ΗΔΛΑ Γ (25 μξμάδεπ) Γ4. E 3 Λξμάδεπ 6. ΤΔΚΞΣ 1ηπ ΑΟΞ 2 ΣΔΚΘΔΔΣ

Σχετικά έγγραφα
ζρήκα 1 β τπόπορ (από σύγκπιση τπιγώνων):

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΗΑΓΩΝΗΜΑ ΣΖ ΓΔΩΜΔΣΡΗΑ 38. Ύλη: Σρίγωνα, Παράλληλες εσθείες, Παραλληλόγραμμα-Σραπέζια

Γεσκεηξία Α Λπθείνπ Καζεγεηήο: Υαηδόπνπινο Μάθεο Δπαλαιεπηηθά θύιια εξγαζίαο

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ ΠΑΡΑΛΛΗΛΕ ΕΤΘΕΙΕ

Γεωμεηρία Α Λσκείοσ Κεθάλαιο 4ο Παράλληλες εσθείες

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

=90º ) κε πιεπξέο α, β, γ. Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη (ii) 4α, 4β, 3γ.

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14

ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ Θέμα Α ( Α1 =10, Α2 = 15 ) 1) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ

ΚΕΦΑΛΑΙΟ Γείμηε όηη : ΡΑ ΡΒ ΡΓ 2 ΒΑ.

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.

Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ

ΚΕΦΑΛΑΙΟ 6 ο ΥΗΜΑΣΑ ΕΓΓΕΓΡΑΜΜΕΝΑ Ε ΚΤΚΛΟ ΕΓΓΕΓΡΑΜΜΕΝΕ ΓΧΝΙΕ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

ΘΔΜΑ 1 ο Μονάδες 5,10,10

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΜΔΣΡΙΚΔ ΥΔΔΙ ΣΑ ΟΡΘΟΓΩΝΙΑ ΣΡΙΓΩΝΑ

Κεφάλαιο 3o. Γεωμετρία Α Λσκείοσ

: :

Ευκλείδεια Γεωμετρία Α τάξης Γενικού Λυκείου ΓΩΝΗΔ

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017

ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ. Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ

ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

x x 15 7 x 22. ΘΔΜΑ Α 3x 2 9x 4 3 3x 18x x 5 y 9x 4 Α1. i. . Η ιύζε είλαη y y x 3y y x 3 2x 6y y x x y 6 x 2y 1 y 6

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ. Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας 1-2

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

4) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα θύθινο πνπ ζα ζρεδηάδεη έλα θύθιν. Λύζε Γηα θύθινο ζηθ επαλάιαβε 360 [κπ 1 δε 1] ηέινο

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )

α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ

Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά

Εξίσωση ευθείας. ) θαη Β( 1,


ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1

Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.

Ενδεικτικά Θέματα Στατιστικής ΙΙ

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Εθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr

B1. Η ζπλάξηεζε f είλαη ζπλερήο θαη παξαγσγίζηκε ζην 0,, σο πειίθν παξαγσγίζηκσλ. 1 x ln x ln x x ln x. x x x x. f x ln x 0 ln x 1 x e

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικά Κύμαηα Αρμομικό Κύμα - Φάζη. Οκτώβρης Διδάζκωμ: Καραδημηηρίοσ Μιτάλης

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. z2. Να απνδεηρζεί όηη:

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α)

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΠΑΓΚΤΠΡΙΟ ΔΙΑΓΩΝΙΜΟ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η.

ΣΥΠΥΔΑ. ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων. www. sypyda.gr

ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ

Επαναληπτικές Ασκήσεις

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ

ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΛΤΔΙ ΓΙΑΓΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

Πλξήγηρη ρςξ διαδίκςσξ

Phishing s. Τι είναι και Τρόποι αντιμετώπιςησ τουσ. Ευςταθίου Κωνςταντίνοσ. Λαμπιδονίτη Χριςτίνα. Απρίλιοσ, Λευκωςία

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ. Σωςήοηπ Σ. Τοιυάπ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ. Α θαη Β Γεληθνύ Λπθείνπ. ε 3. ε 2. Γ ε 1

Transcript:

ΑΠΧΖ 1ηπ ΣΔΚΘΔΑΣ ΟΠΞΑΓΩΓΘΙΔΣ ΔΝΔΤΑΣΔΘΣ ΟΔΠΘΞΔΞΥ ΛΑΘΞΥ ΘΞΥΜΘΞΥ 2011 1 Ξ ΓΔΜΘΙΞ ΚΥΙΔΘΞ. ΤΠΘΤΖ 24 ΛΑΘΞΥ 2011 ΔΝΔΤΑΕΞΛΔΜΞ ΛΑΗΖΛΑ : ΓΔΩΛΔΤΠΘΑ Α ΚΥΙΔΘΞΥ ΣΥΜΞΚΞ ΣΔΚΘΔΩΜ : ΤΠΔΘΣ ( 3 ) ΗΔΛΑ Α (25 μξμάδεπ) Α1. Να απξδείνεςε όςι ςα εταπςόμεμα ςμήμαςα πξσ άγξμςαι από ρημείξ εκςόπ κύκλξσ είμαι ίρα μεςανύ ςξσπ. Λξμάδεπ 10 A2. Δώρςε ςξμ ξοιρμό ςηπ διακέμςοξσ (ρυήμα ποξαιοεςικό) Λξμάδεπ 3 Α3. Να απαμςήρεςε ρςιπ ακόλξσθεπ ποξςάρειπ με Σ ή Κ αμ κάθε ποόςαρη είμαι ρωρςή ή λάθξπ αμςίρςξιυα. α) Τξ ξοθόκεμςοξ είμαι ςξ ρημείξ ςξμήπ ςχμ διυξςόμχμ ρςξ ςοίγχμξ Λξμάδεπ 3 β) Τξ κσοςό ςεςοάπλεσοξ με όλεπ ςιπ πλεσοέπ ςξσ ίρεπ είμαι πάμςξςε ςεςοάγχμξ Λξμάδεπ 3 γ) Τξ βαούκεμςοξ εμόπ ςοιγώμξσ, απέυει από κάθε κξοστή ςξσ ςα ¾ ςξσ μήκξσπ ςηπ αμςίρςξιυηπ διαμέρξσ Λξμάδεπ 3 δ) Οι βάρειπ ςξσ ςοαπέζιξσ μπξοξύμ μα είμαι ίρεπ Λξμάδεπ 3 ΗΔΛΑ Β (25 μξμάδεπ) Δίμεςαι ςσυαίξ ςοίγχμξ ΑΒΓ. Φέοξσμε ςιπ διαμέρξσπ ΒΜ και ΓΝ και ρςιπ ποξεκςάρειπ ςξσπ παίομξσμε εσθύγοαμμα ςμήμαςα ΜΔ=ΒΜ και ΝΔ=ΓΝ. Να απξδείνεςε όςι: Β1. ΑΔ=ΒΓ Λξμάδεπ 10 Β2. ΑΔ = ΒΓ Λξμάδεπ 10 Β3. Τξ Α είμαι μέρξ ςξσ ΔΔ Λξμάδεπ 5 ΗΔΛΑ Γ (25 μξμάδεπ) Δίμεςαι παοαλληλόγοαμμξ ΑΒΓΔ με 90 και ΑΒ = 2ΒΓ. Θεχοξύμε ςξ ύφξπ ΓΔ ποξπ ςημ πλεσοά ΑΔ και ςα μέρα Μ και Ν ςχμ πλεσοώμ ΔΓ και ΑΒ αμςίρςξιυα, όπχπ ταίμεςαι ρςξ ρυήμα. Να απξδείνεςε όςι : Γ1. Τξ ςεςοάπλεσοξ ΑΝΜΔ είμαι οόμβξπ. Λξμάδεπ 6 Γ2. Τξ ΜΔΑΝ είμαι ιρξρκελέπ ςοαπέζιξ. Λξμάδεπ 6 Γ3. Η ΔΝ είμαι διυξςόμξπ ςηπ γχμίαπ ΜΔΑ. Λξμάδεπ 7 Γ4. E 3 Λξμάδεπ 6 ΤΔΚΞΣ 1ηπ ΑΟΞ 2 ΣΔΚΘΔΔΣ

ΑΠΧΖ 2ηπ ΣΔΚΘΔΑΣ ΗΔΛΑ Δ (25 μξμάδεπ) Δίμεςαι ξοθξγώμιξ ΑΒΓΔ (ΑΒ > ΑΔ) με A B 30. Αμ Π, Κ και Μ μέρα ςχμ ΟΔ, ΟΓ και ΑΒ αμςίρςξιυα, όπχπ ταίμεςαι ρςξ ρυήμα ςόςε μα απξδείνεςε όςι: Δ1. Τξ ςοίγχμξ ΔΟΑ είμαι ιρόπλεσοξ. Λξμάδεπ 6 Δ2. Τξ ςοίγχμξ AΠΒ είμαι ξοθξγώμιξ. Λξμάδεπ 4 Δ3. Τξ ΑΠΚΜ είμαι οόμβξπ. Λξμάδεπ 6 Δ4. Αμ ςα υχοιά Αλικαμάπ, Οηγαδάκια, Ιαςαρςάοι και Βξσγιάςξ βοίρκξμςαι ρςα ρημεία Α, Π, Κ, Β αμςίρςξιυα, ςόςε ιραπέυξσμ από ςημ Λπόυαλη πξσ βοίρκεςαι ρςξ ρημείξ Μ. Λξμάδεπ 5 Δ5. AM O AM 2 Λξμάδεπ 4 ΞΔΖΓΘΔΣ (για ςξσπ ενεςαζξμέμξσπ) 1. Γοάφςε ςξ ξμξμαςεπώμσμό ραπ ρςξ επάμχ μέοξπ ςχμ τχςξαμςιγοάτχμ ςα ξπξία θα παοαδώρεςε μαζί με ςξ γοαπςό ρςξ ςέλξπ ςηπ ενέςαρηπ. 2. Να γοάφεςε ςιπ απαμςήρειπ ραπ μόμξ με μπλε ή μαύοξ ρςσλό. 3. Τα ρυήμαςα μπξοξύμ μα γίμξσμ και με μξλύβι. 4. Να απαμςήρεςε ρε όλα ςα θέμαςα. 5. Διάοκεια ενέςαρηπ : Δσξ ( 2 ) ώοεπ. 6. Χοόμξπ δσμαςήπ απξυώοηρηπ : Μιρή ώοα από ςημ έμαονη. Καλή επιτυχία και καλό καλοκαίρι!! Ξ Διεσθσμςήπ Ξι ειρηγηςέπ ΤΔΚΞΣ 2ηπ ΑΟΞ 2 ΣΔΚΘΔΔΣ

Δλδεηθηηθέο Λύζεηο Πξναγσγηθώλ εμεηάζεσλ Μαΐνπ Ινπλίνπ Δπηκέιεηα: Χαηδόπνπινο Μάθεο Θέμα Α Α1. Γείηε απόδεημε ζηελ ζειίδα 62 Θεώπημα ΙΙ Α2. Γείηε ζειίδα 63 (νξηζκόο ή ζρήκα είλαη δεκτά, πόζν κάιινλ θαη ηα δύο) Α3. Λ, Λ, Λ, Λ (δειαδή όια ιάζνο) Θέμα Β Β1. Από ζύγθξηζε ηξηγώλσλ ΑΔΝ θαη ΒΝΓ έρνπκε: ΒΝ = ΝΑ (Ν κέζν ΑΒ) (Μνλάδεο 3) ΝΓ = ΝΔ (δεδνκέλν) (Μνλάδεο 3) ˆ ˆ (σο θαηαθνξπθήλ) (Μνλάδεο 3) 1 2 άξα από ην θξηηήξην Π Γ Π παίξλνπκε ΑΔ = ΒΓ (Μνλάδεο 1) Β τπόπορ: Το ΔΑΓΒ είναι παραλληλόγραμμο αθού οι διαγώνιες διτοηομούνηαι, άρα οι απένανηι πλεσρές είναι ίζες, δηλαδή ΔΑ = ΒΓ Β2. Όκνηα από ηελ ηζόηεηα ηξίγσλσλ ΑΜΓ θαη ΜΒΓ Β τπόπορ: Τν ΑΓΓΒ είλαη παξαιιειόγξακκν κε αλάινγν ζθεπηηθό Β3. Από ηηο πξνεγνύκελεο ζρέζεηο παίξλνπκε ΑΔ = ΑΓ (Μνλάδεο 3), προσοχή δελ καο θηάλεη γηα λα ζπκπεξάλνπκε όηη ην Α είλαη κέζν ηνπ ΔΓ, πξέπεη λα απνδείμνπκε όηη είλαη θαη ζηελ ίδηα επζεία (δηλ. ηα Γ, Α, Δ είναι ζσνεσθειακά (Μονάδες 2))! Α τπόπορ: Θα δείξοςμε ότι η γωνία ΔΑΓ είναι 180 0 Έρνπκε δηαδνρηθά, ˆ ˆ ˆ ˆ ˆ ˆ ˆ 180 * *: Από ηην ιζόηηηα ηων παραπάνω ηριγώνων έτοσμε και ηις γωνίες ηοσς ίζες, δηλαδή ˆ ˆ ˆ ˆ Β τπόπορ: Από ηνλ β ηρόπο ησλ εξσηεκάησλ Β1 θαη Β2 έρνπκε, ΑΔ // ΒΓ (ιόγσ παξαιιεινγξάκκνπ) θαη ΑΓ // ΒΓ, όκσο από ην 5ν αμίσκα παξαιιειίαο από ζεκείν εθηόο επζείαο δηέξρεηαη κνλαδηθή παξάιιειε πξνο απηή, άξα ηα Γ, Α, Δ είλαη ζπλεπζεηαθά. Δπνκέλσο, ην Α είλαη κέζν ηνπ ΓΔ 0

Θέμα Γ Γ1. Τν ΑΝΜΓ είλαη ηεηξάπιεπξν κε δύν απέλαληη πιεπξέο ίζεο θαη παξάιιειεο (Μονάδες 4) (ηηο ΑΝ θαη ΜΓ), άξα είλαη παξαιιειόγξακκν θαη επεηδή ΑΓ = ΓΜ είλαη ξόκβνο (δύν δηαδνρηθέο πιεπξέο ίζεο) (Μονάδες 2) Γ2. Θα δείμνπκε όηη: ΜΝ // ΑΔ (δύν απέλαληη πιεπξέο παξάιιειεο) (Μνλάδεο 2) ΜΔ = ΑΝ (νη κε παξάιιειεο πιεπξέο ίζεο) (Μνλάδεο 2) ME / / AN (θαη νη άιιεο πιεπξέο δελ είλαη παξάιιειεο) (Μνλάδεο 2) Έρνπκε, ΜΝ // ΑΓ (από ηνλ ξόκβν) άξα ΜΝ // ΑΔ Σην οπθογώνιο τπίγωνο ΔΓΓ ε ΔΜ είλαη δηάκεζνο νξζνγσλίνπ, άξα παίξλνπκε από γλσζηή πξόηαζε : ΜΔ = ΓΓ/2 δειαδή ΜΔ = ΓΜ = ΑΝ (όμοια από ηον ρόμβο ΑΝΜΓ) Η ΔΜ ηέκλεη ηελ ΓΓ (ζην Μ), όκσο ε ΓΓ είλαη παξάιιειε ηεο ΑΒ άξα θαη ηεο ΑΝ, άξα ε ΔΜ ηέκλεη θαη ηελ ΑΝ, δειαδή ME / / AN Γ3. Θα δείξοςμε ότι: AEN ˆ NEM ˆ Αξρηθά ην ηξίγσλν ΜΔΝ είλαη ηζνζθειέο αθνύ ΔΜ = ΜΝ (=ΓΜ =ΑΓ από ξόκβν θαη δηάκεζν νξζνγσλίνπ) άξα ENM ˆ NEM ˆ (1) (Μονάδες 4) Δπίζεο AEN ˆ ENM ˆ (2) από εληόο ελαιιάμ ησλ παξαιιήισλ ΑΔ, ΜΝ κε ηεκλόκελε ηελ ΔΝ, άξα από (1) θαη (2) παίξλνπκε ην δεηνύκελν (Μονάδες 3) Γ4. Θα δείξοςμε ότι: E 3 Παίξλνπκε ην Α κέινο θαη έρνπκε δηαδνρηθά, E ENM ˆ MNB ˆ MEN ˆ Aˆ (από ηηο παξάιιειεο ΝΜ θαη ΑΓ θαη ην ηζνζθειέο ηξίγσλν ΜΔΝ) (Μνλάδεο 2) MEN ˆ AEM ˆ (από ην ηζνζθειέο ηξαπέδην) (Μονάδες 2) MEN ˆ 2MEN ˆ 3MEN ˆ (από ηελ ΔΝ δηρνηόκνο ηεο γσλίαο AEM ˆ ) (Μονάδες 2) Θέμα Γ Γ1. Τν ηξίγσλν ΓΟΑ είλαη ηζνζθειέο (αθνύ νη δηαγώληεο είλαη ίζεο θαη δηρνηνκνύληαη) θαη ε γσλία ΑΓΒ είλαη 60 0, άξα είλαη ην ηξίγσλν ΓΟΑ είλαη ηζόπιεπξν. Γ2. Αθνύ ΑΠ είλαη δηάκεζνο (ην Π είλαη κέζν ηεο ΓΟ από ηα δεδνκέλα) θαη ηζόπιεπξν (δειαδή ηζνζθειέο από όιεο ηηο θνξπθέο) ζα είλαη θαη ύςνο, δειαδή ε ΑΠ είλαη θάζεηε ζηελ ΒΓ. Γ3. Τν ΠΚ ελώλεη ηα κέζα ησλ ΟΓ θαη ΟΓ άξα είλαη παξάιιειν ζηελ ΓΓ (άξα θαη ζηελ ΑΒ) θαη ίζε κε ην κηζό ηεο, δειαδή, / / / / άξα είλαη παξαιιειόγξακκν αθνύ δύν απέλαληη πιεπξέο 2 2 είλαη ίζεο θαη παξάιιειεο (Μονάδες 3).

Δπίζεο, ζην νξζνγώλην ηξίγσλν ΠΑΒ ε γσλία ˆ 30 0 άξα από γλσζηή πξόηαζε παίξλνπκε ΑΠ = ΑΒ/2 δειαδή ΑΠ = ΑΜ, άξα δύν δηαδνρηθέο πιεπξέο ίζεο, άξα ην ηεηξάπιεπξν είλαη παξαιιειόγξακκν (Μονάδες 3). Γ4. Αξθεί λα απνδείμνπκε όηη, ΑΜ = ΠΜ = ΚΜ = ΒΜ, δειαδή κε ιίγα ιόγηα ηα Α, Π, Κ, Β είλαη νκνθπθιηθά (ζηνλ ίδην θύθιν). (Μνλάδεο 2) Τν ΠΑ = ΑΜ = ΠΜ από ηνλ ξόκβν ΑΠΚΜ θαη ην ηζόπιεπξν ηξίγσλν ΠΑΜ (Μον 2) Τν ΚΒ = ΒΜ = ΚΜ από ηνλ ξόκβν ΠΚΒΜ (γηα ηνλ ίδην ιόγν) θαη ην ηζόπιεπξν ηξίγσλν ΜΚΒ (Μον 2) Δπίζεο ΠΑ = ΠΚ = ΚΒ, από ηνπο ξόκβνπο, άξα ηα πξώηα κέιε είλαη ίζα, άξα θαη ηα δεύηεξα θαη έπεηαη ην δεηνύκελν (Μονάδες 1) Γ5. Θα δείμνπκε όηη: ΟΠ < ΑΜ και (Μνλάδεο 2) ΑΜ / 2 < ΟΠ (Μνλάδεο 2) Έρνπκε, Θέινπκε λα απνδείμνπκε όηη ΟΠ < ΑΜ, αξθεί λα απνδείμνπκε όηη ΟΠ < ΠΚ πνπ απηό είλαη πξνθαλέο από ην ηξίγσλν ΠΟΚ, κε ηελ γσλία ΠΟΚ λα είλαη ακβιεία (120 0 ) άξα θαη ε απέλαληη πιεπξά λα είλαη ε κεγαιύηεξε γσλία ηνπ ηξηγώλνπ Δθαξκόδνπκε ηελ ηξηγσληθή αληζόηεηα ζην ηξίγσλν ΑΟΒ θαη έρνπκε, ΑΒ < ΑΟ + ΟΒ (Μνλάδα 1) 2 2 2 (Μνλάδα 1) 2