ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΛΤΔΙ ΓΙΑΓΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2
|
|
- Μέλαινα Βικελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΙΑ ΛΤΔΙ ΙΑΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2 1: Λάζος (είλαη ηζνζθειήο ππεξβνιή) Α2: Λάζος (ην ζεηηθό πξόζεκν ζεκαίλεη όηη ε Πνζνζηηαία Μεηαβνιή Δηζνδήκαηνο θαη ε Πνζνζηηαία Μεηαβνιή Πνζόηεηαο ήηαλ πξνο ηελ ίδηα θαηεύζπλζε. Μπνξεί θαη ηα δύν λα κεηώζεθαλ) Α3:Λάζος. Μηα Φεξξάξη θαη κηα Πόξζε είλαη ππνθαηάζηαηα κεηαμύ ηνπο αιιά θαη ηα δύν γηα ηελ ζπληξηπηηθή πιεηνςεθία ησλ θαηαλαισηώλ είλαη θαλνληθά αγαζά. Α4: Λάζος. Α5: Λάζος (ην αξλεηηθό πξόζεκν ζεκαίλεη όηη ε Πνζνζηηαία Μεηαβνιή Σηκήο θαη ε Πνζνζηηαία Μεηαβνιή Πνζόηεηαο ήηαλ πξνο ηελ αληίζεηε θαηεύζπλζε. Αλ ε Σηκή κεηώζεθε, ε Εεηνύκελε Πνζόηεηα ζα έρεη απμεζεί) Α6: Λάζος (Αλ θαη απηή είλαη κηα πηζαλή πεξίπησζε, ην ηειηθό απνηέιεζκα εμαξηάηαη από ηελ επαηζζεζία ησλ θαηαλαισηώλ ζε κεηαβνιέο ηεο ηηκήο (ε D ) θαη από ηελ επαηζζεζία ησλ θαηαλαισηώλ ζε κεηαβνιέο εηζνδήκαηνο (ε Τ ) ). Α7: σζηέο απαληήζεηο είλαη νη α θαη β 1 2 Σν α είλαη αδύλαηνλ λα ζπκβεί: Μείσζε ηεο ηηκήο νδεγεί ζε αύμεζε ηεο δεηνύκελεο πνζόηεηαο. Μείσζε ηνπ εηζνδήκαηνο νδεγεί ζε αύμεζε ηεο δήηεζεο (ζε θαηώηεξν αγαζό) νπόηε, κε ζηαζεξή πιένλ ηελ ηηκή, έρνπκε πεξαηηέξσ αύμεζε ηεο πνζόηεηαο. αξρ ηει Σν β είλαη αδύλαηνλ λα ζπκβεί. Δίλαη ελάληηα ζηνλ λόκν ηεο δήηεζεο.
2 2 1 Σν γ δελ είλαη αδύλαηνλ λα ζπκβεί: Αύμεζε ηεο ηηκήο νδεγεί ζε κείσζε ηεο δεηνύκελεο πνζόηεηαο. Αύμεζε ηεο ηηκήο ππνθαηάζηαηνπ από ηελ άιιε, νδεγεί ζε αύμεζε ηεο δήηεζεο νπόηε, κε ζηαζεξή πιένλ ηελ ηηκή, έρνπκε αύμεζε ηεο πνζόηεηαο. Ζ ηειηθή πνζόηεηα ινηπόλ, κπνξεί λα είλαη ίδηα κε ηελ αξρηθή ηα ην δ: Μείσζε ηνπ εηζνδήκαηνο νδεγεί ζε αύμεζε ηεο δήηεζεο (ζε θαηώηεξν αγαζό) νπόηε, κε ζηαζεξή ηελ ηηκή, έρνπκε κεγαιύηεξε πνζόηεηα. Άξα, ε ζπλνιηθή δαπάλε ζίγνπξα ζα είλαη κεγαιύηεξε από ηελ αξρηθή Α Β D Σν ε κπνξεί λα ζπκβεί εαλ ην αγαζό έρεη ειαζηηθή δήηεζε. 1 2
3 Α8: δ Α Β D Α9: Σν β (αύμεζε αξηζκνύ θαηαλαισηώλ δελ επηδξά ζηελ αηνκηθή θακπύιε δήηεζεο) θαη ην γ (ε κείσζε ηηκήο απμάλεη ηελ δεηνύκελε πνζόηεηα, θαη όρη ηελ δήηεζε) είλαη νη ζσζηέο απαληήζεηο. Α10: δ Β1: ζτοι. βηβιίο: ε ζσκπερηθορά ηοσ θαηαλαιωηή (οιόθιερε ε παράγραθος) Β2: D 21: Ζ ζπλνιηθή δαπάλε είλαη κέγηζηε ζην κέζνλ κηαο επζείαο θακπύιεο δήηεζεο. Οπόηε ν παξαγσγόο πξέπεη λα ζέζεη ηηκή ίζε κε 300 ρξ.κνλ. Σόηε νη θαηαλαισηέο ζα δεηάλε 1500 κνλάδεο ηνπ αγαζνύ θαη ηα ζπλνιηθά έζνδα ηνπ παξαγσγνύ ζα είλαη 300 x 1500 = : ε επζεία θακπύιε δήηεζεο, ν ιόγνο Q/ ζα ηζνύηαη κε ηνλ ζπληειεζηή δηεύζπλζεο β, κεηαμύ νπνησλδήπνηε 2 ζεκείσλ. Q 1 1 Θέινπκε ε D = Q 1 Q1 = 400 Οπόηε Q 1 = = P1 1 Άξα ειαζηηθόηεηα ίζε κε -2 έρνπκε ζην ζεκείν: = 400, Q= 1000.
4 Από ηε ζεσξία γλσξίδνπκε πσο ειαζηηθόηεηα δήηεζεο σο πξνο ηελ ηηκή ίζε κε 0 έρνπκε ζην ζεκείν όπνπ ε ηηκή είλαη κεδέλ, άξα ζην ζεκείν = 0, Q= ΟΜΑΑ Από ηα δεδνκέλα, θαηαζθεπάδνπκε ην αθόινπζν δηάγξακκα: Πξνζέμηε όηη από ην ζεκείν Α ζην ζεκείν Β ε δήηεζε κεηώλεηαη γηαηί απμάλεηαη ην εηζόδεκα θαη ην αγαζό είλαη θαηώηεξν (Δ Τ αξλεηηθή). Δ Τ= -2 ΠΜ= -25% Δ D= -3,5 Q Q 80 Ξέξνπκε όηη P 2 = /100 = 15 Δπίζεο μέξνπκε όηη ε ηειηθή ζπλνιηθή δαπάλε (ζην ) είλαη ίζε κε ηελ αξρηθή ζπλνιηθή δαπάλε (ζην Α ε νπνία ηζνύηαη κε Q = = 1600 ) απμεκέλε θαηά 12,5%. Άξα ζην : = ,5/100 = ,125 = Όκσο ε ζην ηζνύηαη κε 15 Q. Άξα 15 Q = 1800 Q = 120. Από απηά, ζπκπεξαίλνπκε όηη ηειηθά ην δηάγξακκα καο ζηελ πξάμε έρεη ηελ εμήο κνξθή:
5 ΠΜ= -25% 20 Δ Τ= -2 Δ D= -3,5 15 Q Αθνύ γλσξίδνπκε ηελ ειαζηηθόηεηα σο πξνο ηελ ηηκή κεηαμύ Β θαη κπνξνύκε λα βξνύκε ηελ πνζόηεηα ζην Β: Q 1 ε D = -3,5 3, 5 Q Q , 5 Q = 64 Q Καη από ηνλ ηύπν ηεο εηζνδεκαηηθήο ειαζηηθόηεηαο, βξίζθνπκε ηελ πνζνζηηαία κεηαβνιή ηνπ εηζνδήκαηνο κεηαμύ Α θαη Β: Q ε Τ = % 2 2 ΠΜΤ = 10% (ΠΜ = πνζνζηηαία κεηαβνιή) ΟΜΑΑ Από ηελ εθθώλεζε θαηαιαβαίλνπκε όηη ε αηνκηθή ζπλάξηεζε δήηεζεο θαζελόο θαηαλαισηή είλαη ηζνζθειήο ππεξβνιή κε κνξθή: = = Ζ αγνξαία ζπλάξηεζε δήηεζεο γηα 1000 θαηαλαισηέο κε παλνκνηόηππε ζπκπεξηθνξά ζα είλαη: Μ = 1000 Q DM Αθνύ ε αγνξαία δεηνύκελε πνζόηεηα είλαη θηιά, ε ηηκή ηελ νπνία έρεη ζέζεη ν παξαγσγόο είλαη: = 2500 Αλ ε ηηκή κεηαβιεζεί ζε , ε αγνξαία δεηνύκελε πνζόηεηα ζα γίλεη:
6 Q DM Q DM Ζ γξαθηθή απεηθόληζε ησλ παξαπάλσ είλαη ε αθόινπζε: Β D Μ Ζ ζπλνιηθή δαπάλε ζηελ αξρηθή ηηκή (ζεκείν Α) είλαη: = = ελώ ε ζπλνιηθή δαπάλε ζηελ ηειηθή ηηκή (ζεκείν Β) είλαη: = = Ζ ειαζηηθόηεηα δεηήζεσο ηόμνπ σο πξνο ηελ ηηκή κεηαμύ ησλ δύν ζεκείσλ είλαη: ε Dηόμνπ = Q 1 2 Q Q Ζ κνλαδηαία ειαζηηθόηεηα επαιεζεύεη ην όηη θαζώο απμάλνπκε ηελ ηηκή από ην ζεκείν Α ζην ζεκείν Β, ε ζπλνιηθή δαπάλε (ζπλνιηθά έζνδα ηνπ παξαγσγνύ) δελ κεηαβάιιεηαη. Ήηαλ αλακελόκελν όηη ε ειαζηηθόηεηα ηόμνπ ζα πξνθύςεη ίζε κε κείνλ 1 εθόζνλ ε ζπγθεθξηκέλε θακπύιε δήηεζεο είλαη ηζνζθειήο ππεξβνιή θαη, σο γλσζηόλ, ζε κηα ηζνζθειή ππεξβνιή ε ειαζηηθόηεηα δήηεζεο κεηαμύ δύν νπνησλδήπνηε ζεκείσλ είλαη ίζε κε κείνλ 1.
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο
ΑΡΥΗ 1Η ΕΛΘΔΑ ΟΜΑΓΑ Α
ΑΡΥΗ 1Η ΕΛΘΔΑ ΑΠΟΛΤΣΖΡΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΩΡΗΑ ΜΑΘΖΜΑ ΔΠΗΛΟΓΖ ΓΗΑ ΟΛΔ ΣΗ ΚΑΣΔΤΘΤΝΔΗ ΤΝΟΛΟ ΔΛΗΓΩΝ: ΔΞΗ (6) Γ ΣΑΞΖ ΟΜΑΓΑ Α Για ηιρ παπακάηυ πποηάζειρ
ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ
ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ ΝΚΑΓΑ Α ΔΡΩΣΖΔΗ ΩΣΟΤ- ΙΑΘΟΤ 1. Γηα έλα αγαζό όηαλ ε ζηαζεξά γ είλαη ίζε κε ην κεδέλ ηόηε ε θακπύιε πξνζθνξάο δηέξρεηαη από ηελ αξρή ηωλ αμόλωλ.
ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.
Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε
ΚΟΗΝΧΝΗΚΟ ΦΡΟΝΣΗΣΖΡΗΟ ΓΖΜΟΤ ΑΓΗΟΤ ΓΖΜΖΣΡΗΟΤ (Κ.Φ.Α.Γ.)
ΚΟΗΝΧΝΗΚΟ ΦΡΟΝΣΗΣΖΡΗΟ ΓΖΜΟΤ ΑΓΗΟΤ ΓΖΜΖΣΡΗΟΤ (Κ.Φ.Α.Γ.) ΔΞΔΣΑΣΗΚΖ ΠΔΡΗΟΓΟ ΓΔΚΔΜΒΡΗΟΤ 2016 ΗΑΝΟΤΑΡΗΟΤ 2017 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ Τρίτη 3 Ιανουαρίου 2017 ΘΔΜΑ Α Θ Δ Μ Α Σ Α ΟΜΑΓΑ ΠΡΧΣΖ
α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο
Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν
(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
ΑΠΑΝΣΖΔΗ ΣΟ ΜΑΘΖΜΑ ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΩΡΗΑ (15/6/2018)
www.romvos.edu.gr ΑΠΑΝΣΖΔΗ ΣΟ ΜΑΘΖΜΑ ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΩΡΗΑ (15/6/2018) ΘΔΜΑ Α Α1. α. ωζηό β. Λάζνο γ. Λάζνο δ. ωζηό ε. ωζηό Α2. γ Α3. β ΘΔΜΑ Β Β1. Μεηαβοιή κόλο ζηε δεηούκελε ποζόηεηα Ζ δεηνύκελε πνζόηεηα
Αρχές Οικονομικής Θεωρίας
Αρχές Οικονομικής Θεωρίας Ομάδα Α: Ερωτήσεις Σωστού- Λάθους Α.1. Σπκθέξεη ηνπο παξαγσγνύο ε αύμεζε ηεο πξνζθνξάο ελόο αγαζνύ, όηαλ ε θακπύιε δήηεζεο είλαη ηεο κνξθήο Q D = 600 Α.2. Σηε βξαρπρξόληα πεξίνδν,
Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ
Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο
Απάληεζε: Λάθορ (2 ο κεθάλαιο)
ΘΔΜΑ Α ΑΡΧΕ ΟΙΙΚΟΝΟΜΙΙΚΗ ΘΕΩΡΙΙΑ ΑΠΑΝΣΗΕΙΙ ΠΑΝΕΛΛΗΝΙΙΩΝ 204 ΟΜΑΓΑ ΠΡΩΤΗ Α. Να ταρακηηρίζεηε ηις προηάζεις ποσ ακολοσθούν ως Σωζηές ή Λανθαζμένες α. Όηαλ ην νξηαθό πξντόλ κεηώλεηαη, αξρίδεη ζπγρξόλσο λα
ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις
ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou
f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
ΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 15/03/2015 ΟΜΑΔΑ Α
ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 15/03/2015 ΟΜΑΔΑ Α Για τις παρακάτω προτάσεις από Α.1. μέχρι και Α.5. να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς, και
ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ
ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ: /0/03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΔΜΑ Α ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑΣΩΝ Α.
Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:
Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε
Παπαγωγόρ Καμπύλερ Κόζηοςρ
Παπαγωγόρ Καμπύλερ Κόζηοςρ 1 Δίδη καμπσλών κόζηοσς Μηα θακπύιε ζπλνιηθνύ θόζηνπο είλαη ε γξαθηθή απεηθόληζε ηεο ζπλάξηεζεο ηνπ ζπλνιηθνύ θόζηνπο ηεο επηρείξεζεο. Μηα θακπύιε κεηαβιεηνύ θόζηνπο είλαη ε
x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό
ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
ΕΘΡΑΓΩΓΗ Ρ ΗΜ ΟΞΚΘΘΙΗ ΞΘΙΞΜΞΛΘΑ
1 Λ Η Λ Α Ι Ξ Θ Μ Ω Μ Θ Ξ Κ Ξ Γ Θ Α Ρ Α Ι Α Δ Η Λ Α Ϊ Ι Ξ Ε Ξ Ρ 2 0 1 1-2 0 1 2 Α Ε Ν Α Λ Η Μ Ξ ΕΘΡΑΓΩΓΗ Ρ ΗΜ ΟΞΚΘΘΙΗ ΞΘΙΞΜΞΛΘΑ Λ Ε Π Ξ Ρ Α Ε Ο Α Λ Α Θ Η Λ Α Α Λ Θ Ι Π Ξ Ξ Θ Ι Ξ Μ Ξ Λ Θ Ι Η Ρ Ξριζμοί:
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
Κεθάιαην 20. Ελαχιστοποίηση του κόστους
Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν
ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ. β. Η θαηάιπζε είλαη εηεξνγελήο, αθνύ ν θαηαιύηεο είλαη ζηεξεόο ελώ ηα αληηδξώληα αέξηα (βξίζθνληαη ζε δηαθνξεηηθή θάζε).
ΔΗΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΣΔΚΝΩΝ ΔΛΛΖΝΩΝ ΔΞΩΣΔΡΗΚΟΤ ΚΑΗ ΣΔΚΝΩΝ ΔΛΛΖΝΩΝ ΤΠΑΛΛΖΛΩΝ ΠΟΤ ΤΠΖΡΔΣΟΤΝ ΣΟ ΔΞΩΣΔΡΗΚΟ ΑΒΒΑΣΟ 8 ΔΠΣΔΜΒΡΗΟΤ 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΥΖΜΔΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΘΔΜΑ Α Α1. α Α2.
1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη
ΛΤΜΔΝΔ ΑΚΖΔΗ ΣΖΝ ΔΤΡΔΖ ΑΡΥΗΚΖ ΦΑΖ 1. Η αιή αξκνληθή ηαιάλησζε ν εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη ιάηνο Α = cm θαη ζρλόηεηα f = 5 Hz. Τε ρξνληθή ζηηγκή = ην κηθξό ζώκα δηέξρεηαη αό ηε ζέζε ανκάθξλζεο
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή
ΥΡΟΝΣΙΣΗΡΙΟ ΜΕΗ ΕΚΠΑΙΔΕΤΗ Ο Μ Η Ρ Ο Σ
ΠΑΝΔΛΛΑΓΙΚΔ ΔΞΔΣΑΔΙ Γ ΣΑΞΗ ΗΜΔΡΗΙΟΤ ΓΔΝΙΚΟΤ ΛΤΚΔΙΟΤ ΚΑΙ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΗ 25 ΜΑΪΟΤ 2016 ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΔΠΙΛΟΓΗ ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΟΜΑΔΑ ΠΡΩΤΗ Α.1 α. Σωςτό β. Λάκοσ γ. Σωςτό
ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ
ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΦΤΛΛΟ ΕΡΓΑΙΑ (Θεοδώρα Γιώηη, Νικόλας Καραηάζιος- Τπεύθσνη εκ/κος Λ. Παπαηζίμπα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:.., ΗΜΕΡΟΜΗΝΙΑ:.// Σε ακαμίδην πνπ κπνξεί λα θηλείηαη ρσξίο ηξηβέο πάλσ
Ενδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
ΟΜΑΓΑ Α. Α1 Έλαο από ηνπο βαζηθόηεξνπο πξνζδηνξηζηηθνύο παξάγνληεο ηεο πξνζθνξάο είλαη ν παξάγνληαο ρξόλνο. Μονάδες 2
ΑΡΧΖ 1Ζ ΔΛΗΓΑ Γ ΤΑΞΗ ΟΑΜΕΚΚΑΔΘΙΕΡ ΕΝΕΑΡΕΘΡ Γ ΑΝΗΡ ΗΛΕΠΗΡΘΞΣ ΓΕΜΘΙΞΣ ΚΣΙΕΘΞΣ ΟΕΛΟΗ 14 ΘΞΣΜΘΞΣ 2018 ΕΝΕΑΖΞΛΕΜΞ ΛΑΘΗΛΑ: ΑΠΤΕΡ ΞΘΙΞΜΞΛΘΙΗΡ ΘΕΩΠΘΑΡ ΟΠΞΡΑΜΑΞΚΘΡΛΞΣ ΡΣΜΞΚΞ ΡΕΚΘΔΩΜ: ΟΕΜΕ (5) ΟΜΑΓΑ Α Για ηιρ παπακάηυ
ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)
. Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
B1. Η ζπλάξηεζε f είλαη ζπλερήο θαη παξαγσγίζηκε ζην 0,, σο πειίθν παξαγσγίζηκσλ. 1 x ln x ln x x ln x. x x x x. f x ln x 0 ln x 1 x e
8 45 38. Θ Ε Μ Α Β B. Η ζπλάξηεζε είλαη ζπλερήο θαη παξαγσγίζηκε ζην,, σο πειίθν παξαγσγίζηκσλ ζπλαξηήζεσλ κε παξάγσγν: ln ln ln ln ln (),. ln ln ln ln ln ln ln ln ln () () ()= Από ηνλ παξαπάλσ πίλαθα
Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:
1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.
Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων Είμαζηε ηυχεροί που είμαζηε δάζκαλοι 58 Β Λςκείος Γεν. Παιδείαρ 9-11-2014 Θέμα 1 ο : 1. Γύν ζεηηθά θνξηία πνπ βξίζθνληαη ζε απόζηαζε
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β)
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.
Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο
Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ: 1. Η ηαιάλησζε είλαη
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ - ΦΥΕ 0 7 Ινπλίνπ 009 Απαντήσειρ στιρ ασκήσειρ τηρ τελικήρ εξέτασηρ στιρ Σςνήθειρ Διαυοπικέρ Εξισώσειρ Αγαπηηέ θοιηηηή/ηπια,
Ο Νόκνο ηεο Φ/Α ηζρύεη κόλν ζηε καθξνρξόληα πεξίνδν παξαγωγήο θαη εμεγεί ηελ πνξεία
Αρχές Οικονομικθς Θεωρίας Καιηγητθς, Παναγιώτης Φουτσιτζθς, Οικονομολόγος. Κευάλαιο: Παραγωγή Κόστος Παραγωγής Προτάσεις Σωστού / Λάθοσς 1 Καζώο κεηαβάιιεηαη ε παξαγωγή ην κέζν ζηαζεξό θόζηνο κεηαβάιιεηαη.
Θέμα Α. Θέμα Β. Α.1 - γ Α.2 - δ Α.3 - γ Α.4 - α Α.5 α. Σ β. Λ γ. Λ δ. Λ ε. Σ
ΠΑΝΕΛΛΑΔΘΚΕ ΕΞΕΣΑΕΘ Γ ΣΑΞΗ ΗΜΕΡΗΘΟΤ ΓΕΝΘΚΟΤ ΛΤΚΕΘΟΤ ΔΕΤΣΕΡΑ 30 ΜΑΪΟΤ 016 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΥΗΜΕΘΑ ΠΡΟΑΝΑΣΟΛΘΜΟΤ (ΝΕΟ ΤΣΗΜΑ) (Ενδεικηικές Απανηήζεις) Θέμα Α Α.1 - γ Α. - δ Α.3 - γ Α.4 - α Α.5 α. Σ β.
Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.
ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ
(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη
x x x x tan(2 x) x 2 2x x 1
ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ
Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
ΑΡΧΗ 1Η ΕΛΘΔΑ ΟΜΑΓΑ Α. Η πξνζθνξά ελόο αγαζνύ είλαη κεγαιύηεξε ζηε καθξνρξόληα πεξίνδν, απ όηη είλαη ζηε βξαρπρξόληα πεξίνδν.
ΑΡΧΗ 1Η ΕΛΘΔΑ ΑΠΟΛΤΣΖΡΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΩΡΗΑ ΜΑΘΖΜΑ ΔΠΗΛΟΓΖ ΓΗΑ ΟΛΔ ΣΗ ΚΑΣΔΤΘΤΝΔΗ ΤΝΟΛΟ ΔΛΗΓΩΝ: ΠΔΝΣΔ (5) Γ ΣΑΞΖ ΟΜΑΓΑ Α Για ηιρ παπακάηυ
x x 15 7 x 22. ΘΔΜΑ Α 3x 2 9x 4 3 3x 18x x 5 y 9x 4 Α1. i. . Η ιύζε είλαη y y x 3y y x 3 2x 6y y x x y 6 x 2y 1 y 6
ΑΠΑΝΣΗΔΙ ΜΑΘΗΜΑ ΑΛΓΔΒΡΑ Β ΛΤΚΔΙΟΤ ΗΜ/ΝΙΑ 4 ΟΚΣΩΒΡΙΟΤ 08 ΓΙΑΡΚΔΙΑ ΩΡΔ ΘΔΜΑ Α Α i 9 4 8 8 5 5 9 4 9 4 9 4 9 4 9 4 4 Η ύζε είλαη,, 6 6 6 5 7 0 5 Γηα 5 ε εμίζωζε 7 Η ύζε είλαη,, 5 γίλεηαη : 5 7 5 7 i 4 4 4
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ
ΠΡΟΣΤΠΟ ΠΕΙΡΑΜΑΣΙΚΟ ΛΤΚΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟΤ ΠΑΣΡΩΝ 1
ΠΑΝΕΠΙΣΗΜΙΟΤ ΠΑΣΡΩΝ 1 ΕΡΕΤΝΗΣΙΚΗ ΕΡΓΑΙΑ Α ΣΕΣΡΑΜΗΝΟΤ > Τπεύθυνοι Εκπ/κοί Φύττας Γεώργιος φαέλος Ιωάννης ΠΑΝΕΠΙΣΗΜΙΟΤ ΠΑΣΡΩΝ 2 ΠΑΝΕΠΙΣΗΜΙΟΤ ΠΑΣΡΩΝ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.
Ονομαηεπώνυμο: Μάθημα: Υλη: Δπιμέλεια διαγωνίζμαηος: Αξιολόγηζη :
Ονομαηεπώνυμο: Μάθημα: Υλη: Δπιμέλεια διαγωνίζμαηος: Αξιολόγηζη : Θέμα Α. Σηιρ επωηήζειρ πολλαπλήρ επιλογήρ πος ακολοςθούν ζημειώζηε ζηο γπαπηό ζαρ ηον απιθμό ηηρ επώηηζηρ και δίπλα ηην ένδειξη ηηρ ζωζηήρ
ΥΔΣΙΚΟΣΗΣΑ Μεηαζρεκαηηζκνί Γαιηιαίνπ. (Κιαζηθή ζεώξεζε) v t. αθνύ ζύκθσλα κε ηα πεηξάκαηα Mickelson-Morley είλαη c =c.
ΥΔΣΙΚΟΣΗΣΑ Μεηαζρεκαηηζκνί Γαιηιαίνπ. (Κιαζηθή ζεώξεζε) y y z z t t Σν νπνίν νδεγεί ζην όηη = - π.(άηνπν), αθνύ ζύκθσλα κε ηα πεηξάκαηα Mikelson-Morley είλαη =. Δπίζεο y = y, z = z, t = t Σν νπνίν ( t
Δσζμενές διαηαρατές και Ονομαζηικό-πραγμαηικό επιηόκιο
Δσζμενές διαηαρατές και Ονομαζηικό-πραγμαηικό επιηόκιο Copyright 2009 Pearson Education, Inc. Publishing as Prentice Hall Macroeconomics, 5/e Olivier Blanchard 1 of 43 IS-LM: Μηχανισμός προσαρμογής μετά
ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ Θέμα Α ( Α1 =10, Α2 = 15 ) 1) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ
ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ 06 ΣΑΞΖ : Β ΖΜ/ ΝΗΑ : 9 05 06 ΜΑΘΖΜΑ : Μαζεκαηηθά Καηεύζπλζεο Θέμα Α ( Α =0, Α = 5 ) ) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ i. Αλ ηόηε ii. iii. Οη επζείεο x x, y y
ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ..
ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ.. ΘΔΜΑ Α Σηηο εκηηειείο πξνηάζεηο Α.1 Α.4 λα γξάςεηε ζην ηεηξάδην ζαο ηνλ αξηζκό ηεο πξόηαζεο θαη, δίπια, ην γξάκκα πνπ αληηζηνηρεί ζηε θξάζε ε νπνία ηε ζπκπιεξώλεη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα
ΜΑΘΗΜΑΣΑ ΦΩΣΟΓΡΑΦΙΑ. Ειζαγωγή ζηη Φωηογραθία. Χριζηάκης Σαζεΐδης EFIAP
ΜΑΘΗΜΑΣΑ ΦΩΣΟΓΡΑΦΙΑ Ειζαγωγή ζηη Φωηογραθία Χριζηάκης Σαζεΐδης EFIAP 1 ΜΑΘΗΜΑ 6 ο Προγράμμαηα θωηογραθικών μηχανών Επιλογέας προγραμμάηων Μαο δίλεη ηε δπλαηόηεηα λα ειέγμνπκε ην άλνηγκα δηαθξάγκαηνο θαη
1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird
1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1.1 Εγκαηάζηαζη ηυν οδηγών ηηρ έξςπνηρ κάπηαρ ζηο λογιζμικό Mozilla Thunderbird
Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΚΑΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΓΔΤΣΔΡΑ 5 ΜΑΪΟΤ 5 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ:ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΖ & ΣΔΥΝΟΛΟΓΗΚΖ ΚΑΣΔΤΘΤΝΖ ΑΠΑΝΣΖΔΗ ΘΔΜΑ Α Α. Σρνιηθό βηβιίν
Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ
Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ
ΠΛΗ36. Άσκηση 1. Άσκηση 2. Οη δηεπζύλζεηο ησλ 4 σλ ππνδηθηύσλ είλαη νη αθόινπζεο. Υπνδίθηπν Α: 10.101.1.64/27 Υπνδίθηπν Β: 10.101.1.
Άσκηση 1 ΠΛΗ36 1. Η κόλε πεξίπησζε λα έρνπκε ζύγθξνπζε κεηαμύ παθέησλ ησλ δύν θόκβσλ είλαη λα ζηείιεη ν δεύηεξνο πξηλ πξνιάβεη λα πιεξνθνξεζεί γηα ηελ θαηάιεςε ηνπ δηάπινπ από ηνλ άιιν. Από ηε ζηηγκή πνπ
66. Ομογενής ράβδος ποσ περιζηρέθεηαι
1 66. Ομογενής ράβδος ποσ περιζηρέθεηαι Λεπηή νκνγελήο ξάβδνο Α κήθνπο L=1 θαη κάδαο Μ=Kg, κπνξεί λα ζηξέθεηαη ζε θαηαθόξπθν επίπεδν ρωξίο ηξηβέο γύξω από νξηδόληην άμνλα πνπ πεξλά από ην άθξν ηεο Α. Σην
ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις
ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις Ο Δηζνδεκαηίαο Σην ηειεπαηρλίδη «Ο Δηζνδεκαηίαο» ν Αξλανύηνγινπ γηα πξώηε θνξά δίλεη δύν επηινγέο: Να πάξεηο 50.000 Δπξώ θάζε ρξόλν
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό
ΑΠΑΝΣΖΔΗ ΟΜΑΓΑ ΠΡΩΣΖ. Απόδειξη. Έζησ όηη ε γεληθή κνξθή ηεο ζπλάξηεζεο πξνζθνξάο είλαη: Q S =γ+δρ. Από ηνλ ηύπν ηεο ειαζηηθόηεηαο πξνζθνξάο, έρνπκε:
4 [Α]. ΔΡΩΣΖΔΗ ΩΣΟΤ-ΛΑΘΟΤ [1]. ΩΣΟ [2]. ΛΑΘΟ [3]. ΩΣΟ [4]. ΛΑΘΟ [5]. ΩΣΟ ΑΠΑΝΣΖΔΗ ΟΜΑΓΑ ΠΡΩΣΖ [Β]. ΔΡΩΣΖΔΗ ΠΟΛΛΑΠΛΖ ΔΠΗΛΟΓΖ [1]. α) [2]. γ) Απόδειξη Έζησ όηη ε γεληθή κνξθή ηεο ζπλάξηεζεο πξνζθνξάο είλαη:
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ στα ΚΕΦΑΛΑΙΑ 1.2 και 1.3 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΗΜΕΡΟΜΗΝΙΑ : ΘΕΜΑ 1 A. Να δηαηππώζεηε ην δεύηεξν λόκν ηνπ Νεύησλα κε ιόγηα θαη λα γξάςεηε ηελ αληίζηνηρε καζεκαηηθή ζρέζε (ηύπν) πνπ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.
Διαςτήματα εμπιςτοςφνησ για την ευθεία παλινδρόμηςησ
Διαςτήματα εμπιςτοςφνησ για την ευθεία παλινδρόμηςησ Έλαο από ηνπο βαζηθνύο ζηόρνπο ηεο παιηλδξόκεζεο είλαη ε πξόβιεςε ηεο αλακελόκελεο ηηκήο ηεο εμαξηεκέλεο κεηαβιεηήο Υ γηα δεδνκέλε ηηκή ηεο αλεμάξηεηεο
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά
Πλεόναςμα Καταναλωτι
Ηιτθςθ τθσ αγοράσ Πλεόναςμα Καταναλωτι Η ατομική καμπύλη ζήτησης παρουσιάζει τις μέγιστες ποσότητες από ένα αγαθό/υπηρεσία που ένας καταναλωτής είναι διατεθειμένος να πληρώσει Η τιμή της αγοράς προσδιορίζει
ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ
1 ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ Μάθημα 19: Φόροι ΦΟΡΟΛΟΓΙΚΑ ΤΣΗΜΑΣΑ: Προοδεσηικό, Αναλογικά και ανηίζηροθα προοδεσηικό θορολογικό ζύζηημα Μέζος και οριακός θορολογικός ζσνηελεζηής Ο κέζνο θνξνινγηθόο ζπληειεζηήο
ΜΘΚΡΟΟΘΚΟΝΟΜΘΚΗ ΘΕΩΡΘΑ ΣΟΜΟ Α
ΜΘΚΡΟΟΘΚΟΝΟΜΘΚΗ ΘΕΩΡΘΑ ΣΟΜΟ Α Κεθάλαιο 1: H μεγιζηοποίηζη ηηρ σπηζιμόηηηαρ ηος καηαναλωηή Σθνπόο ηνπ θαηαλαισηή είλαη λα κεγηζηνπνηήζεη ηε ρξεζηκόηεηα (επραξίζηεζε) πνπ αληιεί από ηελ θαηαλάισζε ησλ αγαζώλ,
ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ
ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί
Κεφ. 7 Παραγωγός. Ζ Πξνζθνξά ηεο Δπηρείξεζεο ζε ηειείωο αληαγωληζηηθή αγνξά Μ. ΨΥΛΛΑΚΖ
Κεφ. 7 Παραγωγός Ζ Πξνζθνξά ηεο Δπηρείξεζεο ζε ηειείωο αληαγωληζηηθή αγνξά 1 Η προσυορά της επιτείρησης Πώο απνθαζίδεη κηα επηρείξεζε πόζν πξνϊόλ λα πξνζθέξεη; Aπηή ε απόθαζε εμαξηάηαη από ηελ ηερλνινγία
ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών
τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ 3 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ
Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf
Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,
ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου
ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ
Πανελλαδικέρ εξεηάζειρ 2017
Θέμα Α Α. δ Α. γ Α3. α Α4. δ Α5. Λ,Σ,Σ,Σ,Λ Θέμα Β Πανελλαδικέρ εξεηάζειρ 07 Δνδεικηικέρ απανηήζειρ ζηο μάθημα «Φςζική πποζαναηολιζμού ΓΔΛ» Β. Σωζηή απάνηηζη είναι η : ii) Η ζέζε θπζηθνύ κήθνπο απνηειεί
πγθιίλνλ-απνθιίλνλ αθξνθύζην έρεη δηαηνκή εηζόδνπ A1
Πρόβλημα πγθιίλνλ-απνθιίλνλ αθξνθύζην έρεη δηαηνκή εηζόδνπ A1 1cm ιαηκνύ 4.4cm θαη εμόδνπ A 7cm. Αλ ε πίεζε αλαθνπήο ζηελ είζνδν ηνπ αθξνθπζίνπ είλαη 1 bar θαη ε ηαρύηεηα ηνπ ήρνπ 46 m / s ππνινγίζηε ζηηο
1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h.
ΦΤΙΚΗ A ΛΤΚΔΙΟΤ ΓΙΑΡΚΔΙΑ: 10min ΣΜΗΜΑ:. ONOMA:. ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ 1 ο ΘΔΜΑ ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ A: 1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s
Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε.
Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Παξάκεηξνη πξνο αμηνιόγεζε Ννκνζεηηθή ζσξάθηζε Κνηλόο Σύιινγνο Ακνηβή Καηαγγειία/Λύζε
6 η Εργαζηηριακή Άζκηζη Επαλήθεσζη Λειηοσργίας Βαζικών Φλιπ-Φλοπ
6 η Εργαζηηριακή Άζκηζη Επαλήθεσζη Λειηοσργίας Βαζικών Φλιπ-Φλοπ Σηα πιαίζηα ηεο έθηεο εξγαζηεξηαθήο άζθεζεο ζα ρξεζηκνπνηεζεί απνθιεηζηηθά ην πεξηβάιινλ αλάπηπμεο νινθιεξσκέλσλ θπθισκάησλ IDL-800 Digital
Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016
Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε