Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού
|
|
- Αριάδνη Βικελίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 3ο Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής Αθήνα,, IούνιοςI 200 Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού Γιώργος Μαυρωτάς Δανάη Διακουλάκη Εργαστήριο Βιομηχανικής και Ενεργειακής Οικονομίας Τμήμα Χημικών Μηχανικών ΕΜΠ
2 ΠΕΡΙΧΟΜΕΝΑ ΠΑΡΟΥΣΙΑΣΗΣ Περιγραφή μεθοδολογικού πλαισίου Πολυκριτηριακός Γραμμικός Προγραμματισμός (ΠΚΓΠ) Μικτός Ακέραιος ΠΚΓΠ και ο αλγόριθμος Multi-Criteria Branch and Bound Διαδικασία εύρεσης της προτιμότερης ικανής λύσης Εφαρμογή στο σχεδιασμό επέκτασης της ηλεκτροπαραγωγής Συμπεράσματα
3 ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΟΛΛΑΠΛΑ ΚΡΙΤΗΡΙΑ Διακριτό σύνολο επιλογών ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΟΛΛΑΠΛΑ ΚΡΙΤΗΡΙΑ Συνεχές σύνολο επιλογών ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΝΑΛΥΣΗ (Electre, Promethee, AHP κλπ) ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μη-γραμμικές συναρτήσεις Γραμμικές συναρτήσεις ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ-ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
4 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ (ΠΚΓΠ) Γραμμικός Προγραμματισμός (ΓΠ) (Linear Programming) Πολυκριτηριακός Γραμμικός Προγραμματισμός (ΠΚΓΠ) (Multi-Objective Linear Programming) Μία αντικειμενική συνάρτηση Μονοδιάστατη αριστοποίηση Αριστη λύση (optimal solution) Πολλές αντικειμενικές συναρτήσεις (κριτήρια) Διανυσματική αριστοποίηση Ικανές ή κατά Pareto άριστες λύσεις (non dominated, efficient, Pareto optimal solutions) Αναζήτηση της προτιμότερης (σχετικά βέλτιστης) λύσης από το σύνολο των ικανών λύσεων.
5 ΙΚΑΝΕΣ ΛΥΣΕΙΣ Εστω το ακόλουθο ένα πρόβλημα ΠΚΓΠ : max {z (x), z 2 (x),..., z p (x) \ x S} Μία λύση x ορίζεται ως ικανή λύση όταν δεν υπάρχει άλλη λύση x τέτοια ώστε: z i (x ) z i (x) i=...p και x x
6 ΑΚΕΡΑΙΟΣ ΠΚΓΠ - ΟΡΙΣΜΟΙ Ακέραιος ΠΚΓΠ Ολες οι μεταβλητές ακέραιες Μικτός Ακέραιος ΠΚΓΠ Μερικές από τις μεταβλητές ακέραιες και οι υπόλοιπες συνεχείς
7 Η ΜΕΘΟΔΟΣ MULTI-CRITERIA BRANCH & BOUND Εύρεση του συνόλου των ικανών λύσεων για προβλήματα Μικτού Ακέραιου ΠΚΓΠ Αντικατάσταση των ακεραίων μεταβλητών από το ισοδύναμο άθροισμα δυαδικών (0-) μεταβλητών: αν y είναι η ακέραιη μεταβλητή με άνω όριο UB, τότε το y μπορεί να εκφρασθεί ως το ακόλουθο άθροισμα δυαδικών μεταβλητών: y = δ 0 + 2δ + 4δ 2 + 8δ k δ k όπου τα δ i είναι δυαδικές μεταβλητές και 2 k < UB < 2 k+. Προσαρμογή της γνωστής τεχνικής Branch and Bound στα χαρακτηριστικά του ΠΚΓΠ (Multi-Criteria Branch and Bound, MCB&B).
8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ MULTI- CRITERIA BRANCH AND BOUND Μία αντικειμενική συνάρτηση (Branch and Bound) Πολλές αντικειμενικές συναρτήσεις (Multi-Criteria Branch and Bound) Συνθήκη διακοπής: σύγκριση μονοδιάστατων μεγεθών. Μίατρέχουσαβέλτιστηλύση (incumbent solution) Επίλυση ενός προβλήματος ΓΠ σε κάθε κόμβο Δυνατότητα απευθείας χειρισμού ακεραίων μεταβλητών Συνθήκη διακοπής: σύγκριση διανυσμάτων Πολλές τρέχουσες ικανές λύσεις (incumbent list). Επίλυση p προβλημάτων ΓΠ στους ενδιάμεσους κόμβους και ενός προβλήματος ΠΚΓΠ στους τελικούς κόμβους. Μετατροπή των ακεραίων μεταβλητών σε άθροισμα δυαδικών
9 ΓΡΑΦΙΚΟ ΠΑΡΑΔΕΙΓΜΑ ΤΗΣ ΜΕΘΟΔΟΥ MCB&B Incumbent list Μετά τον κόμβο F F 2 F F F 7 F F Τρείςδυαδικέςμεταβλητές (F: Ελεύθερη μεταβλητή) Δύο αντικειμενικές συναρτήσεις (μεγιστοποίηση) Επίπεδο Μετά τον κόμβο F 3 INF F DOM 0 F F Επίπεδο 2 Επίπεδο 3 Μετά τον κόμβο INF Επιμέρους ικανές λύσεις
10 ΤΕΧΝΙΚΑ ΣΤΟΙΧΕΙA ΓΙΑ ΤΟΝ ΑΛΓΟΡΙΘΜΟ MCB&B Υπολογισμός του ιδανικού διανύσματος σε κάθε κόμβο Μέθοδος Revised Simplex with Bounded Variables (RSBV) Επανεκκίνηση της μεθόδου από την τρέχουσα βέλτιστη λύση (warm start) μεταξύ των διαδοχικών αριστοποίησεων Μετάβαση από τον ένα κόμβο στον άλλο Μέθοδος Dual Simplex Παραγωγή του συνόλου των ικανών λύσεων στα προβλήματα ΠΚΓΠ των τελικών κόμβων Μέθοδος EFFTREE Ελεγχος συσσώρευσης σφαλμάτων στρογγύλευσης και επαναντιστροφή της βασικής μήτρας (Basis Reinversion) όταν η συσσώρευση σφαλμάτων ξεπερνάκάποιοόριο
11 ΔΙΑΔΙΚΑΣΙΑ ΕΥΡΕΣΗΣ ΤΗΣ ΣΧΕΤΙΚΑ ΒΕΛΤΙΣΤΗΣ ΛΥΣΗΣ Αλληλεπιδραστική διϋλιση των λύσεων (interactive filtering, Steuer). Μειώνεται διαδοχικά το εξεταζόμενο σύνολο των λύσεων ανάλογα με τις προτιμήσεις του αποφασίζοντα όπως εκφράζονται σε αντιπροσωπευτικά δείγματα των λύσεων.
12 ΙΚΑΝΟΙ ΣΥΝΔΥΑΣΜΟΙ ΣΤΟΝ ΜΙΚΤΟ ΑΚΕΡΑΙΟ ΠΚΓΠ Οι συνδυασμοί των ακεραίων μεταβλητών που οδηγούν σε ικανές λύσεις. Οι ικανοί συνδυασμοί προσδιορίζουν τα δομικά χαρακτηριστικά του υπό εξέταση συστήματος, ενώ οι ικανές λύσεις τα λειτουργικά χαρακτηριστικά του. Ενας ικανός συνδυασμός μπορεί να οδηγήσει σε μία ή περισσότερες ικανές λύσεις. Ηδιαδικασίααπόφασης(επιλογή της προτιμότερης λύσης) μπορεί να χωριστεί σε δύο στάδια:. Επιλογή προτιμότερου ικανού συνδυασμού. 2. Επιλογή προτιμότερης ικανής λύσης του επιλεχθέντος συνδυασμού
13 ΕΦΑΡΜΟΓΗ Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής Πόσες νέες μονάδες από κάθε τύπο πρέπει να κατασκευαστούν για να καλυφθεί η προβλεπόμενη ζήτηση ηλεκτρικής ενέργειας. Μεθοδολογική αντιμετώπιση Προσομοίωση παραγωγής Γραμμικός Προγραμματισμός Μικτός Ακέραιος Γραμμικός Προγραμματισμός Δυναμικός Προγραμματισμός Πολυκριτηριακός Γραμμικός Προγραμματισμός
14 ΤΟ ΠΡΟΒΛΗΜΑ Χρονικός ορίζοντας: Υποψήφιες νέες μονάδες: Φυσικού αερίου (450 MW, max=5) Λιγνιτικές (300 MW, max=4) Ανθρακικές (580 MW, max=2) Αιολικής ενέργειας (max=500 MW) Ετήσιος ρυθμός αύξησης της ζήτησης: 2.5%
15 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΜΟΝΤΕΛΟΥ Πολυπεριοδικό (Τρείς υποπερίοδοι των 5 ετών) Πολυκριτηριακό (κόστος, επάρκεια, περιβάλλον) Το πλήθος των νέων μονάδων εκφράζεται με ακέραιες μεταβλητές (μοντέλο Μικτού Ακέραιου ΠΚΓΠ) Αβεβαιότητα ως προς τη μελλοντική ζήτηση
16 ΚΑΜΠΥΛΗ ΔΙΑΡΚΕΙΑΣ ΦΟΡΤΙΟΥ (ΚΔΦ) - ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΤΗΣ ΚΔΦ Η ζήτηση ηλεκτρικής ενέργειας εκφράζεται με την ΚΔΦ. Η ΚΔΦ υποδηλώνει για πόσο χρόνο η απαιτούμενη ισχύς του συστήματος ξεπερνά μια συγκεκριμένη τιμή Το εμβαδό κάτω από την ΚΔΦ εκφράζει την απαιτούμενη ηλεκτρική ενέργεια. MW Φορτίο αιχμής Φορτίο βάσης Hours
17 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΜΟΝΤΕΛΟΥ Μεταβλητές απόφασης X ijk : H παραγωγή (MW) του i-τύπου μονάδας, την j-υποπερίοδο, που καλύπτει την k-περιοχή της ΚΔΦ Ν ij : Ο αριθμός των νέων μονάδων τύπου i της υποπεριόδου j. μ: Ο βαθμός ικανοποίησης της ζήτησης (επάρκεια), μ [0,] Αντικειμενικές συναρτήσεις Συνολικό κόστος επέκτασης (ανηγμένο σε τιμές 2000) Βαθμός ικανοποίησης της ζήτησης (επάρκεια) Εκπομπές CO 2 Περιορισμοί Κάλυψη της ζήτησης Δυναμικότητα μονάδων Εισαγωγές ηλεκτρικής ενέργειας Κατανάλωση φυσικού αερίου Περιθώριο ασφαλείας συστήματος (reserve margin)
18 ΑΝΤΙΚΕΙΜΕΝΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Συνολικό κόστος min m+ nm s n h vc nm X ijk + fc N k ijk i= j= k = i= m+ j= s ij ij Bαθμός ικανοποίησης της ζήτησης (επάρκεια) max μ όπου m nm + X ijk i= S 2 S S ( Δp jk Δp jk ) μ Δp jk k =,..., n j =,..., s Εκπομπές CO 2 min m + nm s n i = j = k = ef i h k X ijk
19 ΜΕΓΕΘΟΣ ΒΑΣΙΚΟΥ ΜΟΝΤΕΛΟΥ & ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΕΠΙΛΥΣΗΣ Διαστάσεις βασικού μοντέλου 3 αντικειμενικές συναρτήσεις 48 περιορισμοί (30 <=, 2 >=, 6 = ) 79 μεταβλητές (5 δυαδικές, 9 ακέραιες) Χαρακτηριστικά επίλυσης Κόμβοι δυαδικού δένδρου: 3960 Τελικοί κόμβοι: 439 Συνθήκες διακοπής: 97 Επιμέρους ικανές λύσεις: 4968 Ικανές λύσεις: 23 Ικανοί συνδυασμοί: 90 Χρόνος επίλυσης (300mhz): 3h 24 50
20 ΠΡΟΟΔΕΥΤΙΚΗ ΜΕΙΩΣΗ ΤΩΝ ΕΞΕΤΑΖΟΜΕΝΩΝ ΣΥΝΔΥΑΣΜΩΝ Σύνολο συνδυασμών Εφικτοί συνδυασμοί Εξεταζόμενοι συνδυασμοί Ικανοί συνδυασμοί
21 ΕΡΜΗΝΕΙΑ ΙΚΑΝΩΝ ΣΥΝΔΥΑΣΜΩΝ ΚΑΙ ΙΚΑΝΩΝ ΛΥΣΕΩΝ Οι ικανοί συνδυασμοί εκφράζουν τα εναλλακτικά επενδυτικά σχέδια (investment plans). Οι ικανές λύσεις που προκύπτουν από κάθε ικανό συνδυασμό εκφράζουν τα εναλλακτικά προγράμματα λειτουργίας του αντίστοιχου επενδυτικού σχεδίου (operational plans).
22 Η ΔΙΑΔΙΚΑΣΙΑ ΑΛΛΗΛΕΠΙΔΡΑΣΤΙΚΗΣ ΔΙΥΛΙΣΗΣ ΤΩΝ ΙΚΑΝΩΝ ΣΥΝΔΥΑΣΜΩΝ iteration iteration iteration iteration Επίπεδο 2 κυρίων παραγόντων (v=90%) 5
23 ΣΧΕΤΙΚΕΣ ΕΠΙΔΟΣΕΙΣ ΤΩΝ ΣΥΝΔΥΑΣΜΩΝ ΤΗΣ 3ης ΕΠΑΝΑΛΗΨΗΣ % 20% 40% 60% 80% 00% Κόστος Εκπομπές CO2 Επάρκεια
24 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΕΠΙΛΕΧΘΕΝΤΟΣ ΣΥΝΔΥΑΣΜΟΥ Μέσες τιμές συνδυασμού στα κριτήρια L NG C L NG C L NG C κόστος εκπομπές CO 2 επάρκεια δις $ 758 Mt 56.2% Ικανές λύσεις συνδυασμού 69 κόστος (δις $) εκπομπές CO 2 (Mt) επάρκεια % % % % % % %
25 ΓΕΝΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΗμέθοδοςMCB&B μπορεί να χρησιμοποιηθεί για την επίλυση μεσαίου μεγέθους προβλημάτων Μικτού Ακέραιου ΠΚΓΠ, όπως τα προβλήματα στρατηγικού σχεδιασμού. Οι ικανοί συνδυασμοί σε προβλήματα Μικτού Ακέραιου ΠΚΓΠ μπορούν να προσφέρουν ουσιαστική πληροφόρηση στον αποφασίζοντα. Η διαδικασία επιλογής της προτιμότερης λύσης σε προβλήματα Μικτού Ακέραιου ΠΚΓΠ μπορεί να αναλυθεί σε δύο φάσεις: α) επιλογή ικανού συνδυασμού β) επιλογή ικανής λύσης. Η επιλογή της προτιμότερης λύσης μπορεί να γίνει μέσω της αλληλεπιδραστικής διϋλισης των λύσεων. Η εφαρμογή της μεθόδου στο σχεδιασμό της επέκτασης του συστήματος ηλεκτροπαραγωγής αποτελεί ένα ενθαρρυντικό βήμα για την εφαρμογή πολυκριτηριακών μεθόδων σε παρόμοια προβλήματα.
26 3ο Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής Αθήνα,, IούνιοςI 200 Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού Γιώργος Μαυρωτάς Δανάη Διακουλάκη Εργαστήριο Βιομηχανικής και Ενεργειακής Οικονομίας Τμήμα Χημικών Μηχανικών ΕΜΠ
Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Πολυκριτηριακός Γραμμικός Προγραμματισμός Πολλαπλά κριτήρια στη λήψη απόφασης Λήψη Αποφάσεων με Πολλαπλά Κριτήρια Διακριτό σύνολο επιλογών Συνεχές σύνολο επιλογών Πολυκριτηριακή Ανάλυση (ELECTRE, Promethee,
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ολοκληρωμένη μαθηματική τεχνική βελτιστοποίησης Ευρύτατο φάσμα εφαρμογών Εισαγωγή ακέραιων/λογικών/βοηθητικών μεταβλητών Δυνατότητα γραμμικοποίησης με 0-1 μεταβλητές
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε09 Πολυκριτήρια
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μεθοδολογία επιλογής και αξιολόγησης σχεδίων δράσης για την καταπολέμηση της ατμοσφαιρικής ρύπανσης στη Θεσσαλονίκη
5o Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής Θεσσαλονίκη 26-28 Μαΐου Μεθοδολογία επιλογής και αξιολόγησης σχεδίων δράσης για την καταπολέμηση της ατμοσφαιρικής ρύπανσης στη Θεσσαλονίκη Γ. Μαυρωτάς,
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής
Γραµµικός Προγραµµατισµός (ΓΠ)
Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.
2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Προβλήματα Μεταφορών (Transportation)
Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε10 Η μέθοδος augmented
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Αθήνα, 23/11/2010. Παρασκευάς Ν. Γεωργίου, Γεώργιος Μαυρωτάς & Δανάη Διακουλάκη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας 7 η Συνεδρία: «Οδικός Χάρτης για το 2020: Κρίσιμες Επενδύσεις και Τεχνολογίες» Η ΠΡΟΚΛΗΣΗΤΗΣ ΔΙΑΣΥΝΔΕΣΗΣ
Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Συνδυασμένη εφαρμογή Πολυκριτηριακής Ανάλυσης & Ακέραιου Προγραμματισμού στην επιλογή χρηματοδοτικών προτάσεων υπό περιορισμούς
3η Συνάντηση Πολυκριτήριας Ανάλυσης Αποφάσεων Χανιά, 29-30 Σεπτεμβρίου 2005 Συνδυασμένη εφαρμογή Πολυκριτηριακής Ανάλυσης & Ακέραιου Προγραμματισμού στην επιλογή χρηματοδοτικών προτάσεων υπό περιορισμούς
Αξιολόγηση και επιλογή δράσης (έργου)
Αξιολόγηση και επιλογή δράσης (έργου) Η διαδικασία για αξιολόγηση ξεχωριστών δράσεων, έργων ή ομάδων έργων και η επιλογή υλοποίησης μερικών από αυτών, για την επίτευξη του αντικειμενικού σκοπού της επιχείρησης.
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος
Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.
ΠΕΡΙΛΗΨΗ Η τεχνική αυτή έκθεση περιλαµβάνει αναλυτική περιγραφή των εναλλακτικών µεθόδων πολυκριτηριακής ανάλυσης που εξετάσθηκαν µε στόχο να επιλεγεί η µέθοδος εκείνη η οποία είναι η πιο κατάλληλη για
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού
Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.
Διαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 4 η Διάλεξη: Βελτιστοποίηση πολλαπλών στόχων (Μulti-objective optimization) 2019 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στην βελτιστοποίηση
Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τομέας ΙΙ: Ανάλυσης, Σχεδιασμού και Ανάπτυξης Διεργασιών και Συστημάτων Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Συνδυασμός Πολυκριτηριακής Ανάλυσης
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαχείριση Ηλεκτρικής Ενέργειας Οικονομική Κατανομή Παραγόμενης Ενέργειας
Διαχείριση Ηλεκτρικής Ενέργειας Οικονομική Κατανομή Παραγόμενης Ενέργειας Αλέξανδρος Φλάμος Επίκουρος Καθηγητής e-mail: aflamos@unipi.gr Τσίλη Μαρίνα Δρ Ηλ/γος Μηχ/κος e-mail: marina.tsili@gmail.com Γραφείο
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
ΜΕΘΟΔΟΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΤΙΜΗΣ ΑΓΟΡΑΣ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΑΠΕ-Η. Δεκέμβριος Αριθμός Έκθεσης 08/2016
ΜΕΘΟΔΟΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΤΙΜΗΣ ΑΓΟΡΑΣ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΑΠΕ-Η Δεκέμβριος 2016 Αριθμός Έκθεσης 08/2016 Οποιαδήποτε αλληλογραφία για το παρόν έγγραφο να αποστέλλεται στη Ρυθμιστική Αρχή Ενέργειας Κύπρου Μέθοδος
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ανάπτυξη Μοντέλου Βελτιστοποίησης της Κατανομής Πόρων για τη Διαχείριση Λεωφορείων Αστικών Συγκοινωνιών Επιβλέποντες Καθηγητές: Γιώργος Γιαννής, Καθηγητής
Αξιολόγηση και επιλογή δράσης (έργου)
Αξιολόγηση και επιλογή δράσης (έργου) Η διαδικασία για αξιολόγηση ξεχωριστών δράσεων, έργων ή ομάδων έργων και η επιλογή υλοποίησης μερικών από αυτών, για την επίτευξη του αντικειμενικού σκοπού της επιχείρησης.
Ταυτότητα ερευνητικού έργου
ΣΧΕ ΙΑΣΜΟΣ, ΑΞΙΟΛΟΓΗΣΗ & ΑΡΙΣΤΟΠΟΙΗΣΗ ΥΒΡΙ ΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΜΠΑΡΑΓΩΓΗΣ ΙΣΧΥΟΣ ΚΑΙ ΝΕΡΟΥ ΜΕ ΑΦΑΛΑΤΩΣΗ. Ασηµακόπουλος, Α. Καρταλίδης και Γ. Αραµπατζής Σχολή Χηµικών Μηχανικών, ΕΜΠ Ηµερίδα ProDES 9 Σεπτεµβρίου
Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών, Αθήνα Άδεια
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση
Το Πρόβλημα Μεταφοράς
Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού
Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ IΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ IΙ Ακαδ. Έτος 2018-2019 Διδάσκων: Β. ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegean.gr Τηλ: 2271035468
ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΟΜαθηµατικός Προγραµµατισµός είναι κλάδος των εφαρµοσµένων µαθηµατικών που ασχολείται µε την εύρεση άριστης λύσης. ιαφέρει από την κλασική αριστοποίηση στο ότι προσπαθεί να
Μοντελοποίηση Προσομοίωση
Μοντελοποίηση Προσομοίωση Σχεδιασμός είναι η διαδικασία μετατροπής των φυσικών νόμων σε μαθηματικές εξισώσεις είναι το κατάλληλο λογισμικό το οποίο χρησιμοποιώντας το μαθηματικό μοντέλο προβλέπει τη συμπεριφορά
Fermat, 1638, Newton Euler, Lagrange, 1807
Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου
Το µαθηµατικό µοντέλο του Υδρονοµέα
Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας
Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό
Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων
Τμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 1: Γραµµικός προγραµµατισµός(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Πολυκριτηριακά Συστήµατα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τοµέας Ηλ. Βιοµηχανικών Διατάξεων & Συστηµάτων Αποφάσεων Πολυκριτηριακά Συστήµατα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο
Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»
Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας
Eθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών EMΠ
Eθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών EMΠ Ανάπτυξη μοντέλου βελτιστοποίησης της κατανομής πόρων για την συντήρηση των λιμένων της Ελλάδας Σωτήριος Χαριζόπουλος Επιβλέποντες: Γιώργος Γιαννής,
4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης
4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων Δρ Μ.Σπηλιώτης Ολοκληρωμένη διαχείριση υδατικών πόρων (integrated water resources management), έμφαση στην εξέταση όλων των πτυχών
σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.
Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων
Σχολή Χημικών Μηχανικών ΕΜΠ Ανάλυση Συστημάτων Χημικής Μηχανικής, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Διδάσκοντες: Χ. Κυρανούδης, Γ. Μαυρωτάς Εισαγωγή Με βάση κάποιο δείγμα
Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Μεθοδολογία αλγορίθμων τύπου simplex (5) Βήμα 0: Αρχικοποίηση (Initialization). Στο βήμα
Κεφάλαιο 5ο: Ακέραιος προγραμματισμός
Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα
Διαχείριση Ταμιευτήρα
Διαχείριση Ταμιευτήρα Μονοκριτηριακή βελτιστοποίηση Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα Κουτσογιάννης,
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Δυναμικός Προγραμματισμός με Μεθόδους Monte Carlo: 1. Μάθηση Χρονικών Διαφορών (Temporal-Difference Learning) 2. Στοχαστικός
ΜΕΘΟΔΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΓΙΑ ΠΕΡΙΘΩΡΙΟ ΕΦΕΔΡΕΙΑΣ ΕΓΚΑΤΕΣΤΗΜΕΝΗΣ ΙΣΧΥΟΣ. Ιούλιος Αριθμός Έκθεσης 02/2017
ΜΕΘΟΔΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΓΙΑ ΠΕΡΙΘΩΡΙΟ ΕΦΕΔΡΕΙΑΣ ΕΓΚΑΤΕΣΤΗΜΕΝΗΣ ΙΣΧΥΟΣ Ιούλιος 2017 Αριθμός Έκθεσης 02/2017 Οποιαδήποτε αλληλογραφία για το παρόν έγγραφο να αποστέλλεται στη Ρυθμιστική Αρχή Ενέργειας Κύπρου
Τμήμα Εφαρμοσμένης Πληροφορικής
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Δυϊκή Θεωρία (1) Θεώρημα : Το δυϊκό πρόβλημα του γραμμικού προβλήματος 0 0 1 1 2 2 0 0 T
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
Επιχειρησιακή έρευνα (ασκήσεις)
Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής
ΑΥΞΗΜΕΝΗ ΔΙΕΙΣΔΥΣΗ Φ/Β ΣΤΑΘΜΩΝ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΥΣΤΗΜΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ: ΕΠΙΠΤΩΣΕΙΣ ΣΤΗΝ ΑΓΟΡΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΣΗΕ ΤΗΜΜΥ : Μπακιρτζής Αναστάσιος Καθηγητής ΤΗΜΜΥ ΑΠΘ Μπίσκας Παντελής Λέκτορας ΤΗΜΜΥ ΑΠΘ Σίμογλου Χρήστος Δρ. Ηλεκτρολόγος Μηχ/κός ΑΠΘ Μελέτη Εργαστηρίου Συστημάτων Ηλεκτρικής Ενέργειας Α.Π.Θ. για λογαριασμό
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα
Γενικευµένη Simplex Γενικευµένη Simplex
Πρόβληµα cutting stock Λογικά µεγέθη (20 περιορισµοί, 24000 µεταβλητές) Πρόβληµα cutting stock Λογικά µεγέθη (20 περιορισµοί, 24000 µεταβλητές) Μεγάλα µεγέθη (30 περιορισµοί, 190000 µεταβλητές) Πρόβληµα
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 5: Τεχνικές Κλιμάκωσης, Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex
Β. Βασιλειάδης Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex Περιεχόμενα Ο αλγόριθμος Simplex Βασικά Βήματα Παραδείγματα Συμπεράσματα 1o Bήμα: εξάλειψη των ανισοτήτων Στη μαθηματική διατύπωση του
καθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 1) Μάρτιος
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 22: Ανάπτυξη Κώδικα σε Matlab για την επίλυση Γραμμικών Προβλημάτων με τον Αναθεωρημένο Αλγόριθμο Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων E02 Πολυκριτήρια
ΕΠΙΠΤΩΣΕΙΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΓΟΡΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΗΕ ΣΗΕ ΤΗΜΜΥ ΤΗΜΜΥ ΕΠΙΠΤΩΣΕΙΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΓΟΡΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ Μπακιρτζής Αναστάσιος Καθηγητής ΤΗΜΜΥ ΑΠΘ Μπίσκας
Παρουσίαση: Γραμμικός Προγραμματισμός (Αλγόριθμος Simplex). Λύση δυο προβλημάτων με χρήση της μεθόδου simplex και το excel.
Παρουσίαση: Γραμμικός Προγραμματισμός (Αλγόριθμος Simplex). Λύση δυο προβλημάτων με χρήση της μεθόδου simplex και το excel. Γκούμας Στράτος. Πτυχιούχος Οικονομολόγος. MSc Εφαρμοσμένη Οικονομική και Χρηματοοικονομική
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική