2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier
|
|
- Ιάνθη Παπαφιλίππου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier
2
3
4
5
6
7
8
9
10
11
12
13
14 Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή μιας οποιασδήποτε μορφής, περιοδικής ή όχι, μπορεί να περιγραφεί θεωρητικά ως το άθροισμα μιας απειροστής σειράς ημιτονικών και συνημιτονικών κυματομορφών (οι οποίες λέγονται αρμονικές).
15 Οι αρμονικές έχουν συγκεκριμένη συχνότητα και πλάτος και όλες μαζί, συναποτελούν την αρχική κυματομορφή. Όσο μεγαλύτερος αριθμός αρμονικών συναθροίζεται, τόσο πιο ακριβής γίνεται η ανασύσταση της αρχικής κυματομορφής
16 Τριγωνομετρική μορφή της σειράς Fourier Κάθε περιοδική κυματομορφή που περιγράφεται με την συνάρτηση: f t = f t + T μπορεί να αναπτυχθεί σε μια σειρά Fourier εφόσον πληροί τις συνθήκες του Dirichlet, οι οποίες συνοψίζονται ως εξής:
17 Τριγωνομετρική μορφή της σειράς Fourier Η συνάρτηση πρέπει να είναι συνεχής, στο διάστημα μιας περιόδου, ή να έχει πεπερασμένο πλήθος σημείων ασυνέχειας. Να έχει πεπερασμένη μέση τιμή στο διάστημα μιας περιόδου. Να έχει πεπερασμένο πλήθος μέγιστων και ελάχιστων.
18 Υπό τις προϋποθέσεις αυτές, η κυματομορφή μπορεί να γραφεί υπό την γενική μορφή μιας τριγωνομετρικής σειράς (που ονομάζεται και σειρά Fourier): f t = 1 2 a 0 + a 1 cos ωt + a 2 cos 2ωt + a 3 cos 3ωt + + b 1 sin ωt + b 2 sin 2ωt + b 3 sin 3ωt + Οι συντελεστές α n και b n λέγονται συντελεστές Fourier και μπορούν να υπολογιστούν από την κυματομορφή (από την συνάρτησή της).
19 Η περίοδος Τ = ω είναι η περίοδος της τριγωνομετρικής σειράς. Λέγεται και περίοδος της θεμελιώδους αρμονικής. Όλοι οι όροι της σειράς (οι αρμονικές της κυματομορφής δηλαδή) έχουν συχνότητες που είναι ακέραια πολλαπλάσια της συχνότητας ω της θεμελιώδους. Για τον υπολογισμό των συντελεστών α n πολλαπλασιάζουμε με cos nωt και ολοκληρώνουμε κατά μέλη για την διάρκεια μιας περιόδου, αμφότερα τα μέρη της συνάρτησης f t :
20 0 ω f t = 1 2 a 0 + a 1 cos ωt + a 2 cos 2ωt + a 3 cos 3ωt + f t cos nωt dt = + b 1 sin ωt + b 2 sin 2ωt + b 3 sin 3ωt + ω = 1 2 a 0 cos nωt dt + 0 ω + a 2 cos nωt 0 ω + a n cos 2 nωt 0 ω + b 2 cos nωt 0 a 1 0 ω cos 2ωt dt + a 3 dt + + b 1 cos nωt 0 sin 2ωt dt + b 3 ω 0 ω cos ωt dt cos nωt cos nωt 0 ω cos nωt cos 3ωt dt + sin ωt dt sin 3ωt dt +
21 Όλα τα ορισμένα ολοκληρώματα είναι 0, εκτός από το: α n 0 ω cos 2 nωt dt α = n x = ωt α n 0 ω =T cos 2 nωt dt = α n ωt Τ = α n 2 + sin2nτ 4n 0 2 sin2n0 4n = α n Τ = α n Τ 2 = α n Τ 2 + sin2nωt 4n 0 ω 2 = α n π ω
22 Αφού: α n 0 ω cos 2 nωt dt = π ω α n Άρα: a n = ω π 0 0 ω f t cos nωt dt = αn π ω f t cos nωt dt = 2 Τ 0 T ω f t cos nωt dt
23 Ο συντελεστής α 0 προκύπτει από τον συντελεστή α n για n=0. a 0 = ω π 0 Καθώς η τιμή ω f t cos 0ωt dt = 2 Τ 0 T f t dt 1 2 a 0 είναι η μέση τιμή της κυματομορφής στην διάρκεια μιας περιόδου, η τιμή του a 0 μπορεί να υπολογισθεί σχετικά εύκολα από την μορφή της κυματομορφής.
24 Για τον υπολογισμό των συντελεστών b n πολλαπλασιάζουμε αντίστοιχα με sin nωt και ολοκληρώνουμε κατά μέλη για την διάρκεια μιας περιόδου. Δηλαδή οι συντελεστέςb n θα είναι αντίστοιχα: b n = ω π 0 ω f t sin nωt dt = 2 Τ 0 T f t sin nωt dt
25 Μια άλλη μορφή των συντελεστών α n και b n με μεταβλητή ωt είναι η: α n = 1 π 0 f t cos nωt d ωt b n = 1 π 0 f t sin nωt d ωt
26 Στους ανωτέρω υπολογισμούς των συντελεστών η ολοκλήρωση για την διάρκεια μιας περιόδου, δεν είναι απαραίτητο να γίνεται από 0 έως Τ ή από 0 έως. Τα ίδια αποτελέσματα θα πάρουμε αν η ολοκλήρωση γίνει από Τ/2 έως 2/Τ, π έως π, ή σε οποιοδήποτε άλλο χρονικό διάστημα που αντιστοιχεί σε μια περίοδο.
27 Ή σειρά Fourier συγκλίνει ομοιόμορφα στη συνάρτηση, σε όλα τα σημεία συνέχειας, ενώ στα σημεία ασυνέχειας συγκλίνει στο ημιάθροισμα των τιμών της συνάρτησης από δεξιά και αριστερά.
28 Καθώς οι ημιτονοειδείς και συνημιτονοειδείς κυματομορφές με την ίδια συχνότητα, στην ουσία είναι ίδιες (έχοντας μια διαφορά φάσης), μπορούν να συνδυαστούν σε μία κυματομορφή (ημιτονοειδή ή συνημιτονοειδή) με μία διαφορά φάσης. Έτσι η σειρά Fourier, μπορεί να εκφρασθεί και με δύο άλλες μορφές, δηλαδή ως έκφραση μόνον ημιτονοειδών ή μόνον συνημιτονοειδών κυματομορφών:
29 f t = 1 2 a 0 + c n cos nωt θ n με όρους συνημιτονικούς f t = 1 2 a 0 + c n sin nωt + φ n με όρους ημιτονικούς Όπου: c n = a 2 n + b 2 n είναι το πλάτος της κυματομορφής θ n = tan 1 b n /a n είναι η φάση της αρμονικής φ n = tan 1 α n /b n είναι η φάση της αρμονικής
30 Εκθετική μορφή της σειράς Fourier Καθώς το ημίτονο και το συνημίτονο μπορούν να εκφρασθούν και σε εκθετική μορφή σύμφωνα μετους τύπους: cosωt = ejωt + e jωt 2 sinωt = ejωt e jωt 2j
31 Αντικαθιστώντας, μπορούμε να εκφράσουμε και κάθε όρο της σειράς Fourier σε εκθετική μορφή: f t = = a a e jωt + e jωt 1 2 e jωt e jωt + b 1 2j f t = + a 2 2 b 2 2j + a 2 e j2ωt + e j2ωt 2 + b 2 e j2ωt e j2ωt 2j e j2ωt + α 1 2 b 1 2j + + e jωt + α α b 1 2j e jωt + α b 2 2j e j2ωt +
32 Θέτουμε: ± b n 2j = ± jb n 2jj = jb n 2 Π.χ: a 2 2 b 2 2j = a jb 2 2 = 1 2 a 2 + jb 2 = A 2 a b 2 2j = a 2 2 jb 2 2 = 1 2 a 2 jb 2 = A 2 Α 0 = 1 2 α 0, Α n = 1 2 a n jb n, A n = 1 2 a n + jb n Και η εκθετική μορφή της σειράς Fourier γίνεται: f t = + a 2 2 b 2 2j α 2 e j2ωt + α 1 2 b 1 2j e jωt + α α b 1 e jωt + 2j 2 + b 2 e j2ωt + 2j = + A 2 e j2ωt + A 1 e jωt + A 0 + A 1 e jωt + A 2 e j2ωt +
33 Για να βρούμε τους συντελεστές Α n, πολλαπλασιάζουμε κατά μέλη με e jnωt και ολοκληρώνουμε σε διάστημα μιας περιόδου: f t = + A 2 e j2ωt + A 1 e jωt + A 0 + A 1 e jωt + A 2 e j2ωt + 0 = + + f t e jnωt d ωt = A 2 e j2nωt e jnωt d ωt + Α 0 e jnωt d ωt Α 1 e jnωt e jnωt d ωt Α 1 e jnωt e jnωt d ωt Α n e jnωt e jnωt d ωt +
34 f t = = f t e jnωt d ωt = A 2 e j2nωt e jnωt d ωt + Α 0 e jnωt d ωt Α 1 e jnωt e jnωt d ωt Α 1 e jnωt e jnωt d ωt e 0 = 1 Α n e jnωt e jnωt d ωt + Τα ολοκληρώματα στο δεξιό μέρος είναι 0 εκτός από το Αn d ωt, που είναι = Α n. 0
35 Άρα: 0 f t e jnωt d ωt = Α n Α n = 1 0 f t e jnωt d ωt ή με μεταβλητή το t Α n = 1 T 0 Tf t e jnωt dt Όπως και για τα α n και b n η ολοκλήρωση μπορεί να γίνει σε διάστημα μιας περιόδου και όχι απαραίτητα από 0 έως ή από 0 έως T.
36 Οι συντελεστές της τριγωνομετρικής σειράς Fourier μπορούν εύκολα να υπολογιστούν από τους συντελεστές Α n και Α n της εκθετικής μορφής: Α 0 = 1 2 α 0, Α n = 1 2 a n jb n, A n = 1 2 a n + jb n Α n + Α n = 1 2 α n jb n + a n + jb n = α n a n = Α n + Α n Α n Α n = 1 2 α n jb n a n jb n = 1 2 2jb n = jb n b n = j A n A n
37 Ο ρόλος της συμμετρίας της κυματομορφής στην σειρά Fourier Στην ανάπτυξη της σειράς Fourier, σημαντικό ρόλο παίζει η συμμετρία της κυματομορφής, κατά τρόπο ώστε ανάλογα με την συμμετρία- η σειρά μπορεί να έχει ή να μην έχει κάποιους από του όρους (π.χ. ημιτονικούς ή συνημιτονικούς). Η ιδιότητα αυτή, μιας κυματομορφής, διευκολύνει τον υπολογισμό της σειράς Fourier.
38 Ο ρόλος της συμμετρίας της κυματομορφής στην σειρά Fourier Τα διάφορα είδη των κυματομορφών ως προς την συμμετρία τους είναι: Άρτιας συμμετρίας Περιττής συμμετρίας Συμμετρίας ημιπεριόδου Συμμετρίας τετάρτου περιόδου
39 Άρτια συμμετρία Μια συνάρτηση f t καλείται άρτια αν ισχύει: f t = f t. Το συνημίτονο για παράδειγμα είναι άρτια συνάρτηση.
40 Άρτια συμμετρία To άθροισμα δύο ή περισσότερων άρτιων συναρτήσεων, είναι άρτια συνάρτηση. Με την πρόσθεση μιας σταθεράς συνιστώσας, η συνάρτηση παραμένει άρτια (σχήμα d). Οι άρτιες συναρτήσεις, είναι όλες συμμετρικές ως προς τον κατακόρυφο άξονα.
41 Κυματομορφές με άρτια συμμετρία
42 Περιττή συμμετρία Μια συνάρτηση f t είναι περιττή, αν ισχύει: f t = f t. Το ημίτονο για παράδειγμα είναι μια περιττή συνάρτηση.
43 Περιττή συμμετρία Το άθροισμα δύο η περισσότερων περιττών συναρτήσεων είναι περιττή συνάρτηση (b). Με την πρόσθεση μιας σταθεράς συνιστώσας, σε αντίθεση με το ότι συμβαίνει με την άρτια συμμετρία, η συνάρτηση παύει να είναι περιττή, γιατί η f t δεν είναι πλέον ίση με την f t. Το γινόμενο δύο περιττών συναρτήσεων είναι άρτια συνάρτηση.
44 Κυματομορφές με περιττή συμμετρία
45 Συμμετρία ημιπεριόδου Μια περιοδική συνάρτηση f t, λέμε ότι έχει συμμετρία ημιπεριόδου εάν ισχύει η σχέση: f t = f t + T/2, όπου Τ είναι η περίοδος. Δηλαδή αν η κυματομορφή μετακινηθεί κατά T/2 πάνω στον άξονα του χρόνου, θα γίνει ίση με το αντίθετο της κυματομορφής.
46 Κυματομορφές με συμμετρία ημιπεριόδου
47 Η αναφορά στην συμμετρία των κυματομορφών έχει ιδιαίτερη σημασία στην ανάλυσή τους κατά Fourier. Ανάλογα με την συμμετρία τους οι κυματομορφές έχουν τις ακόλουθες ιδιότητες: Αν η κυματομορφή είναι άρτια, τότε όλοι οι όροι της αντίστοιχης σειράς θα είναι μόνον συνημιτονοειδείς (α n ) και άρα δεν υπολογίζουμε τους ημιτονοειδείς όρους. Σταθερός όρος θα υπάρχει, αν η κυματομορφή έχει μέση τιμή διάφορη του μηδενός.
48 Αν η κυματομορφή είναι περιττή η σειρά έχει μόνον ημιτονοειδείς όρους (b n ). Ενδεχομένως μία κυματομορφή μπορεί να είναι περιττή, αν της αφαιρεθεί ο σταθερός όρος. Στην περίπτωση αυτή η σειρά Fourier περιέχει, εκτός από το σταθερό όρο, μόνο ημιτονοειδείς όρους.
49 Αν η κυματομορφή έχει συμμετρία ημιπεριόδου η σειρά θα έχει μόνον αρμονικές περιττής τάξεως (ημιτονοειδείς και συνημιτονοειδείς όρους), εκτός αν η συνάρτηση είναι παράλληλα περιττή η άρτια. Τα α n και b n είναι 0, για n = 2,4,6, για κάθε κυματομορφή με συμμετρία ημιπεριόδου.
50 Συνοψίζοντας: Άρτια: α n Περιττή: b n Ημιπεριόδου: Μόνο οι περιττές αρμονικές
51 Μερικές κυματομορφές μπορεί να είναι περιττές ή άρτιες, ανάλογα με την θέση του κατακόρυφου άξονα. Η τετραγωνική κυματομορφή (a) είναι άρτια [f t = f t ]. Η ίδια κυματομορφή μετατοπισμένη στον κατακόρυφο άξονα (b) μετατρέπεται σε περιττή, γιατί τότε θα ισχύει η σχέση: [f t = f t ].
52 Τετραγωνική κυματομορφή με άρτια και περιττή συμμετρία
53 Η θέση του οριζόντιου άξονα μπορεί επίσης να απλοποιήσει την σειρά της κυματομορφής. Για παράδειγμα, η κυματομορφή (a) δεν είναι περιττή συνάρτηση. Στην περίπτωση (b) με μετατοπισμένο τον οριζόντιο άξονα, τότε γίνεται περιττή συνάρτηση. Η αρχική δηλαδή θα γίνει περιττή, αφού της αφαιρεθεί η συνεχής συνιστώσα, ή διαφορετικά, θα έχει έναν σταθερό όρο και τους ημιτονοειδείς μόνον.
54
55 Όλα τα ανωτέρω που ορίστηκαν για την σειρά Fourier των κυματομορφών, ανάλογα με την συμμετρία τους, ισχύουν και για την εκθετική μορφή της σειράς. Μια άρτια κυματομορφή περιέχει μόνο συνημιτονοειδείς όρους στην τριγωνομετρική της σειρά και άρα οι συντελεστές της εκθετικής σειράς είναι καθαρά πραγματικοί αριθμοί. Μια περιττή συνάρτηση που η τριγωνομετρική της σειρά αποτελείται από ημιτονοειδείς όρους έχει καθαρά φανταστικούς συντελεστές στην εκθετική της σειρά.
56 Γραμμικό φάσμα κυματομορφής Εάν παραστήσουμε πάνω στους άξονες x,y τα πλάτη των αρμονικών της σειράς Fourier μιας κυματομορφής, τότε η αποτύπωση αυτή λέγεται γραμμικό φάσμα. Γενικώς, οι χαμηλές αρμονικές έχουν μεγαλύτερα πλάτη από τις υψηλότερες, ενώ τα πλάτη μικραίνουν γρήγορα για κυματομορφές, με σειρές που συγκλίνουν γρήγορα.
57 Γραμμικό φάσμα κυματομορφής Όταν οι κυματομορφές έχουν ασυνέχειες (όπως η πριονωτή, η τετραγωνική, η τριγωνική, κ.λ.π.), τότε τα φάσματά τους έχουν αρμονικές των οποίων τα πλάτη μειώνονται αργά, καθώς οι σειρές τους έχουν αξιόλογες υψηλές αρμονικές. Γενικότερα οι κυματομορφές που έχουν ασυνέχειες, δηλαδή παρουσιάζουν απότομες εναλλαγές, για να περιγραφούν, απαιτούν υψηλές αρμονικές.
58 Γραμμικό φάσμα κυματομορφής Αντίθετα οι σειρές κυματομορφών χωρίς ασυνέχειες και γενικά χωρίς απότομες μεταβολές, συγκλίνουν γρήγορα και μερικές μόνο αρμονικές είναι αρκετές για να αποδώσουν ικανοποιητικά την κυματομορφή. Αυτή η γρήγορη σύγκλιση φαίνεται από το γραμμικό φάσμα, όταν τα πλάτη των αρμονικών ελαττώνονται γρήγορα ώστε πέρα από την 5 η και 6 η αρμονική να είναι ασήμαντα. Οι διαπιστώσεις αυτές θα γίνουν πιο εμφανείς και κατανοητές στα παραδείγματα που θα ακολουθήσουν.
59 Παραδείγματα υπολογισμού της σειράς Fourier σε κυματομορφές f t = 10 ωt ή ακόμα f t = 10 Τ t = 5t με Τ = 2 sec ή ω = Τ = π = 3, 14 r/sec Η κυματομορφή είναι περιττή αν αφαιρεθεί η συνεχής συνιστώσα DC=5 v
60 Για 0 < ωt < ή κυματομορφή είναι συνεχής και δίνεται από την f t = 10 ωt. Σε ένα μεγαλύτερο διάστημα έχει σημεία ασυνέχειας στα ωt = n, όπου n = 0,1,2, Οι συνθήκες Dirichlet ικανοποιούνται.
61 a n = 2 Τ 0 T f t cos nωt dt = 2 Τ 0 T5t cos nωt dt a 0 = t cos 0ωt dt = 5 2t dt = 5 t = 10 Δηλαδή η μέση τιμή της κυματομορφής θα είναι: a 0 2 = 5
62 Οι συντελεστές α n : = a n = 1 10 ωt cos nωt dωt = π 0 ωt cos nωt dωt = 10 ωt 2 n 0 sin nωt Δηλαδή η σειρά δεν θα έχει όρους συνημιτόνων (αφού είναι περιττή).
63 Οι συντελεστές b n : b n = 1 10 ωt sin nωt dωt π 0 = 10 2 ωt sin nωt dωt 0 = 10 2 ωt n cos nωt + 1 sin nωt n2 0 = [ + 0] = 2nπ2 πn 0
64 Δηλαδή η σειρά Fourier θα έχει σταθερό και ημιτονικούς όρους: f t = 5 10 π 10 4π sinωt 10 sin4ωt = 5 10 π n=1 10 sin2ωt 3π sin3ωt sin nωt Στο ίδιο αποτέλεσμα θα οδηγηθούμε αν αναπτύξουμε την εκθετική σειρά Fourier της κυματομορφής. n
65 x = ωt a = jn Α n = 1 0 = 10 2 = ωt e jnωt d ωt = ωt. e jnωt jn e jnωt jn 2 e jnωt jn 2 0 jnωt = = 10 n 2 ωt e jnωt d ωt jn ωt. e jnωt e jnωt jn 2 j 2 jnωt 1 e jnωt jn 2 0 = 10 n 2 e jnωt jnωt = 10 n 2 e jn jn = 10 n 2 jn = 10 n 2 10 jn = j n 0 e ±jn = cos n ± jsin n = 1 ± j0 = 1 1
66 Η εκθετική μορφή της f(t) θα είναι, σύμφωνα με την σχέση που υπολογίστηκε: f t = + A 2 e j2ωt + A 1 e jωt + A 0 + A 1 e jωt f t = j 10 4π e j2ωt j 10 e jωt + 5 +j 10 ejωt + j 10 4π ej2ωt + Α n = j 10 n Μπορούμε από τα A n και A n να υπολογίσουμε την τριγωνομετρική μορφή της σειράς:
67 Οι συντελεστές των συνημιτινοειδών όρων της τριγωνομετρικής σειράς είναι: α n = A n + A n = j 10 n + j 10 n = 0 Άρα η τριγωνομετρική σειρά δεν έχει συνημιτονοειδείς όρους, αφού α n = 0 για κάθε n. Οι συντελεστές των ημιτονοειδών όρων: b n = j A n A n = j j 10 n j 10 n = 10 πn
68 Α 0 = ωt ωt e j0ωt d ωt = ωt d ωt = = =5 Η μέση τιμή είναι 5 και η σειρά είναι: f t = 5 10 π 10 4π sinωt 10 sin4ωt = 5 10 π n=1 10 sin2ωt 3π sin3ωt sin nωt Όπως υπολογίστηκε και με την άλλη μέθοδο n
69 Γραμμικό φάσμα κυματομορφής Η αποτύπωση, πάνω στους άξονες, των αρμονικών με τα πλάτη τους, καλείται γραμμικό φάσμα. Πλάτη Αρμονικές
70 Γραμμικό φάσμα πριονωτής κυματομορφής
71 Εάν επιλέξουμε την εκθετική μορφή της σειράς Fourier, τότε οι όροι θα έχουν συχνότητες +nω και nω και το πλάτος της αρμονικής τάξεως n θα είναι το άθροισμα των δύο πλατών για + nω και για nω.
72 Στο φάσμα βρίσκουμε γραμμές πλάτους 10 για n = 2 και n = +2. 4π Αν τις προσθέσουμε, βρίσκουμε το πραγματικό πλάτος της αρμονικής 2, που είναι το ίδιο με το πλάτος που βρήκαμε πριν: 10 Α n = j 10 n
73 Γραμμικό φάσμα πριονωτής κυματομορφής
74 Ανασύσταση της πριονωτής κυματομορφής με 5 αρμονικές+dc
75 Είναι προφανές πως όσο περισσότερες αρμονικές συνεισφέρουν στην ανασύσταση της κυματομορφής, τόσο βελτιώνεται και προσεγγίζει στην αρχική. Στα σημεία ασυνέχειας η σειρά συγκλίνει στο ημιάθροισμα των ορίων της συναρτήσεως από δεξιά και αριστερά. Στην περίπτωσή μας, στο 0 και στο, η σειρά έχει τιμή 5 (όσο ο σταθερός όρος δηλαδή), γιατί εκεί, όλοι οι ημιτονοειδείς και συνημιτονοειδείς όροι είναι 0. Αυτά είναι τα σημεία ασυνέχειας και η τιμή της συνάρτησης σ αυτά είναι 10, όταν πλησιάζουμε από αριστερά, και 0 όταν πλησιάζουμε από δεξιά, με μέση τιμή 5.
2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier
2.1 2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 Εισαγωγή Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια της μεθόδου Fourier συνίσταται στο ότι μία κυματομορφή μιας οποιασδήποτε
Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό
2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα
Σειρές Fourier. Σειρές Fourier. Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Μία συνάρτηση f() είναι περιοδική με περίοδο όταν ισχύει f(+)=f(). Η ελάχιστη δυνατή περίοδος λέγεται και θεμελιώδης
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
HMY 220: Σήματα και Συστήματα Ι
HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε
Τετραγωνική κυματομορφή συχνότητας 1 Hz
Τετραγωνική κυματομορφή συχνότητας 1 Hz Η κυματομορφή, στην γενική της μορφή θα είναι : V 0 2 3 ωt -V Η κυματομορφή είναι εριττή Η κυματομορφή, όως φαίνεται εύκολα αό το σχήμα, έχει μέση τιμή μηδενική,
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος
Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe
Άρτιο και Περιττό μέρος Συνάρτησης Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας e και μιας περιττής συνάρτησης, ως εξής: Αν e και,
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε
Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
. Σήματα και Συστήματα
Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες
Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού
Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα.
Αόριστο ολοκλήρωμα Αντιπαράγωγος μίας συνάρτησης f() ορισμένης σε ένα διάστημα [α,β] λέγεται κάθε συνάρτηση F() που επαληθεύει την ισότητα F( ) f ( ) F( ) c επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Άσκηση 1 Προσδιορίστε τη Σειρά Fourier (δηλαδή τους συντελεστές πλάτους A n και φάσης φ n ) του παρακάτω
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν
Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =
Οι σειρές Fourier. Eισαγωγικές Επισημάνσεις
παραρτημα Α Οι σειρές Fourier Μέρος (Ι) Eισαγωγικές Επισημάνσεις Ο Γάλλος μαθηματικός Jean Baptist Fourier μελετώντας την διάδοση της θερμότητας στα στερεά σώματα και στην προσπάθειά του να δώσει σε κλειστή
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εκθετική Ορισμοί & Ιδιότητες Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης
Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός
Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ. xt A t A t A t t
Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ Θεωρήστε ένα σήµα συνεχούς χρόνου το οποίο είναι άθροισµα συνηµιτονικών όρων της µορφής () = cos( ω + ϕ ) + cos
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)
Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Καθηγητής Τσιριγώτης Γεώργιος
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Καθηγητής Τσιριγώτης Γεώργιος Τα κεφάλαια του μαθήματος 1 ο κεφάλαιο: Σήματα & Συστήματα 2 ο κεφάλαιο: Ανάλυση Fourier 3 ο κεφάλαιο: Απόκριση κατά συχνότητα 4 ο κεφάλαιο: Δειγματοληψία
Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,
κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει
Πρόβλημα 22. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Laplace u + u = 0, 1 < < 1, 1 < < 1, u(, 1) = f(), u(, 1) = 0, u( 1, ) = 0, u(1, ) = 0. α) Σωστό ή λάθος; Αν f( ) = f() είναι
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στις Τηλεπικοινωνίες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος Κανάτας
1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ
. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,
Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 1: Σήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Σήματα Διακριτού Χρόνου Εισαγωγή Διαφορές Αναλογικής Ψηφιακής Επεξεργασίας Παραγωγή Ψηφιακών
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1 / 55
ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 55 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών α Μετασχηματισμός
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ
Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
Εναλλασσόμενο και μιγαδικοί
(olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας
2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης
ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ. 1. Το περιεχόμενο του μαύρου κουτιού. 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση. (απλά ηλεκτρικά στοιχεία)
ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία) 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση 2019Κ1-1 ΚΥΜΑΤΟΜΟΡΦΕΣ 2019Κ1-2 ΤΙ
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου
ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων
ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ
Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Αναπαράσταση Σημάτων και Συστημάτων στο πεδίο της συχνότητας + Περιεχόμενα n Εισαγωγή n Ανάλυση Fourier n Μετασχηματισμός
ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ Μάθημα: Επικοινωνίες ΙΙ. Εξεταστική Περίοδος: B Θερινή, 14 Σεπτεμβρίου 2009. ΕΙΣΗΓΗΤΗΣ: Αναστάσιος Παπατσώρης Θέμα 1 ο (25 μονάδες) Ένα ADSL modem λειτουργεί με ταχύτητα downloading
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες εξελίσσονται γύρω από την ίδια δέση ισορροπίας Έστω ότι ένα σώμα εκτελεί ταυτόχρονα δύο απλές
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:
ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΘΡΑΚΗΣ Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Εργαστήριο
ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΘΡΑΚΗΣ Τμήμα Μηχανικών Πληροφορικής Τ.Ε ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Εργαστήριο Καθηγητής: Τσιριγώτης Γεώργιος Καβάλα, 2014 1 ΕΙΣΑΓΩΓΗ ΣΤΟ SIMULINK Το MATLAB 1 είναι ένα μαθηματικό λογισμικό,
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT
ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 55 2 / 55 3 / 55 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών
Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.
Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.
3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ
3. 3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. Εισαγγή Στην μελέτη τν συστημάτν, μία από τις μεθόδους που χρησιμοποιούνται είναι η απόκριση κατά συχνότητα ή η συχνοτική απόκριση. Η μέθοδος αυτή μελετά την συμπεριφορά
1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας
Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση Συχνότητας Ευρείας Ζώνης Εύρος ζώνης μετάδοσης διαμορφωμένων κατά γωνία σημάτων Παραγωγή σημάτων FM + Περιεχόμενα
Μερικές Διαφορικές Εξισώσεις
Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 14-15, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: Πρόβλημα 1. Για κάθε μια από τις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.
Θεώρημα δειγματοληψίας
Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες
Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση
Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Digital Image Processing
Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή
Κεφάλαιο 6 : Φασματική Ανάλυση Σημάτων Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 6 : Φασματική Ανάλυση Σημάτων Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Φασματική Αάλ Ανάλυση Περιοδικών Σημάτων (Μιγαδικέςδ έ Σειρές
Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή
Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Μία ειδική κατηγορία διδιάστατων δυναμικών συστημάτων είναι τα λεγόμενα συντηρητικά συστήματα. Ο όρος προέρχεται από την μηχανική, όπου για υλικό σημείο που δέχεται δύναμη
Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Περιοδικά
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Μια μαθηματική συνάρτηση f(t) χαρακτηρίζεται ως εναλλασσόμενη όταν: Όταν η τιμή παίρνεις θετικές και αρνητικές τιμές (εναλλάσσεται) σε σχέση με το χρόνο. Όταν η εναλλαγή
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 1: Σήματα και Συστήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μέρος 1: Σήματα Συνεχούς Χρόνου 2 Σήματα Συνεχούς Χρόνου 1. Κατηγορίες Σημάτων
ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER έκδοση DΥΝI-FAN_2016b
Ευαισθησία πειράµατος (Signal to noise ratio = S/N) ιάρκεια πειράµατος (signal averaging)) ιάρκεια 1,38 1,11 0,28 5,55. (h) πειράµατος.
Γιατί NMR µε παλµούς; Ευαισθησία πειράµατος (Signal to noise ratio = S/N) ιάρκεια πειράµατος (signal averaging)) Πυρήνας Φυσική αφθονία (%) ν (Hz) Ταχύτητα σάρωσης (Hz/s) Αριθµός σαρώσεων 1 Η 99,985 1000
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 1, Μέρος 2ο: ΠΕΡΙ ΣΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ
ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου
ΜΕΡΟΣ Α: Απαραίτητε γνώσει
ΜΕΡΟΣ Α: Απαραίτητε γνώσει 1. ΠΑΡΟΥΣΙΑΣΗ Ο παλμογράφο είναι η συσκευή που μα επιτρέπει να βλέπουμε γραφικά διάφορε κυματομορφέ τάση.υπάρχουν διαφορετικά είδη παλμογράφων ανάλογα με τον κατασκευαστή και
Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε
Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42
Κεφάλαιο 1: Κινηματική των Ταλαντώσεων
Κεφάλαιο : Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων. Φαινομενολογικός ορισμός ταλαντώσεων Μεταβολές σε φυσικά φαινόμενα που χαρακτηρίζονται από μια κανονική επανάληψη κατά ορισμένα
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη η Τα Σήματα στις Τηλεπικοινωνίες
X(e jω ) = x[n]e jωn (1) x[n] = 1. T s
Αναπαράσταση Σημάτων και Συστημάτων στο Χώρο της Συχνότητας Ο Μετασχηματισμός Fourier Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό
u = x t t = t 0 = T = x u = = s t = = s u = u bat 1 + T c = 343 m/s 273
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Φυσική Ι Χειµερινό Εξάµηνο 5 ιδάσκων : Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : //5 Ηµεροµηνία Παράδοσης : 7//5 Σηµείωση : Επιτρέπεται
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
Εφαρμογή στις ψηφιακές επικοινωνίες
Δειγματοληψία Εφαρμογή στις ψηφιακές επικοινωνίες Γεννήτρια σήματος RF, (up converter Ενισχυτής) Προενισχυτής down-converter Ψηφιοποιητής σήματος RF Μονάδα ψηφ. επεξεργασίας Μονάδα ψηφ. επεξεργασίας 100