ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Σχετικά έγγραφα
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

P(A ) = 1 P(A). Μονάδες 7

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

(f(x) + g(x)) = f (x) + g (x).

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

f(x ) 0 O) = 0, τότε το x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

f(x ) 0 O) = 0, τότε το x

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

c f(x) = c f (x), για κάθε x R

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

c f(x) = c f (x), για κάθε x R

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1ο. Στήλη ΙΙ Παράγωγος f (x) 1. -ημx. 2. x ρ-1 3. συνx 4. 1 Γ. x ρ, x > 0 και ρ ρητός. Β. x, x > ρ x ρ-1. Δ. ημx. Ε. συνx. 8.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

(c f (x)) = c f (x), για κάθε x R

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

Transcript:

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του ορισμού της παραγώγου ότι c f = c f, για κάθε R ( ( )) ( ) Μονάδες 7 Α. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4 Α3. Πότε μια ποσοτική μεταβλητή λέγεται διακριτή και πότε συνεχής; Μονάδες 4 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. =, και η α) Αν για τη συνάρτηση f ισχύει f ( ) 0, για ( α,β) 0 0 παράγωγός της f διατηρεί πρόσημο εκατέρωθεν του 0, τότε η f είναι γνησίως μονότονη στο ( α,β ) και δεν παρουσιάζει ακρότατο στο διάστημα αυτό. (μονάδες ) β) Για δύο οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει: P A B = P B P A B ( ) ( ) ( ) (μονάδες ) γ) Σε μια κανονική ή περίπου κανονική κατανομή το 9% περίπου των παρατηρήσεων βρίσκονται στο διάστημα ( s, s) τιμή και s η τυπική απόκλιση των παρατηρήσεων. +, όπου η μέση (μονάδες ) ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ δ) Αν είναι τιμή μιας ποσοτικής μεταβλητής X, τότε η αθροιστική συχνότητα N εκφράζει το πλήθος των παρατηρήσεων που είναι μεγαλύτερες της τιμής (μονάδες ) ε) Το κυκλικό διάγραμμα είναι ένας κυκλικός δίσκος χωρισμένος σε κυκλικούς τομείς, τα εμβαδά ή, ισοδύναμα, τα τόξα των οποίων είναι ανάλογα προς τις αντίστοιχες συχνότητες v ή τις σχετικές συχνότητες f των τιμών της μεταβλητής. (μονάδες ) Μονάδες 0 ΘΕΜΑ Β Στο παρακάτω σχήμα φαίνεται το ιστόγραμμα συχνοτήτων, το οποίο παριστάνει τις πωλήσεις σε χιλιάδες ευρώ που έγιναν από τους πωλητές μιας εταιρείας κατά τη διάρκεια ενός έτους. 4 αριθμός πωλητών 0 8 6 4 6 8 0 πωλήσεις σε χιλιάδες ευρώ Β. Να βρείτε το πλήθος των πωλητών της εταιρείας. Μονάδες Β. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συχνοτήτων της κατανομής των πωλήσεων κατάλληλα συμπληρωμένο, δικαιολογώντας τη στήλη με τις σχετικές συχνότητες f, =,, 3, 4 ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Kλάσεις Κεντρικές τιμές Συχνότητα ν Σχετική συχνότητα f [, ) [, ) [, ) [, ) Σύνολο Β3. α) Να υπολογίσετε τη μέση τιμή των πωλήσεων του έτους. Μονάδες 8 (μονάδες 6) β) Να βρείτε το πλήθος των πωλητών που έκαναν πωλήσεις τουλάχιστον 4, χιλιάδων ευρώ (θεωρούμε ότι οι παρατηρήσεις κάθε κλάσης είναι ομοιόμορφα κατανεμημένες). (μονάδες 6) Μονάδες ΘΕΜΑ Γ Ένα δοχείο περιέχει κόκκινες (Κ), άσπρες (Α) και πράσινες (Π) μπάλες. Επιλέγουμε τυχαία μία μπάλα. Η πιθανότητα να προκύψει κόκκινη μπάλα είναι P(Κ) =, ενώ η πιθανότητα να προκύψει άσπρη μπάλα είναι P(Α) =, όπου, είναι οι θέσεις των τοπικών ακροτάτων της συνάρτησης 3 7 f() = 4 +, R με < Γ. Να βρείτε τις πιθανότητες P(Κ), P(A) και P(Π), όπου P(Π) η πιθανότητα να προκύψει πράσινη μπάλα. Μονάδες 0 Γ. Αν P(Κ) 4 ενδεχομένων: = και P(A) 3 =, να βρείτε τις πιθανότητες των παρακάτω Γ: «η μπάλα που επιλέγεται τυχαία να είναι κόκκινη ή άσπρη» Δ: «η μπάλα που επιλέγεται τυχαία να είναι ούτε κόκκινη ούτε άσπρη» Ε: «η μπάλα που επιλέγεται τυχαία να είναι άσπρη ή να μην είναι πράσινη». Μονάδες 9 ΤΕΛΟΣ 3ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Γ3. Αν οι άσπρες μπάλες είναι κατά τέσσερις (4) λιγότερες από τις πράσινες μπάλες, να βρείτε πόσες μπάλες έχει το δοχείο. Μονάδες 6 ΘΕΜΑ Δ Θεωρούμε ένα κουτί σχήματος ορθογωνίου παραλληλεπιπέδου με βάση ορθογώνιο και ανοικτό από πάνω. dm Το ύψος του κουτιού είναι dm. Η βάση του κουτιού έχει σταθερή περίμετρο 0 dm και μία πλευρά της είναι dm με 0 < < 0 dm Δ. Να αποδείξετε ότι η συνολική επιφάνεια του κουτιού ως συνάρτηση του είναι E() = + 0 + 00, 0, 0 ( ) και να βρείτε για ποια τιμή του το κουτί έχει μέγιστη επιφάνεια. Μονάδες 8 Στη συνέχεια, θεωρούμε τα σημεία ( ) με = < <... < 4 < = 9 A, y, όπου ( ) y = E, =,,..., Δ. Αν το δείγμα των τετμημένων, =,,..., A(,y ) δεν είναι ομοιογενές έχει μέση τιμή = 8 και των παραπάνω σημείων τυπική απόκλιση s τέτοια, ώστε s - s + = 0 τότε: α) να αποδείξετε ότι s= (μονάδες 4) ΤΕΛΟΣ 4ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ β) να βρείτε τη μέση τιμή των Δίνεται ότι: s = ν = ν t, με =,,..., ν t = ν (μονάδες 4) Μονάδες 8 Δ3. Επιλέγουμε τυχαία ένα από τα παραπάνω σημεία ( ) Να βρείτε την πιθανότητα του ενδεχομένου: A, y, =,,..., { ( ) } Β = Α, y, =,,..., τέτοια, ώστε y > 4 + 9R +, όπου R είναι το εύρος των ( ) y = E, =,,..., Μονάδες 9 ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα Ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και μόνο για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: 0.30 π.μ. ΣΑΣ ΕΥΧΟΜΑΣΤΕ KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A. Σχολικό βιβλίο σελίδα 30 A. Σχολικό βιβλίο σελίδα 3 A3. Σχολικό βιβλίο σελίδα 9 Α4. α. Σωστό, β. Λάθος, γ. Λάθος, δ. Λάθος, ε. Σωστό. ΘΕΜΑ Β Β. ν = ν + ν + ν 3 + ν 4 = + 8 + 4 + 6 = 40 πωλητές Β. Κλάσεις v f v [, 4 ) 3 0,3 36 [ 4, 6 ) 8 0, 40 [ 6, 8 ) 7 4 0,3 98 [ 8, 0) 9 6 0, 4 Σύνολα - 40 8 v v 8 f = = = 0,3 f = = v 40 v 40 = 0, v3 4 v 4 6 f 3 = = = 0,3 f 4 = = v 40 v 40 = 0,

B3. α) v 8,7 = = = v 40 β) Στο διάστημα [ 4, 6) με πλάτος αντιστοιχούν 8 πωλητές Στο διάστημα [ 4,, 6) με πάτος, αντιστοιχούν πωλητές. = 8., = = 6 πωλητές Επομένως πωλήσεις τουλάχιστον 400 έκαναν 6 + 4 + 6 = 6 πωλητές ΘΕΜΑ Γ Γ. 7 3 f () = 4 - + -, IR f () = - 7 +, IR 3 4-4 3 f () + - + f () = 0-7 + = 0 = ή = f () τ.μ. <, άρα = και = 4 3 Ρ (Κ) = = 4 Ρ (Α) = = 3 Ρ (Π) = - Ρ (Κ) - Ρ (Α) = - - = 4 3 τ.ελ. +

Γ. Ρ (Γ) = Α,Κ ασυμβίβαστα Ρ (Κ Α) = Ρ (Κ) + Ρ (Α) = + = 4 3 7 Ρ (Δ) = 7 Ρ ((Κ Α) ) = Ρ (Γ ) = - = Ρ (Ε) = Ρ (Α Π ) = Ρ (Α) + Ρ (Π ) - Ρ (Α Π ) = Ρ (Α) + - Ρ (Π) - Ρ (Α - Π) = Ρ (Α) + - Ρ (Π) - Ρ (Α) = - = 7 + Ρ (Α Π) = - Ρ (Π) Α,Π ασυμβίβαστα Γ3. Έστω ν οι μπάλες που περιέχει το δοχείο Ν (Α) Ν (Α) ν Ρ (Α) = = = Ν (Α) = Ν (Ω) ν 3 3 Ν (Π) Ρ (Π) = = Ν (Ω) Ν (Π) ν = Ν (Π) = ν ν ν Είναι Ν (Α) = Ν (Π) - 4 = - 4 4ν = ν - 48 3 48 = ν - 4ν ν = 48 Επομένως το δοχείο έχει 48 μπάλες.

ΘΕΜΑ Δ Δ. Ε z Ε Ε z z Ε 3 z Ε Περίμετρος βάσης = 0 + z = 0 + z = 0 z = 0 -, με 0 < < 0 E () =. Ε +. Ε + Ε 3 E () =. +. z +. z E () =. +.. (0 - ) +. (0 - ) E () = 0 + 00-0 + 0 - E () = - + 0 + 00, 0 < < 0 E () = - + 0, 0 < < 0 E () = 0 - + 0 = 0 = 0 0 f () + - f () Άρα το εμβαδόν γίνεται μέγιστο για =

s s 8 Δ. α) CV > > > s > 0 0 8 0 0 s > 0,8 s - s + = 0 Δ = 9 και ρίζες s = (δεκτή) ή s = ½ (απορρίπτεται) Επομένως s = t t β) s = t - s = - v v v t t t = s + = + 8 = v v v Άρα η μέση τιμή των είναι 68. 68 Δ3. = < <... < = 9 E() στο [,9] Ε() = Ε( ) > Ε( ) >... > Ε( ) = Ε(9) y < y <... < y 4 Ε() = - + 0 + 00 = Ε(9) = -9 + 09 + 00 = 09 R = y - y = - 09 = 6 y > -4 + 9R + E( ) > -4 + 96 + - + 0 + 00 > -4 + 4 - + 4-4 > 0 Δ = 6 και ρίζες και 9-9 + - + 4-4 - + - Άρα < < 9 και Β = { Α, Α 3,, Α 4 } Ν (B) 3 Ρ (B) = = Ν (Ω)

Είναι = < <... < = 9, άρα - 9 0 και - 0, για κάθε =,,... ΠΑΡΑΤΗΡΗΣΗ ( - 9)( - ) 0-4 + 4 0, για κάθε =,,... Αν αθροίσουμε κατά μέλη τις ανισοϊσότητες που προκύπτουν έχουμε - 4 + 4 0-4 + 4 0-4 + 4 0 4-4 και αν διαιρέσουμε δια v = - - + 4-4 s - 8 + 48-4 s 3 s 3 < Όμως s = από Δα ερώτημα