συστηματος και μαθηματικου μοντελου οδηγει σε δυο διαφορετικες αποκρισεις (system output, model output). Αν οι δυο αποκρισεις ειναι ταυτοσημες, τοτε το μοντελο που προσομοιωνει το συστημα ειναι αξιοπιστο και μπορει να θεωρηθει σχεδον τελειο. Συνηθως οι δυο αποκρισεις δεν ειναι ταυτοσημες, και ετσι δημιουργειται ενα σφαλμα. Σκοπος μιας μαθηματικης αναλυσης ειναι η καταστρωση ενος μοντελου που ελαχιστοποιει το σφαλμα αυτο. Η σχεση των δυο αποκρισεων εκφραζει την καταλληλοτητα και την αξιοπιστια (validity) του μοντελου. Ο Πινακας 3-1 αναπαριστα επισης τις στρατηγικες επιλυσης ή τις τεχνικες βελτιστοποιησης και προσομοιωσης του μαθηματικου μοντελου. Βελτιστη θεωρειται η αποφαση που τελικα θα εφαρμοστει για το φυσικο συστημα. ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΑΓΜΑΤΙΚΟ ΦΥΣΙΚΟ ΣΥΣΤΗΜΑ ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΑΠΡΟΣΟΜΟΙΩΤΗ ΕΙΣΟΔΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗ ΕΙΣΟΔΟΣ ΛΥΣΗ/ΣΤΡΑΤΗΓΙΚΗ (βελτιστοποιηση) \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 1 απο 6

Το συστημα εξισωσεων του μαθηματικου μοντελου περιλαμβανει μια ή περισσοτερες αντικειμενικες συναρτησεις (objective functions) που εκφραζουν τον στοχο (objective) και τους περιορισμους (constraints) του προβληματος. Διαδικασια βελτιστοποιησης (optimization procedure) καλειται η επιλογη σετ μεταβλητων αποφασης (decision variables) που μεγιστοποιουν ή ελαχιστοποιουν την αντικειμενικη συναρτηση κατω απο τους περιορισμους που επελεγησαν. 3.2 Θεωρια 3.2.1 Σταδια Αναλυσης Συστηματος Κυρια σταδια αναλυσης και μαθηματιης προσομοιωσης ενος συστηματος ειναι τα: Λεπτομερειακη αναλυση των στοιχειων του φυσικου συστηματος και συγκεντρωση δεδομενων. Καταστρωση του μαθηματικου μοντελου και επιλογη της τεχνικης επιλυσης. Αναλυση των σχεσεων των υποσυστηματων και συνδεση τους με το κυριο συστημα. Επιλυση του μοντελου με τα δεδομενα με τα ακολουθα βηματα: Καταστρωση αλγοριθμου για την υπολογιστικη επιλυση του προβληματος Προγραμματισμος, σε υπολογιστη της τεχνικης βελτιστοπιησης. Ελεγχος αξιοπιστιας μοντελου και εγκατασταση σημειου ελεγχου στην επιλυση με τα ακολουθα βηματα: Παραμετρικος ελεγχος και αναλυση ευαισθησιας μοντελου (ευσταθεια λυσης, stability) Αναλυση σφαλματος (error analysis) Βελτιστοποιηση στοιχειων εισοδου. Επιβεβαιωση λειτουργικοτητας (validation) προσομοιωσης. Εισοδος της επιλυσης στο φυσικο προβλημα και εφαρμογη. Καταστρωση σεναριων μελλοντικης συμπεριφορας συνιστωσων φυσικου συστηματος και υποδειξεις για τη βελτιστη διαχειριση αυτου. 3.2.2 Μαθηματικος Ορισμος Προβληματος Το γενικο προβλημα βελτιστοποιησης τιθεται ως εξης: Προσδιορισμος σετ μεταβλητων αποφασης 1, 2,..., n (Σετ λυσης) που μεγιστοποιει (ή ελαχιστοποιει) την αντικειμενικη συναρτηση f ( 1, 2,..., n ), δηλαδη: ma f ( 1, 2,..., n ) 1,..., n s.t.: (subject to) με τους περιορισμους (3-1) g1 ( 1, 2,..., n ) b1 g2 ( 1, 2,..., n ) b2... gn ( 1, 2,..., n ) bn \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 2 απο 6

οπου b 1, b2,..., bn γνωστες τιμες παραμετρων. Ετσι το προβλημα βελτιστοποιησης μορφωνεται διανυσματικα: ma f ( ) s.t: g j ( ) b j, j = 1,2,..., n (3-2) T με = [,..., ] Ο εκθετης Τ υποδηλωνει το αναστροφο του ανυσματος σειρας. 1 n 3.2.3 Ειδη Μαθηματικων Μοντελων Αναλογα με τη φυση της αντικειμενικης συναρτησης και των περιορισμων τα προβληματα βελτιστοποιησης κατατασσονται (Haimes, 1977) σε: 1. Γραμμικα ή μη-γραμμικα (linear vs. nonlinear) 2. Ντετερμινιστικα ή πιθανολογικα (deterministic vs. probabilistic/stochastic) 3. Στατικα ή δυναμικα (static vs. dynamic) 4. Διανεμημενων ή ενιαιων παραμετρων (distributed vs. lumped parameters). 1. Γραμμικα-Μη Γραμμικα: Ενα γραμμικο μοντελο αντιπροσωπευεται μονον απο γραμμικες εξισωσεις, δηλαδη ολοι οι περιορισμοι και η αντικειμενικη συναρτηση ειναι γραμμικες συναρτησεις. Ενα μη-γραμμικο μοντελο αντιπροσωπευεται κατα ενα μερος ή εξ'ολοκληρου απο μη γραμμικες συναρτησεις. Παραδειγμα: Γραμμικη εξισωση: y = 51 + 62 + 73 2 Μη γραμμικες εξισωσεις: y = 5 + 6 1 23 y = log 1 y = sin 1 + log 2 2. Ντετερμινιστικα-Στοχαστικα: Ντετερμινιστικο μοντελο ή στοιχειο μοντελου ειναι εκεινο για το οποιο σε καθε μεταβλητη και παραμετρο μπορει να εκχωρηθει ενας συγκεκριμενος αριθμος ή σειρα αριθμων υπο ορισμενες συνθηκες (αιτιο-αποτελεσμα). Στα στοχαστικα ή πιθανολογικα (probabilistic) μοντελα εισαγεται η αρχη της αβεβαιοτητας. Καμμια απο τις μεταβλητες ή τις παραμετρους που χρησιμοποιουνται για να περιγραφουν οι σχεσεις inputoutput του συστηματος δεν ειναι με ακριβεια γνωστες. Παραδειγμα: "Η τιμη του ειναι ( a± b) με 90% πιθανοτητα" σημαινει οτι μακροχρονια η τιμη του θα ειναι μεγαλυτερη απο (a+b) ή μικροτερη απο (a-b) στο 10% των περιπτωσεων. 3. Στατικα-Δυναμικα: Στατικα μοντελα ειναι εκεινα στα οποια δεν λαμβανονται σαφως υποψη μεταβλητες που εχουν σχεση με το χρονο. Τα δυναμικα μοντελα περιλαμβανουν διαφορισεις των παραμετρων εξοδου ως προς το χρονο. Παραδειγμα: t min F( 1,..., N ; u1,..., um ; t) dt u1,..., u M 0 (3-3) \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 3 απο 6

d s.t. i = Gi ( 1,..., N ; u1,..., um ; t) i = 1,2,..., N dt o i ( to) = i, i = 1,2,..., N Τα στατικα προβληματα βελτιστοποιησης ειναι γνωστα και σαν προβληματα μαθηματικου προγραμματισμου (mathematical programming), ενω τα δυναμικα ειναι γνωστα σαν προβληματα βελτιστου ελεγχου (optimal control problems). 4. Διανεμημενων-Ενιαιων Παραμετρων: Ενα μοντελο διανεμημενων παραμετρων λαμβανει υποψη τις λεπτομερεις μεταβολες του συστηματος απο σημειο σε σημειο. Για ενα μοντελο ενιαιων παραμετρων θεωρουμε οτι οι μεταβολες αγνοουνται και οι διαφοροι παραμετροι και εξηρτημενες μεταβλητες μπορουν να θεωρηθουν ομογενεις σε ολοκληρο το συστημα. Παραδειγμα: Τα περισσοτερα προβληματα φυσικων συστηματων ειναι διανεμημενων παραμετρων, οπως π.χ. το προβλημα διαχυσης που περιγραφεται απο την: 1/ r p T = ± 0 ( / ) S r r p r t 3.2.4 Τεχνικες Βελτιστοποιησης Eυρεως διαδεδομενες τεχνικες βελτιστοποιησης ειναι οι: 1. Λογισμος (Calculus) 2. Γραμμικος Προγραμματισμος (Linear Programming) 3. Μη Γραμμικος Προγραμματισμος (Non Linear Programming) α. Κατευθειαν Αναζητηση (Direct Search) β. Πολλαπλασιαστες Lagrange (Lagrange Multipliers) γ. Συναρτησεις Ποινης (Penalty Functions) δ. Γεωμετρικος Προγραμματισμος Geometric Programming) ε. Μεθοδοι κλισεων (Gradient Methods) στ. Αλλες Μεθοδοι 4. Δυναμικος Προγραμματισμος (Dynamic Programming) 5. Αναπαραγωγη (Simulation) 6. Αναλυση και Πολυεπιπεδη Προσεγγιση (Decomposition and Multilevel Approach) 7. Πολυστοχικος Προγραμματισμος (Multiobjective Optimization) Μεθοδοι επιλυσης των μοντελων που σχετιζονται με τις παραπανω τεχνικες βελτιστοποιησης ειναι οι: 1. Θεωρια Σειρων (Queuing Theory) 2. θεωρια Παιχνιδιων (Game Theory) 3. Θεωρια Δικτυωματος (Network Theory) 4. Λογισμος Μεταβολων Calculus Variations) 5. Αρχη Μεγιστου (Maimum Principle) \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 4 απο 6

6. Γραμμικοποιηση (Qualsilinearization) 7. Αναλυση και πολυεπιπεδη προσεγγιση (Decomposition and multilevel approach) 3.2.5 Τεχνικες Βελτιστοποιησης Μαθηματικα προβληματα προγραμματισμου, που συνηθως αναφερονται σε στατικα θεματα βελτιστοποιησης, ταξινομουνται οπως παρακατω: 1. Προβλημα χωρις περιορισμους (unconstraint problem) minf ( ) 2. Κλασσικο προβλημα ισων περιορισμων (classical equality constrainti problem) minf ( ), ετσι ωστε g j ( ) = 0 j = 1,2,..., m (ιδιαιτερα οταν ολες οι συναρτησεις ειναι διαφορισιμες). 3. Μη γραμμικος προγραμματισμος (nonlinear programming) min f ( ) ετσι ωστε g j ( ) 0 j = 1,2,..., m οπου f() ή/και g j () μη γραμμικες συναρτησεις. 4. Γραμμικος προγραμματισμος (linear programming) min c T ετσι ωστε A b οπου Α μητρωα συντελεστων, και b το διανυσμα περιορισμων. 5. Τετραγωνικος προγραμματισμος (quadratic programming) οπου Α και Q μητρωα συντελεστων. T T min Q + c ετσι ωστε A b 6. Xωριζομενος προγραμματισμος (separable programming) n min fi ( i ) ετσι ωστε A b 0 i = 1 7. Διακεκριμενος προγραμματισμος (discrete programming) Οι παραπανω κατηγοριες προγραμματισμου αναπτυσσονται στα παρακατω κεφαλαια Εφαρμογη Η αναλυση που εγινε στην λεκανη του ποταμου Delaware αποτελει ενα εξαιρετικο παραδειγμα εφαρμογης της προτεινομενης διαδικασιας αναλυσης συστηματων (απο βιβλιο de Neufville): \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 5 απο 6

Η λεκανη του ποταμου Delaware ειναι ενα εκτεταμενο, συνθετο ποταμιο συστημα, αποτελουμενο απο παραποταμους, μεγαλα εργα υποδομης (π.χ. ταμιευτηρες) και κυβερνητικες εκτασεις. Επισης, 25 εκ. ανθρωποι και ενα σημαντικο κομματι της αμερικανικης βιομηχανιας βρισκονται εντος των οριων της, ενω παρεχει και νερο σε 15 εκ. κατοικους των περιοχων γυρω απο την Νεα Υορκη. Η σημασια της επομενως ειναι τεραστια και για πολλες χωρες η διαχειριση μιας τετοιας λεκανης θα αποτελουσε ενα εργο εθνικης εμβελειας. Ειναι γεγονος οτι η προστασια, χρηση και διαχειριση του ποταμιου αυτου συστηματος εχει μελετηθει πολυ προσεκτικα και για πολλα χρονια. Πρωτοποροι σε αυτη την προσπαθεια εχουν υπαρξει οι μηχανικοι του U.S. Corps of Enginners, των οποιων οι μαθηματικες αναλυσεις συνοδευτηκαν απο την καταστρωση φυσικων μοντελων της λεκανης, με τα οποια ηταν δυνατη η διερευνηση εναλλακτικων λυσεων και επιβεβαιωση των αποτελεσματων της αριθμητικης αναλυσης. Η εφαρμογη μεθοδων αναλυσης συστηματων εγινε σε μια σειρα απο: ταμιευτηρες (35 συνολικα), υδροηλεκτρικα εργαστασια (21 συνολικα), ενω αφορουσε και στην υδρευση 4 μεγαλων πολεων. Εγινε η παραδοχη δυο πιθανων μεγεθων για καθε εγκατασταση και ανγοηθηκων οι περιορισμοι στην ποιοτητα νερου και στην δυναμικοτητα των εγκαταστασεων. Παρα ολα αυτα, υπηρχαν πανω απο 500 εκ. εναλλακτικες λυσεις και στην καλυτερη περιπτωση μπορουσαν να εξετασουν μονο μερικες χιλιαδες απο αυτες. Αρχικα, η ομαδα των αναλυτων χρησιμοποιησε γραμμικο προγραμματισμο για τον προκαρκτικο εντοπισμο βελτιστων λυσεων. Οι μη γραμμικες συναρτησεις μετετραπηκαν σε κατα τμηματα γραμμικες, ενω μη κυρτες περιοχες δυνατων λυσεων επισης προσεγγιστηκαν γραμμικα. Η διαδικασια αυτη ειχε ως αποτελεσμα ενα συνολο βελτιστων λυσεων, που αφορουσαν στον σχεδιασμο και την λειτουργια εργων στην λεκανη του ποταμου Delaware. Αυτο εγινε διοτι οι αναλυτες δεχτηκαν οτι υπαρχουν μεγαλες διακυμανσεις στην βροχοπτωση και, κατα συνεπεια, και στην παροχη του ποταμου. Ετσι, τα προγραμματα γραμμικου προγραμματισμου ειχαν ως αρχικα δεδομενα (input) διαφορα σεναρια παροχων και ποσοτητων νερου, αποθηκευμενου στους ταμιευτηρες, και εδιναν καθε φορα καποια βελτιστη λυση. Στη συνεχεια, εγιναν αναλυσεις ευαισθησιας σε καθε βελτιστη λυση, καθως και λεπτομερεις αναλυσεις και προσομοιωσεις της συμπεριφορας του συστηματος, οι οποιες θα καθοριζαν τις καλυτερες βελτιστες λυσεις που εδινε το μοντελο του γραμμικου προγραμματισμου. Προκειμενου να προσδιοριστει ο βελτιστος τροπος σχεδιασμου των εργων, με βαση τα αποτελεσματα της επιλυσης μεσω γραμμικου προγραμματισμου, χρησιμοποιηθηκε ενα απλο μοντελο δυναμικου προγραμματισμου. Θεωρηθηκε οτι οι εγκαταστασεις ηταν ειτε εν λειτουργια, ειτε δεν υπηρχαν καθολου. Επισης, εγινε η παραδοχη οτι τα ωφελη απο την λειτουργια καθε εργου ηταν ανεξαρτητα μεταξυ τους. Με βαση αυτες τις παραδοχες κατεστη δυνατη η μορφωση καταλληλης επαναληπτικης διαδικασιας και η εφαρμογη δυναμικου προγραμματισμου. Η παρουσιαση των αποτελεσματων εγινε συνοδευομενη απο αναλυτικες προσομοιωσεις του ποταμιου συστηματος, οι οποιες επιβεβαιωσαν την λειτουργικοτητα και πιστοτητα του μοντελου. Η αναλυση του συστηματος οδηγησε σε βελτιστο σχεδιασμο των εργων με αντιστοιχη οικονομικη ανταποδοτικοτητα. Τα καθαρα ωφελη (net benefits) ηταν κατα 37% μεγαλυτερα σε σχεση με τα ωφελη του συμβατικου σχεδιασμου των εργων, ενω τα επιπλεον κερδη στη διαρκεια ζωης των εργων ηταν περιπου 100 φορες μεγαλυτερα απο το κοστος της αναλυσης του συστηματος. \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 6 απο 6