ΑΣΚΗΣΗ 5. έκδοση DΥΝI-EXC b

Σχετικά έγγραφα
ΑΣΚΗΣΗ 8. έκδοση DΥΝI-EXC b

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 5.

ΑΣΚΗΣΗ 19. έκδοση DΥΝI-EXC a

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b

ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ & ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

ΑΠΟΣΒΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΔΥΝΑΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Τετραγωνική κυματομορφή συχνότητας 1 Hz

ΜΔΕ Άσκηση 6 Α. Τόγκας

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f.

ΑΣΚΗΣΗ 11. έκδοση ΕΧ b

ΑΣΚΗΣΗ 2. έκδοση ΕΧ b

ΑΣΚΗΣΗ 6. έκδοση ΕΧ b

Μερικές Διαφορικές Εξισώσεις

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΠΤΥΞΕΩΣ ΠΕΡΙΟ ΙΚΩΝ ΣΗΜΑΤΩΝ ΣΕ ΣΕΙΡΑ FOURIER

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις:

ΑΣΚΗΣΗ 14. έκδοση DΥΝI-EXC b

Λύσεις ασκήσεων 6. Οι συντελεστές του αναπτύγματος υπολογίζονται ως εξής: = y( ( 1) = 2 L. L n. = 0 Αναζητούμε αρμονική λύση για y(x) λόγω ΣΣ

ΑΣΚΗΣΗ 9. έκδοση ΕΧ b

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2

ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-12)

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας,

Ταλαντώσεις ερωτήσεις κρίσεως

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ

ΑΣΚΗΣΗ 1. έκδοση ΕΧ b

Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

c n x n (t)) f(t) c n x n (t)dt + θ f 2 (t)dt = 0 f(t)c i x i (t)dt =

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Κεφάλαιο 7. Εισαγωγή στην Ανάλυση Fourier.

ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2015

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

. Σήματα και Συστήματα

Φυσική για Μηχανικούς

Physics by Chris Simopoulos

ΑΣΚΗΣΗ 3. έκδοση ΕΧ b

HMY 220: Σήματα και Συστήματα Ι

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ 1 (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 15 ΝΟΕΜΒΡΙΟΥ 2015

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019

Κεφάλαιο Σειρές και μετασχηματισμός Fourier

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση

Γ ΚΥΚΛΟΣ ΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΩΝ : Χρήστος Βοζίκης

Σειρές συναρτήσεων. Τα μαθηματικά συγκρίνουν τα πιο διαφορετικά φαινόμενα και ανακαλύπτουν τις μυστικές αναλογίες, που τα ενώνουν.

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Physics by Chris Simopoulos

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση (...)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

z έχει µετασχ-z : X(z)= 2z 2

ΚΕΦΑΛΑΙΟ 9 Η ηµιτονοειδής συνάρτηση

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ. ii) Στις τρεις διαστάσεις, η ισχύς κατανέµεται σε σφαιρικές επιφάνειες, οπότε θα ισχύει: απ όπου προκύπτει για την ένταση Ι: 1

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1 / 55

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

ΑΝΑΠΤΥΓΜA -ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Φυσική για Μηχανικούς

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ

ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Απαντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου.

Φυσική για Μηχανικούς

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Φυσική για Μηχανικούς

Κεφάλαιο 13. Περιοδική Κίνηση

Εισαγωγή στη Θεωρία Σημάτων και Συστημάτων

Εργασία 1 ΑΝ ΙΙΙ 07_08

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ. 2λ 3 Μονάδες 5

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Δυναμική Μηχανών I. Διάλεξη 9. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Φυσική Γ Θετ. και Τεχν/κης Κατ/σης

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΒΑΣΙΛΕΙΟΣ-ΜΑΡΙΟΣ ΓΚΟΡΤΣΑΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

f p = lim (1 a n ) < n=0

Σύνθεση ή σύζευξη ταλαντώσεων;

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων


Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)

Μια φθίνουσα ταλάντωση, στην οποία η μείωση του πλάτους δεν είναι εκθετική.

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 3&4: ΤΑΛΑΝΤΩΣΗ ΑΡΜΟΝΙΚΗΣ ΔΙΕΓΕΡΣΗΣ. Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό.

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Transcript:

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 5 έκδοση DΥΝI-EXC05-016b

Coyright Ε.Μ.Π. - 016 Σχολή Μηχανολόγων Μηχανικών Εργαστήριο Δυναμικής και Κατασκευών κτ. Μ αιθ. Μ00 Με ειφύλαξη αντός δικαιώματος. Ααγορεύεται η χρήση, αντιγραφή, αοθήκευση και διανομή της αρούσας αρουσίασης, εξ ολοκλήρου ή τμήματος αυτής, για άσης φύσεως εμορικό ή εαγγελματικό σκοό. Ειτρέεται η ανατύωση, αοθήκευση και διανομή για σκοό μη κερδοσκοικό, εκαιδευτικής ή ερευνητικής φύσεως, υό την ροϋόθεση να αναφέρεται η ηγή ροέλευσης και να διατηρείται το αρόν μήνυμα. Πληροφορίες Δρ. Ι. Αντωνιάδης, Καθηγητής, antogian@central.ntua.gr, 10-77154 Δρ. Χ. Γιακόουλος, ΕΔΙΠ, chryiako@central.ntua.gr, 10-7733

Άσκηση 5: Εκφώνηση F(t) η διέγερση συστήματος F(t) ( ) F t ( ) Fosin Ωt 0 t T / = 0 T /< t T F o t T / T / 8 ω = 3T το σύστημα έχει φυσική συχνότητα και c = 0? μόνιμη αόκριση του συστήματος σε ανάτυγμα κατά Fourier και με εαρκές, για τεχνολογικούς σκοούς, λήθος όρων

A ανάτυξη της εξωτερικής διέγερσης F(t) του συστήματος κατά Fourier ( ) = + cos( Ω ) + sin ( Ω ) F t a a n t b n t o n n n= 1 n= 1 υολογισμός για διάφορες τιμές του n υολογισμός a ο T t T T T / T 1 F 1 1 o ao = Fosin ( Ω t) dt = sin ( Ω t) dt = Fosin ( Ω t) dt + Fosin ( Ωt) dt T T 0 T 0 T 0 T /, T F(t)=0 ❶

αό ❶ θέτουμε dt τ =Ωt dτ =Ωdt dt = Ω t = 0 τ = 0 τ =Ω t = t T T T t = τ = = T...... a o F o dτ F o = sinτ = T Ω ΩT 0 0 sinτdτ sin 1 ax dx = ax + C a ( ) ( cos )... Ω T = T Ω T = T a o F o dτ F o F o = sinτ = sinτdτ = [ cosτ] = 0 T Ω ΩT ΩT 0 0 F o F o F o Ω T = Fo = [ cos cos 0] = [ 1 1] = a T T T o Ω Ω Ω F o =

υολογισμός a n T T an = F ( t) cos( nω t) dt = Fosin ( Ωt) cos( nω t) dt = T T 0 0 T T / = Fosin ( Ωt) cos( nω t) dt + Fosin ( Ωt) cos( nωt ) dt T T 0 T / dt θέτουμε τ =Ωt dτ =Ωdt dt = Ω t = 0 τ = 0 τ =Ω t = t T T T t = τ = = T t, T F(t)=0

... Fo dt Fo a n = sin ( τ) cos( nτ) = sin ( τ) cos( nτ) dτ T Ω ΩT 0 0 ισχύει ( ) ( ) ( ) ( ) cos a b x cos a+ b x sin ( bx) cos ( ax) dx = + C, a b a b a+ b b = 1 a = n τ = x...

...

... για n εριττός... για n άρτιος...

άρα... n εριττός n άρτιος

υολογισμός b n T T bn = F ( t) sin ( nω t) dt = Fosin ( Ωt) sin ( nω t) dt = T T 0 0 T T / = Fosin ( Ωt) sin ( nω t) dt + Fosin ( Ωt) sin ( nωt ) dt T T 0 T / dt θέτουμε τ =Ωt dτ =Ωdt dt = Ω t = 0 τ = 0 τ =Ω t = t T T T t = τ = = T t, T F(t)=0 Fo dt Fo b n = sin ( τ) sin ( nτ) = sin ( τ) sin ( nτ) dτ T Ω ΩT 0 0

για n=1 o bn sin ( τ) sin ( nτ) sin ( τ) sin ( nτ) dτ T Ω ΩT 0 0 Fo dt F n= 1 = = F o F o bn = sin ( τ) sin ( τ) dτ = sin ( τ) dτ ΩT ΩT 0 0 ισχύει ( ax) x sin sin ( ax) dx = + C 4a

b Fo n = sin ( τ) dτ T 1 sin ( ) 0 a F o τ τ Ω = bn = x sin ( ax) T Ω 4 0 sin ( ) ax dx = + C 4a F sin ( ) o 0 sin ( 0) bn = F o Ω T = ΩT = 4 4 T Ω F o Fo bn = bn =

για n>1 ισχύει ( τ) sin ( nτ) sin sin ( τ) sin ( nτ) = = sin ( τ) sin ( nτ) + cos( τ) cos( nτ) + sin ( τ) sin ( nτ) cos( τ) cos( nτ) = = sin ( τ) sin ( nτ) + cos( τ) cos( nτ) cos( τ) cos( nτ) sin ( τ) sin ( nτ) = = cos( nτ τ) cos( nτ + τ) cos ( n 1) τ cos ( n+ 1) τ = =

άρα...

υολογισμός των α ο, α n και b n για διάφορες τιμές του n οι όροι για n>6 έχουν αμελητέα συνεισφορά το ανάτυγμα της F(t) κατά Fourier ροκύτει μέχρι και τον όρο για n=6

άρα F F F F F F t t t t t 3 15 35 3 o o o o o ( ) = + sin ( Ω ) cos( Ω ) cos( 4Ω ) cos( 6Ω ) 1 1 F t Fo t t t t 3 15 35 3 o o o ( ) = + sin ( Ω ) cos( Ω ) cos( 4Ω ) cos( 6Ω ) α ο b 1 α α 4 α 6 ανάτυγμα μίας σειράς Fourier, στην οοία συμμετέχει μικρό λήθος όρων (όχι άειρο) ο ρώτος όρος της σειράς είναι μία σταθερή οσότητα οι υόλοιοι τέσσερεις όροι είναι αρμονικές οσότητες

Προσέγγιση της διέγερσης χρησιμοοιώντας εερασμένο λήθος όρων 1, 1,0 n= όροι 1, 1,0 n=3 όροι 0,8 0,8 0,6 0,6 0,4 0,4 0, 0, 0,0 0,0-0, 0 1 3 4 5 6 7 8 9 10 11-0, 0 1 3 4 5 6 7 8 9 10 11 1, 1, 1,0 n=4 όροι 1,0 n=5 όροι 0,8 0,8 0,6 0,6 0,4 0,4 0, 0, 0,0 0,0-0, 0 1 3 4 5 6 7 8 9 10 11-0, 0 1 3 4 5 6 7 8 9 10 11

B για κάθε έναν όρο του ανατύγματος (συνιστώσα διέγερσης F(t)) υολογίζεται η αντίστοιχη συνιστώσα της μόνιμης αόκρισης του συστήματος (συνιστώσα αόκρισης)... υό την ειβολή αρμονικής διέγερσης χρονικά σταθερής δύναμης μόνιμη αόκριση συστήματος αρμονική αόκριση x = X cos( Ω t ϑ ) n n n n... όου...?...? Ωn 1 ζω q n = Ω n ω 1 ζ qn ϑ tan n ω Ωn 1 qn ϑn = tan = ❷ στατική αόκριση X ST F ST = k

υολογισμό του λάτους ταλάντωσης... ισχύει (συντελεστής δυναμικής ενίσχυσης) H X = X = X st H X st όταν στο σύστημα ειβληθεί 1 εξωτερική αρμονική διέγερση όταν ειβάλονται n εξωτερικές αρμονικές διεγέρσεις, τότε για κάθε μία αό τις διεγέρσεις αυτές ισχύει: X = H X n n ST, n ❸ οφείλεται στην ειβολή της στατικής δύναμης της εξωτερικής διέγερσης F(t) και ισχύει: F ST, n F = ST, n F λόγω της n αρμονικής συνιστώσας n

οότε αό... 1 1 F t Fo t t t t 3 15 35 3 o o o ( ) = + sin ( Ω ) cos( Ω ) cos( 4Ω ) cos( 6Ω ) ( ) α ο b 1 α α 4 α 6 b 1 = α = (1/) ( ) F = 1 Fo F = b 1 F o 1 1 1 1 α1 0 ( ) ( ) α = 3 = = α 0 F 3 Fo F F ( ) ( ) α4 = 15 4 = 4 = α4 0 F 15 Fo F F ( ) ( ) α6 = 35 6 = 6 = α6 0 F 35 Fo F F οότε η στατική δύναμη είναι..., F = F = α F ST n n n o

X ST, n F ST, n έτσι, το στατικό λάτος ου οφείλεται στην ειβολή στατικής δύναμης είναι: F α F ( ) X X X k k ST, n n o XST = Fo k ST, n = = ST, n = αn ST ❹ υολογισμό του συντελεστή δυναμικής ενίσχυσης... H n =... είναι: 1 ( 1 q ) n + ( ζ qn) ζ=0 H n = 1 ( 1 q ) n ❺ για κάθε n συνιστώσα ισχύει: και 8 ω = 3T και n q n Ω = nω Ω ω n = και Ω= T...

... q n Ω nω ω ω n = = = n T 6 = n qn = 0.75n 8 8 3T ❻ αό ❸... ❻ X n F 1 = αn o k ( 1 q ) n + ( ζ qn) λάτος της ταλάντωσης

για τον 1 ο όρο του ανατύγματος (σταθερός όρος): F ST = ( F ) o μέτρο της στατικής δύναμης αντίστοιχη συνιστώσα μόνιμης αόκρισης X για τον ο όρο του ανατύγματος: 0 F o = XST = k ( ) F F F ST, n = ST,1 = o για n=1 Ω 1 = 1Ω=Ω q = n q = n n= 1 0.75 1 0.75 1 ζ q 1 ζ = 0 ϑ1 = tan ϑ1 = 0 q1 = 0.75< 1 1 q1

οότε, το λάτος της αντίστοιχης συνιστώσας αόκρισης Χ 1 X Fo Fo F 1 1 1 k k k ( 1 q ) ( ) ( 1 0.565) 1 1 0.75 ST,1 1 = = = = Fo Fo 1 1 Fo 1 = = X 1 1.143 k 0.4375 k 0.4375 k (8/7) ομοίως για τα λάτη των υολοίων συνιστωσών αόκρισης...

έτσι, αό ❷... ❻ Πίνακας 1 ( 8 ) 7

ο λόγος των λατών Χ n= και Χ n=4 ( ) ( ) ( ) ( ) 8 8 15 = 15 = 1 1 60 60 3 η συμβολή του όρου n=4 είναι 3 φορές μικρότερη αό τη συμβολή του όρου n= η συμβολή των όρων n 4 είναι αμελητέα

συνολική μόνιμη αόκριση xt = X + X cos nω t ϑ ( ) ( ) ST n n n= 1 οφείλεται στο σταθερό όρο της F(t) οφείλεται στη n αρμονική συνιστώσα της F(t) αμελώντας όρους μικρής συμμετοχής ( ) + sin ( Ω ϑ ) + cos( 4Ω ϑ ) xt X X t X t ST 1 1 4 4... Πίνακας 1

... F 8 F 8 F xt t t k 7 k 15 k o o o ( ) = + sin ( Ω 0) cos( Ω ) ισχύει cos ( a ) = cos( a)...... F ( ) o 1 8 8 xt = sin ( t) cos( t) k + Ω + Ω 7 15... αόκριση συστήματος σε μόνιμη κατάσταση σύνθεση αρμονικών ταλαντώσεων γύρω αό...

Αρμονικές συνιστώσες του ανατύγματος της διέγερσης κατά Fourier 1, 1,0 0,8 0,6 Fo 1, 1,0 0,8 0,6 F o sin ( Ωt) 0,4 0,4 0, 0, 0,0 0,0-0, -0, -0,4-0,4-0,6 0 1 3 4 5 6 7 8 9 10 11-0,6 0 1 3 4 5 6 7 8 9 10 11 1, 1,0 0,8 0,6 0,4 F o cos 3 ( Ωt) 1, 1,0 0,8 0,6 0,4 F o cos 4 15 ( Ωt) 1, 1,0 0,8 0,6 0,4 F o cos 6 35 ( Ωt) 0, 0, 0, 0,0 0,0 0,0-0, -0, -0, -0,4-0,4-0,4-0,6 0 1 3 4 5 6 7 8 9 10 11-0,6 0 1 3 4 5 6 7 8 9 10 11-0,6 0 1 3 4 5 6 7 8 9 10 11

Ευχαριστώ για την ροσοχή σας! Εργαστήριο Δυναμικής & Κατασκευών Δρ. Αντωνιάδης Ι..... antogian@central.ntua.gr Δρ. Γιακόουλος Χ.... chryiako@central.ntua.gr