Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
|
|
- Δημόκριτος Κορνάρος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε09 Πολυκριτήρια βελτιστοποίηση Χάρης Δούκας, Παναγιώτης Ξυδώνας & Γιάννης Ψαρράς
2 Περιεχόμενα διάλεξης i. Γραμμικός προγραμματισμός ii. Πολυκριτήριος γραμμικός προγραμματισμός iii. Ταξινόμηση μεθόδων πολυκριτήριας βελτιστοποίησης iv. Εφαρμογή
3 Γραμμικός προγραμματισμός Ο γραµµικός προγραµµατισµός (linear programming) (Dantzig, 1998) αποτελεί ένα από τα σηµαντικότερα µεθοδολογικά εργαλεία στο χώρο της επιχειρησιακής έρευνας µε πλήθος πρακτικών και ερευνητικών εφαρµογών. Η γενική μορφή των προβλημάτων που αντιμετωπίζονται στο χώρο του γραµµικού προγραµµατισµού είναι η ακόλουθη: Μεγιστοποίηση: T c x Υπό τους περιορισμούς: Ax b και x 0 όπου: x x1, x2,..., x n είναι ένα διάνυσμα-στήλη που αναφέρεται στις μεταβλητές απόφασης (decision variables), οι οποίες πρέπει να καθοριστούν από την επίλυση του παραπάνω γραμμικού προγράμματος, c c1, c2,..., c n είναι το διάνυσμα-στήλη με τους συντελεστές των μεταβλητών απόφασης στην T αντικειμενική συνάρτηση f x = c x και T c το ανάστροφο διάνυσμα του c, A είναι ένας πίνακας διαστάσεων m n, κάθε στοιχείο a ij του οποίου αντιστοιχεί στο συντελεστή της μεταβλητής απόφασης j στον περιορισμό i, b b1, b2,..., b m είναι ένα διάνυσμα στήλη με τα δεξιά μέλη των περιορισμών.
4 Πολυκριτήριος γραμμικός προγραμματισμός Ο πολυκριτήριος γραµµικός προγραµµατισµός (multiobjective linear programming) (Steuer, 1986) επεκτείνει το πλαίσιο του γραµµικού προγραµµατισµού στην περίπτωση όπου υπάρχουν πολλαπλές T f x c x i 1, 2,..., k. Στην περίπτωση αυτή η γενική αντικειμενικές συναρτήσεις της μορφής μορφή του προβλήματος διατυπώνεται ως εξής: i Μεγιστοποίηση: f x f x f x i 1 1,,..., n Υπό τους περιορισμούς: Ax b και x 0 Το βασικό πρόβλημα που αντιμετωπίζεται στην περίπτωση αυτή αφορά στην αδυναμία εντοπισμού βέλτιστης λύσης, δεδομένου ότι η λύση που βελτιστοποιεί κάποια από τις αντικειμενικές συναρτήσεις δεν είναι συνήθως βέλτιστη για τις υπόλοιπες. Για την αντιμετώπιση του θέματος αυτού, η έννοια της βέλτιστη λύσης αντικαθίσταται από την έννοια της αποτελεσματικής ή ικανής (efficient solution), η οποία µε τη σειρά της βασίζεται στην έννοια της κυριαρχίας (dominance).
5 Ταξινόμηση μεθόδων πολυκριτήριας βελτιστοποίησης Ένας αρκετά διαδεδομένος τρόπος ταξινόμησης των μεθόδων πολυκριτήριας βελτιστοποίησης είναι ανάλογα με το στάδιο επίλυσης, στο οποίο εκφράζει τις προτιμήσεις του ο αποφασίζων (Hwang and Masud, 1979, Evans 1984, Miettinen 1999). Στη βάση αυτή, διακρίνονται τρεις κατηγορίες μεθόδων πολυκριτήριας βελτιστοποίησης: i. Μέθοδοι πολυκριτήριας βελτιστοποίησης με έκφραση προτίμησης πριν από την επίλυση (a priori methods). ii. Μέθοδοι πολυκριτήριας βελτιστοποίησης με έκφραση προτίμησης κατά την επίλυση (interactive methods). iii. Μέθοδοι πολυκριτήριας βελτιστοποίησης με έκφραση προτίμησης μετά την επίλυση (a posteriori or generation methods).
6 Ταξινόμηση μεθόδων πολυκριτήριας βελτιστοποίησης A priori methods Στην πρώτη κατηγορία ανήκουν οι μέθοδοι πολυκριτήριας βελτιστοποίησης στις οποίες ο αποφασίζων είναι σε θέση να συγκεκριμενοποιήσει απόλυτα τις προτιμήσεις του πριν τη διαδικασία επίλυσης. Αυτό γίνεται, είτε καθορίζοντας εξ αρχής τη σημαντικότητα των κριτηρίων, είτε καθορίζοντας κάποιες τιμές-στόχους για τα κριτήρια.
7 Ταξινόμηση μεθόδων πολυκριτήριας βελτιστοποίησης Interactive methods Στη δεύτερη κατηγορία ανήκουν οι αλληλεπιδραστικές μέθοδοι λόγω της άμεσης εμπλοκής και καθοδήγησης του αποφασίζοντος στη διαδικασία επίλυσης. Οι αλληλεπιδραστικές μέθοδοι χαρακτηρίζονται από φάσεις διαλόγου με τον αποφασίζοντα, οι οποίες εναλλάσσονται με φάσεις υπολογισμού των επιθυμητών λύσεων. Είναι δηλαδή επαναληπτικές διαδικασίες όπου η αλληλεπίδραση μεταξύ αποφασίζοντος και μεθόδου συνεχίζεται μέχρι να ικανοποιηθεί κάποιο κριτήριο σύγκλισης και να βρεθεί η τελική λύση. Η κεντρική ιδέα είναι η εξής: Σε κάθε επανάληψη παρουσιάζονται στον αποφασίζοντα μία ή περισσότερες λύσεις. Ο αποφασίζων, επιλέγοντας κάποια λύση, παρέχει εμμέσως πληροφορίες για την προτίμησή του και ανάλογα διαμορφώνεται η επόμενη επανάληψη. Ουσιαστικά δηλαδή ο αποφασίζων κατευθύνει τη διαδικασία της επίλυσης έως ότου βρεθεί η τελική λύση.
8 Ταξινόμηση μεθόδων πολυκριτήριας βελτιστοποίησης A posteriori methods Στην τρίτη κατηγορία ανήκουν οι λεγόμενες μέθοδοι παραγωγής των ικανών λύσεων. Οι μέθοδοι αυτές έχουν ως αντικείμενο τον υπολογισμό (παραγωγή) του συνόλου ή κάποιου αντιπροσωπευτικού υποσυνόλου των ικανών λύσεων. Οι μέθοδοι παραγωγής έχουν το πλεονέκτημα ότι παρέχουν τη δυνατότητα στον αποφασίζοντα να εξετάσει το σύνολο των δυνατών επιλογών πριν αποφασίσει, γεγονός που ενισχύει το αίσθημα της εμπιστοσύνης που έχει αναφορικά στις τελικές του αποφάσεις. Επιπλέον, δεν απαιτούν την έντονη και επίμοχθη εμπλοκή του με συχνές και πολλές φορές πολύπλοκες ερωταποκρίσεις (Daellenbach and Buchanan, 1989). Εάν μάλιστα πρόκειται για περισσότερους από έναν αποφασίζοντες, η καθοδήγηση της αλληλεπιδραστικής διαδικασίας σύγκλισης γίνεται προβληματική λόγω των διαφορετικών προτιμήσεων τους στα ενδιάμεσα στάδια. Έπειτα, η απαιτούμενη συχνή αλληλεπίδραση με τον αποφασίζοντα είναι αρκετές φορές προβληματική, είτε λόγω του περιορισμένου χρόνου του, είτε λόγω της δυσκολίας προσέγγισής του.
9 Ταξινόμηση μεθόδων πολυκριτήριας βελτιστοποίησης Μέθοδοι πολυκριτήριας βελτιστοποίησης A priori μέθοδοι πολυκριτήριας βελτιστοποίησης Μέθοδοι Προγραμματισμός στόχων Αναφορά Charnes et al. (1955) Charnes and Cooper (1961) Λεξικογραφική βελτιστοποίηση (Fishburn, 1974) Αλληλεπιδραστικές μέθοδοι πολυκριτήριας βελτιστοποίησης Μέθοδοι Αναφορά STEM Benayoun et al. (1971) GDF Geoffrion et al. (1972) Zionts-Wallenius Zionts and Wallenius (1976) Interval criterion weights Steuer (1977) Interactive surrogate worth tradeoff Chankong and Haimes (1983) Interactive weighted Tchebycheff Steuer and Choo (1983) TRIMAP Climaco and Antunes (1987) Pareto race Korhonen and Wallenius (1988) Interactive weighted sums/filtering approach Steuer (1989) NIMBUS Miettinen (1994) GUESS Buchanan (1997)
10 Ταξινόμηση μεθόδων πολυκριτήριας βελτιστοποίησης Μέθοδοι πολυκριτήριας βελτιστοποίησης A posteriori μέθοδοι πολυκριτήριας βελτιστοποίησης Μέθοδοι Αναφορά Μέθοδος συντελεστών στάθμισης Gass and Saaty (1955) Μέθοδος περιορισμών (ε-constraint method) Haimes et al. (1971) Augmented ε-constraint method (AUGMECON) Mavrotas (2009) Μέθοδος σταθμισμένων μετρικών Zeleny (1973, 1982) Πολυκριτήρια simplex Yu and Zeleny (1975) Υβριδική μέθοδος Wendell and Lee (1977) Corley (1980) Μέθοδος NISE Cohon (1978)
11 Εφαρμογή
12 Εφαρμογή Μητρώο πληρωμών Ποιά η διαφοροποίηση, αν αντί για το σημείο (3,6), λαμβανόταν το σημείο (0,6);
13 Εφαρμογή Χώρος αποφάσεων Συναινετική λύση Ιδεώδης λύση
14 Χώρος κριτηρίων Εφαρμογή Συναινετικό σημείο Ιδεώδες σημείο x* (5.5,6) E (0,6) Γ (7,4) Προσοχή
15 Εφαρμογή Απόσταση ιδεώδους & συναινετικού σημείου Απόσταση Tchebycheff Ισοδύναμο γραμμικό πρόγραμμα
16 Εφαρμογή
17 Τέλος ενότητας
Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Πολυκριτηριακός Γραμμικός Προγραμματισμός Πολλαπλά κριτήρια στη λήψη απόφασης Λήψη Αποφάσεων με Πολλαπλά Κριτήρια Διακριτό σύνολο επιλογών Συνεχές σύνολο επιλογών Πολυκριτηριακή Ανάλυση (ELECTRE, Promethee,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Πολυκριτηριακά συστήματα υποστήριξης αποφάσεων ΣΗΜΕΙΩΣΕΙΣ
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε10 Η μέθοδος augmented
ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια
Robust MCDA ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια Δ9 Βιβλιογραφική ανασκόπηση ανάλυσης Π9 Τεχνική έκθεση
Περιεχόμενα. Πρόλογος Κεφάλαιο 1: Εισαγωγή...17
Περιεχόμενα Πρόλογος...11 Κεφάλαιο 1: Εισαγωγή...17 1 Διαχείριση ενεργητικού παθητικού... 17 1.1 Δομή του μοντέλου ALM... 20 1.1.1 Αντικειμενικές συναρτήσεις... 21 1.1.1.1 Θεωρία χρησιμότητας Von Neumann-Morgenstern...
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων E02 Πολυκριτήρια
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού
3ο Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής Αθήνα,, IούνιοςI 200 Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού Γιώργος Μαυρωτάς Δανάη
Πολυκριτηριακά Συστήµατα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τοµέας Ηλ. Βιοµηχανικών Διατάξεων & Συστηµάτων Αποφάσεων Πολυκριτηριακά Συστήµατα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Πολυκριτήριο πρόβλημα χρονοπρογραμματισμού εργασιών σε γραμμές συναρμολόγησης: Μοντελοποίηση και επίλυση σε περιβάλλον GAMS
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Πολυκριτήριο πρόβλημα χρονοπρογραμματισμού εργασιών
Πολυκριτήρια Ανάλυση Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης TOPSIS
Περιεχόμενα. Πρόλογος Κεφάλαιο 1: Εισαγωγή...17
Περιεχόμενα Πρόλογος...11 Κεφάλαιο 1: Εισαγωγή...17 1 Διαχείριση ενεργητικού παθητικού... 17 1.1 Δομή του μοντέλου ALM... 20 1.1.1 Αντικειμενικές συναρτήσεις... 21 1.1.1.1 Θεωρία χρησιμότητας Von Neumann-Morgenstern...
Αξιολόγηση και επιλογή δράσης (έργου)
Αξιολόγηση και επιλογή δράσης (έργου) Η διαδικασία για αξιολόγηση ξεχωριστών δράσεων, έργων ή ομάδων έργων και η επιλογή υλοποίησης μερικών από αυτών, για την επίτευξη του αντικειμενικού σκοπού της επιχείρησης.
Θεώρηση π ολ πο λ λ α λ πλών απλών κρι κρ τ ι ηρίων τηρίων στη Δ η ΥΠ (1 ( )
Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (1) Μέθοδοι πολλαπλών κριτηρίων Οι πολυκριτηριακέςμέθοδοι έθ αποτελούν μια ομάδα μεθόδων αξιολόγησης σχεδίων, προγραμμάτων ανάπτυξης και πολιτικών αποφάσεων. Όλες οι
Ανάλυση ευστάθειας σε προβλήματα πολυκριτηριακού μαθηματικού προγραμματισμού : Η περίπτωση της επιλογής χαρτοφυλακίου επενδυτικών σχεδίων.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμός, Ανάλυση και Ανάπτυξη Διεργασιών και Συστημάτων Ανάλυση ευστάθειας σε προβλήματα πολυκριτηριακού μαθηματικού προγραμματισμού :
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε07 Η μέθοδος ELECTRE
Λήψη αποφάσεων με πολλαπλά κριτήρια: Μια εισαγωγή στις βασικές έννοιες, μεθοδολογία και εφαρμογές
11 Λήψη αποφάσεων με πολλαπλά κριτήρια: Μια εισαγωγή στις βασικές έννοιες, μεθοδολογία και εφαρμογές Μ. Δούμπος και Κ. Ζοπουνίδης Πολυτεχνείο Κρήτης, Τμήμα Μηχανικών Παραγωγής και Διοίκησης, Εργαστήριο
ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΔΙΑΧΕΙΡΙΣΗ
Εφαρμογές Πολυκριτηριακού Μαθηματικού Προγραμματισμού με τη χρήση της γλώσσας μοντελοποίησης GAMS
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Εφαρμογές Πολυκριτηριακού Μαθηματικού Προγραμματισμού με τη χρήση της γλώσσας μοντελοποίησης GAMS ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΛΙΒΙΖΑΤΟΣ ΣΠΥΡΙΔΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΒΑΡΩΝ SIMOS - ROC. Χάρης Δούκας
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΡΟΣΔΙΟΡΙΣΜΟΣ
On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο
On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Ενσωμάτωση της αβεβαιότητας Ασαφή δεδομένα Ανάλυση της αβεβαιότητας στο μοντέλο της απόφασης (π.χ. σύγκρουση στόχων)
Συστημική αντιμετώπιση Μέθοδοι Πολυκριτηριακής ανάλυσης Σχολές Πολυκριτηριακής ανάλυσης Πολυκριτηριακή θεωρία χρησιμότητας Σχέσεις υπεροχής (διμερείς συγκρίσεις) Πολυκριτηριακός προγραμματισμός δε μπορούν
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τομέας ΙΙ: Ανάλυσης, Σχεδιασμού και Ανάπτυξης Διεργασιών και Συστημάτων Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Συνδυασμός Πολυκριτηριακής Ανάλυσης
Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών, Αθήνα Άδεια
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Πολυστοχαστικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
Αξιολόγηση και επιλογή δράσης (έργου)
Αξιολόγηση και επιλογή δράσης (έργου) Η διαδικασία για αξιολόγηση ξεχωριστών δράσεων, έργων ή ομάδων έργων και η επιλογή υλοποίησης μερικών από αυτών, για την επίτευξη του αντικειμενικού σκοπού της επιχείρησης.
Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (3) Επανάληψη Μέθοδος Promethee II
Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (3) Επανάληψη Μέθοδος Promethee II Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα
ΣΥΝΑΡΤΗΣΙΑΚΑ ΜΟΝΤΕΛΑ ΑΠΟΦΑΣΕΩΝ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΣΥΝΑΡΤΗΣΙΑΚΑ
ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια
Robust MCDA ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια Δ10 Ανάπτυξη μέτρων αξιολόγησης μέτρων Π10 Τεχνική έκθεση
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου
Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό
Συστήματα Υποστήριξης Αποφάσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 6: Συναρτησιακά Μοντέλα Αποφάσεων Διονύσης Γιαννακόπουλος Τμήμα Διοίκησης Επιχειρήσεων
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming)
Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Πολυκριτηριακή ανάλυση στη λήψη αποφάσεων για τον προσδιορισµό χρήσης γης στον αστικό ιστό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ MBA Πολυκριτηριακή ανάλυση στη λήψη αποφάσεων για τον προσδιορισµό χρήσης γης στον αστικό ιστό ΦΟΙΤΗΤΗΣ: ΣΤΡΕΠΕΛΙΑΣ ΗΛΙΑΣ
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης
Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.
ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. Μέθοδοι που απαιτούν
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Ανάλυση Ευαισθησίας. Έχοντας λύσει ένας πρόβλημα ΓΠ θα πρέπει να αναρωτηθούμε αν η λύση έχει φυσική σημασία. Είναι επίσης πολύ πιθανό να έχουμε χρησιμοποιήσει δεδομένα για τα οποία δεν είμαστε σίγουροι
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας Σχεδιασμός αντικειμένων, διεργασιών, δραστηριοτήτων (π.χ. τεχνικά έργα, έπιπλα, σκεύη κτλ) ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΜΕΛΕΤΗ (conceptual design) ΠΡΟΜΕΛΕΤΗ
Μοντέλα και Τεχνικές Αξιολόγησης. Ενεργειακών και Περιβαλλοντικών Πολιτικών
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Μοντέλα
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης ούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και ιοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex
Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07
Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Το πρόβλημα μεταφοράς: μαθηματικό μοντέλο και μεθοδολογία επίλυσης Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Πτυχιακή Εργασία. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Ελλάδας» Σχολή: Διοίκησης και Οικονομίας. Τμήμα: Διοίκηση επιχειρήσεων
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Ελλάδας» Σχολή: Διοίκησης και Οικονομίας Τμήμα: Διοίκηση επιχειρήσεων Πτυχιακή Εργασία Θέμα: «ΠΟΛΥΚΡΙΤΗΡΙΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ - ΜΑΘΗΜΑΤΙΚΗ ΚΑΙ ΘΕΩΡΗΤΙΚΗ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 22: Ανάπτυξη Κώδικα σε Matlab για την επίλυση Γραμμικών Προβλημάτων με τον Αναθεωρημένο Αλγόριθμο Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε
Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.
ΠΕΡΙΛΗΨΗ Η τεχνική αυτή έκθεση περιλαµβάνει αναλυτική περιγραφή των εναλλακτικών µεθόδων πολυκριτηριακής ανάλυσης που εξετάσθηκαν µε στόχο να επιλεγεί η µέθοδος εκείνη η οποία είναι η πιο κατάλληλη για
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:
6. Πολυκριτηριακός Προγραμματισμός
6. Πολυκριτηριακός Προγραμματισμός Βασικές αρχές Παράδειγμα Μέθοδοι με έκφραση προτίμησης πριν την επίλυση Συντελεστές βαρύτητας Προγραμματισμός στόχων Μέθοδοι με έκφραση προτίμησης μετά την επίλυση Παραγωγή
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2013-2014 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Τα προβλήματα τους Ακεραίου γραμμικού Προγραμματισμού (Integer Linear Programming) είναι
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Τμήμα Εφαρμοσμένης Πληροφορικής
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Στόχοι Εργαστηρίου ημιουργία Τυχαίων Βέλτιστων Γ.Π. Περιγραφή μεθόδου για δημιουργία βέλτιστων
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(
Ανάπτυξη Εφαρμογής Πολυκριτηριακών Μεθόδων Λήψης Αποφάσεων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Ανάπτυξη Εφαρμογής Πολυκριτηριακών Μεθόδων Λήψης Αποφάσεων Διπλωματική Εργασία της Άννας Μόσχογλου (ΑΕΜ: 207) Επιβλέποντες
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 6: Αναλυτική Ιεραρχική Διαδικασία Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:
ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το
Αξιολόγηση Εναλλακτικών Σεναρίων για την Απανθρακοποίηση του Ενεργειακού Συστήματος
Αξιολόγηση Εναλλακτικών Σεναρίων για την Απανθρακοποίηση του Ενεργειακού Συστήματος Αικατερίνη Παπαποστόλου, Χαρίκλεια Καρακώστα, Χάρης Δούκας, Ιωάννης Ψαρράς Περιεχόμενα Εισαγωγή Μεθοδολογικό Πλαίσιο
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Συστήματα Υποστήριξης Αποφάσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Υποστήριξης Αποφάσεων Άσκηση 3η : Σταθμισμένος Μέσος & Λεξικογραφική -Μετεγκατάσταση Πολυτεχνείου Διονύσης Γιαννακόπουλος
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Κλασικές Τεχνικές Βελτιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 2 η /2017 Μαθηματική Βελτιστοποίηση Η «Μαθηματική
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ Ενημερωτικό Φυλλάδιο Αθήνα, Οκτώβριος 2016 Εργαστήριο
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
ΧΡΗΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΕ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΕΝΕΡΓΕΙΑΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μάθημα: ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και ιοίκησης ΧΡΗΣΗ ΓΛΩΣΣΙΚΩΝ
Περιεχόµενα µαθήµατος
Περιεχόµενα µαθήµατος Λήψη αποφάσεων Ειδικά θέµατα (προγραµµατισµός κι έλεγχος παραγωγής, ανάλυση χρονοσειρών, διαχείριση κι έλεγχος αποθεµάτων, κ.ά.) Ορισµός, στόχοι και µορφές επιχειρήσεων και Χρηµατοοικονοµικά
Fermat, 1638, Newton Euler, Lagrange, 1807
Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 30 Απριλίου 2015 1 / 48 Εύρεση Ελάχιστου
Πολυκριτήρια Ανάλυση και Λήψη Αποφάσεων
Πολυκριτήρια Ανάλυση και Λήψη Αποφάσεων Χριστίνα Ευαγγέλου, Νίκος Καρακαπιλίδης Industrial Management & Information Systems Lab MEAD, University of Patras, Greece {chriseva, nikos}@mech.upatras.gr ιάρθρωση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ Ενημερωτικό Φυλλάδιο Αθήνα, Οκτώβριος 2018 Εργαστήριο
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική