Lower Bounds for Laplacian and Fractional Laplacian Eigenvalues

Σχετικά έγγραφα
On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Homework for 1/27 Due 2/5

On Generating Relations of Some Triple. Hypergeometric Functions

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Solve the difference equation

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)


A study on generalized absolute summability factors for a triangular matrix

Ψηφιακή Επεξεργασία Εικόνας

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

On Inclusion Relation of Absolute Summability

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

HARDY AND RELLICH INEQUALITIES WITH REMAINDERS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Every set of first-order formulas is equivalent to an independent set

Solutions: Homework 3

The Heisenberg Uncertainty Principle

Degenerate Perturbation Theory

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

C.S. 430 Assignment 6, Sample Solutions

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

2 Composition. Invertible Mappings

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

4.6 Autoregressive Moving Average Model ARMA(1,1)

Example Sheet 3 Solutions

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Congruence Classes of Invertible Matrices of Order 3 over F 2

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

Uniform Convergence of Fourier Series Michael Taylor

Presentation of complex number in Cartesian and polar coordinate system

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Bessel function for complex variable

The Neutrix Product of the Distributions r. x λ

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

LAD Estimation for Time Series Models With Finite and Infinite Variance

IIT JEE (2013) (Trigonomtery 1) Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Lecture 13 - Root Space Decomposition II

Math221: HW# 1 solutions

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Data Dependence of New Iterative Schemes

ST5224: Advanced Statistical Theory II

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Second Order Partial Differential Equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Fractional Colorings and Zykov Products of graphs

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

A note on a conjecture of Calderón

1. Matrix Algebra and Linear Economic Models

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

α β

DERIVATION OF MILES EQUATION Revision D

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Solution Series 9. i=1 x i and i=1 x i.

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Homework 3 Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Concrete Mathematics Exercises from 30 September 2016

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Areas and Lengths in Polar Coordinates

A Note on Intuitionistic Fuzzy. Equivalence Relation

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

A General Note on δ-quasi Monotone and Increasing Sequence

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Diane Hu LDA for Audio Music April 12, 2010

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CRASH COURSE IN PRECALCULUS

Statistical Inference I Locally most powerful tests

Matrices and Determinants

5. Choice under Uncertainty

Lecture 3: Asymptotic Normality of M-estimators

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Gauss Radau formulae for Jacobi and Laguerre weight functions

The Pohozaev identity for the fractional Laplacian

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

An upper bound for error term of Mertens formula

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

Finite Field Problems: Solutions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Quadratic Expressions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Transcript:

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues arxiv:.457v [math.dg] 7 Fe Guoxi Wei He-Ju Su ad Ligzhog Zeg Astract: I this paper, we ivestigate eigevalues of Laplacia o a ouded domai i a -dimesioal Euclidea space ad otai a sharper lower oud for the sum of its eigevalues, which gives a improvemet of results due to A. D. Melas [5]. O the other had, for the case of fractioal Laplacia ) α/ D, where α,], we otai a sharper lower oud for the sum of its eigevalues, which gives a improvemet of results due to S.Y. Yolcu ad T. Yolcu [3]. Itroductio Let D R e a ouded domai with piecewise smooth oudary D i a - dimesioal Euclidea spacer. Letλ i ethei-theigevalue ofthefixedmemrae prolem: { u+λu =, i D,.) u =, o D, where isthe LaplaciaiR. It iswell ow that thespectrum ofthis eigevalue prolem is real ad discrete: < λ λ λ 3 +, where each λ i has fiite multiplicity which is repeated accordig to its multiplicity. If we use the otatios VolD) ad ω to deote the volume of D ad the volume of the uit all i R, respectively, the Weyl s asymptotic formula asserts that the eigevalues of the fixed memrae prolem.) satisfy the followig formula: λ 4π, +..) ω VolD)) From the aove asymptotic formula, it follows directly that λ i 4π +ω VolD)), +..3) i= Mathematics Suject Classificatio: 35P5. Key words ad phrases: eigevalues, lower oud, Laplacia, fractioal Laplacia. The first author ad the secod author were supported y the Natioal Natural Sciece Foudatio of Chia Grat Nos.87, 3).

G. Wei, H.-J. Su ad L. Zeg Pólya [7] proved that λ 4π, for =,,,.4) ω VolD)) if D is a tilig domai i R. Furthermore, he put forward the followig: Cojecture of Pólya. If D is a ouded domai i R, the the -th eigevalue λ of the fixed memrae prolem satisfies λ 4π, for =,,..5) ω VolD)) O the Cojecture of Pólya, Berezi [] ad Lie [3] gave a partial solutio. I particular, Li ad Yau [3] proved the Berezi-Li-Yau iequality as follows: λ i 4π +ω VolD)), for =,,..6) i= Theformula.3)showsthattheresultofLiadYauissharpithesese ofaverage. From this iequality.6), oe ca derive λ 4π +ω VolD)), for =,,,.7) which gives a partial solutio for the cojecture of Pólya with a factor +. We prefer to call this iequality.6) as Berezi-Li-Yau iequality istead of Li-Yau iequality ecause.6) ca e otaied y a Legedre trasform of a earlier result y Berezi [] as it is metioed [4]. Recetly, improvemets to the Berezi- Li-Yau iequality give y.6) for the fixed memrae prolem have appeared, for example see [, 5, ]. I particular, A.D.Melas [5] has improved the estimate.6) to the followig: where λ i 4π +ω VolD)) i= + 4+) VolD), for =,,,.8) IeD) IeD) =: mi x a a R D dx is called the momet of iertia ofd. After a traslatioof the origi, we ca assume that the ceter of mass is the origi ad IeD) = x dx. By taig a value eary the extreme poit of the fuctio fτ) give y??)), we add oe term of lower order of to its right had side, which meas that we otai a sharper result tha.8). I fact, we prove the followig: D

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Theorem.. Let D e a ouded domai i a -dimesioal Euclidea space R. Assume that λ i,i =,,, is the i-th eigevalue of the eigevalue prolem.). The the sum of its eigevalues satisfies λ j + ω π) VolD) + 4+) + 34+) ω π) VolD) IeD) VolD) IeD) ) VolD)..9) Furthermore, we cosider the fractioal Laplacia operators restricted to D, ad deote them y ) α/ D, where α,]. This fractioal Laplacia ca e defied y ) α/ ux) uy) ux) =: P.V. dy, R x y +α where P.V. deotes the pricipal value ad u : R R. Defie the characteristic fuctio χ D : t χ D t) y χ D t) = {, x D,, x R \D, the the special pseudo-differetial operator ca e represeted as the Fourier trasform of the fuctio u [,9], amely ) α/ D u := F [ ξ α F[uχ D ]], where F[u] deotes the Fourier trasform of a fuctio u : R R: F[u]ξ) = ûξ) = e ix ξ ux)dx. π) R Itiswell owthatthefractioallaplaciaoperator ) α/ caecosidered as the ifiitesimal geerator of the symmetric α-stale process [3 6, 3]. Suppose thatastochasticprocessx t hasstatioaryidepedet icremets aditstrasitio desity i.e., covolutio erel) p α t,x,y) = p α t,x y), t >, x,y R is determied y the followig Fourier trasform Exp t ξ α ) = e iξ y p α t,y)dy, t >, ξ R, R the we ca say that the process X t is a -dimesioal symmetric α-stale process with order α,] i R also see [4,5,3]). Remar.. Give α =, X t is the Cauchy process i R whose trasitio desities are give y the Cauchy distriutio Poisso erel) p t,x,y) = c t t + x y ) +, t >, x,y R, 3

G. Wei, H.-J. Su ad L. Zeg where c = Γ + )/π + =, πω is the semiclassical costat that appears i the Weyl estimate for the eigevalues of the Laplacia. Remar.. Give α =, X t is just the usual -dimesioal Browia motio B t ut ruig at twice the speed, which is equivalet to say that, whe α =, we have X t = B t ad [ ] p x y t,x,y) = 4πt) /Exp, t >, x,y R. 4t Let Λ α j ad u α j deote the j-th eigevalue ad the correspodig ormalized eigevector of ) α/ Ω, respectively. Eigevalues Λ α j icludig multiplicities) satisfy < Λ α) Λ α) Λ α) 3 +. For the case of α =, E. Harrell ad S. Y. Yolcu gave a aalogue of the Berezi-Li-Yau type iequality for the eigevalues of the Klei-Gordo operators H,D := restricted to D i [9]: Λ α) j + π ω VolD)) )..) Very recetly, S.Y.Yolcu [] has improved the estimate.) to the followig: Λ α) j C + VolD) VolD) + + M /,.) IeD) where C = π ad the costat M ω ) depeds oly o the dimesio. Moreover, for ay α,], S.Y.Yolcu ad T.Yolcu [3] geeralized.) as follows: Λ α) j +α π ω VolD)) ) α α..) Furthermore, S.Y.Yolcu ad T.Yolcu [3] refied the Berezi-Li-Yau iequality i the case of fractioal Laplacia ) α D restricted to D: ) Λ α) j α π α +α j ω VolD)).3) l π) α VolD) + 4+α) ω VolD)) α IeD) α, where l is give y { } α l = mi, 4απ. + α)ω 4 4

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Remar.3. I fact, y a direct calculatio, oe ca chec the followig iequality: which implies l 4+α) π) α ω VolD)) α α 4απ + α)ω 4, VolD) IeD) α = α 48+α) π) α ω VolD)) α VolD) IeD) α. The aother mai purpose ofthis paper is to provide a refiemet of theberezi- Li-Yau type estimate. I other word, we have proved the followig: Theorem.. Let D e a ouded domai i a -dimesioal Euclidea space R. Assume that Λ α) i,i =,,, is the i-th eigevalue of the fractioal Laplacia ) α/ D. The, the sum of its eigevalues satisfies Λ α) j +α π) α ω VolD)) α α + 48+α) + α+α ) C)+α) α π) α ω VolD)) α π) α 4 ω VolD)) α 4 VolD) IeD) α VolD) IeD) ) α 4,.4) where C) = { 468, whe 4, 644, whe = or = 3. I particular, the sum of its eigevalues satisfies whe α =. j + ω π) VolD) VolD) + 4+) IeD) ).5) + 34+) ω π) VolD) VolD), IeD) Λ ) Remar.4. Oservig Theorem., it is ot difficult to see that the coefficiets with respect to α ) of the secod terms i.4) are equal to that of.3). I other word, we ca claim that the iequalities.4) are sharper tha.3) sice the coefficiets with respect to α 4 ) of the third terms i.4) are positive. By usig Theorem., we ca give a aalogue of the Berezi-Li-Yau type iequality for the eigevalues of the Klei-Gordo operators H,D restricted to the ouded domai D: 5

G. Wei, H.-J. Su ad L. Zeg Corollary.. Let D e a ouded domaii a -dimesioaleuclidea spacer. Assume that Λ i,i =,,, is the i-th eigevalue of the Klei-Gordo operators H,D. The, the sum of its eigevalues satisfies Λ j π +ω VolD)) π) VolD) + 48+) ω VolD)) IeD) ) π) 3 + C)+) ω VolD)) 3 VolD) IeD) ) 3,.6) where C) = { 468, whe 4, 644, whe = or = 3. A Key Lemma I order to prove the followig Lemma.3, we eed the followig lemmas give y S.Y.Yolcu ad T.Yolcu i [3]: Lemma.. Suppose that ς : [, ) [,] such that ςs) ad ςs)ds =. The, there exists ǫ such that Moreover, we have ǫ+ ǫ ǫ+ ǫ s d ds = s d+α ds s d ςs)ds. s d+α ςs)ds. Lemma.. For s >, τ >, N, < α, we have the followig iequality: s +α +α s τ α α τ+α + α τ+α s τ). I light of Lemma. ad Lemma., we otai the followig result which will play importat roles i the proof of Theorem. ad Theorem.. Lemma.3. Let ) e a positive real umer ad µ> ) e defied y.3). If ψ : [, + ) [, + ) is a decreasig fuctio such that µ ψ s) 6

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues ad the, we have A := s ψs)ds >, s +α ψs)ds +α A)+α ψ) α + α A)+α ψ) α+ +α)µ + α+α ) 4A)+α 4 88 +α) ψ) 4 α+4, µ.) whe 4; we have s +α ψs)ds +α A)+α ψ) α + α A)+α ) ψ) α+ +α)µ + α+α ) 4A)+α 4 384 +α) ψ) 4 α+4, µ.) whe < 4. I particular, the iequality.) holds whe α = ad. Proof. If we cosider the followig fuctio t) = ψ ψ) t) µ, ψ) the it is ot difficult to see that ) = ad t). Without loss of geerality, we ca assume ψ) = ad µ =. Defie E α := s +α ψs)ds. Oe ca assume that E α <, otherwise there is othig to prove. By the assumptio, we ca coclude that lim s s+α ψs) =. Puttig hs) = ψ s) for ay s, we get hs) ad hs)ds = ψ) =. By maig use of itegratio y parts, oe ca get s hs)ds = 7 s ψs)ds = A,

G. Wei, H.-J. Su ad L. Zeg ad s +α hs)ds +α)e α, sice ψs) >. By Lemma., oe ca ifer that there exists a ǫ such that ad ǫ+ s ds = ǫ s hs)ds = A,.3) Let ǫ+ ǫ s +α ds s +α hs)ds +α)e α..4) Θs) = s +α +α)τ α s +ατ +α ατ +α s τ), the, y Lemma., we have Θs). Itegratig the fuctio Θs) from ǫ to ǫ+, we deduce from.3) ad.4), for ay τ >, Defie +α)e α +α)τ α A+ατ +α α τ+α..5) fτ) := +α)τ α A ατ +α + α τ+α,.6) the we ca otai from.5) that, for ay τ >, Taig E α = τ = A) s +α ψs)ds fτ) +α). +α) A) + +α ), ad sustitutig it ito.6), we otai fτ) = A) +α ) α+α ) A) +α) + +α )+α + +α +α) A). + α A)+α +α) A) )α.7) By usig the Taylor formula, oe has for t > +t) α + α αα ) t+ t + αα )α ) t 3 6 3 + αα )α )α 3) 4 4 t 4, 8

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues ad +t) +α + +α t+ +α )α ) t + +α )α )α ) t 3 6 3 + +α )α )α )α ) 4 4 t 4. Puttig t = +α +α) A) >, oe has αt >, τ = A) +t), ) α+α ) A) +α) +α) A) + +α )α = αt)+t) α [ αt) + α αα ) t+ t + αα )α ) t 3 6 3 ] + αα )α )α 3) t 4 4 4 = αα+) = αα+) t αα )α+) t 3 αα )α )α+) t 4 3 8 3 α α )α )α 3) t 5 4 4 +α +α) A) αα )α+) 3 αα )α )α+) 8 3 ) +α +α) A) α α )α )α 3) 4 4 ) 3 +α +α) A) +α +α) A) ) 4 5 ),.8) 9

G. Wei, H.-J. Su ad L. Zeg ad +α) A) + +α = +t) +α + +α + +α )α ) )+α +α +α) A) ) +α +α) A) + +α )α )α ) 6 3 ) +α +α) A) + +α )α )α )α ) 4 4 ) 3 +α +α) A) 4 )..9) Therefore, we otai from.8) ad.9) fτ) = +α)τ α A ατ +α + α τ+α [ A) +α αα+) +α +α) A) αα )α+) +α 3 +α) A) αα )α )α+) 8 3 α α )α )α 3) 4 4 [ + α A)+α + +α + +α )α ) +α ) 3 ) +α +α) A) +α +α) A) ) 4 +α +α) A) +α) A) + +α )α )α ) 6 3 ) ) 5 ] ) +α +α) A) + +α )α )α )α ) 4 4 ) 3 +α +α) A) ) 4 ].) = A) +α + α A)+α +I +I +I 3,

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues where I = α+α ) 88+α) A)+α 4,.) I = α+α )α+ 6) 7 +α +α) ) A) +α 6 + α+α )[α +5 6)α+ 6 +8+6)] 88 ) 3 3 +α A) +α 8, +α).) I 3 = αγ 4 4 +α +α) ) 5 A) +α, ad γ = α )α )α )+α) αα )α )α 3). Noticig that αα )α )α 3), we have γ α )α )α )+α). Defie β := α )α )α )+α), the we have β ad γ β. Therefore, we have I 3 αβ 4 4 +α +α) ) 5 A) +α,.3) Next, we cosider two cases: Case : 4. Whe 4, for ay α,], we ca ifer α +5 6)α+ 6 +8+6) 5 6)α+ 6 +8+) = 6 +8+5α)+ 6α 4+8+)+..4)

G. Wei, H.-J. Su ad L. Zeg Sice A) +) 3 see [8]), oe ca deduce from.) ad.4) I α+α )α+ 6) 7 +α +α) ) A) +α 6 + α+α )[α +5 6)α+ 6 +8+6)] 5 ) 3 +α A) +α 6 +α) = α+α )[ 6α+ 6)+α +5 6)α+ 6 +8+6) ] 5 ) 3 +α A) +α 6 +α) = α+α )[ 6 + 88+α)+α 6α+6) ] 5 ) 3 +α A) +α 6. +α).5) O the other had, we have I 3 αβ 468 4 +α +α) ) A) +α 6, sice β ad A) I +I 3 ca e give y I +I 3 +). Therefore, the estimate of the lower oud of 3 { α+α ) [ 6 + 88+α)+α 6α+6) ] 5 3 ) +α A) +α 6 +α) } + αβ 468 4 = α{4+α )[6 + 88+α)+α 6α+6)]+β} 468 ) 4 +α A) +α 6. +α) Next, we will verify the followig iequality 4+α )[6 + 88+α)+α 6α+6)]+β..6)

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Ideed, sice < α ad 4, we have 4+α )[6 + 88+α)+α 6α+6)]+β = 4+α )[6 + 88+α)+α 6α+6)] +α )α )α )+α) 8[6 + 88+α)+α 6α+6)] α )α )α )+α) 8[6 + 88+α)+α 6α+6)] +)+)+) 8[6 88+α 8α)] +)+)+) 86 9) +)+)+) = 4 3 756 3 6 6 3 6 8 6..7) Thus, it is ot difficult to see that the iequality.6) follows from.7), which implies Therefore, whe 4, we have I +I 3. fτ) A) +α + α A)+α + α+α ) 88+α) A)+α 4. Case : < 4. Uitig the equatios.),.) ad.3), we otai the followig equatio I +I +I 3 α+α ) A)+α 4 88+α) + α+α )α+ 6) 7 ) +α A) +α 6 +α) + α+α )[α +5 6)α+ 6 +8+6)] 88 ) 3 3 +α A) +α 8 +α) ) + αβ 5 +α A) +α 4 4 +α) 3

G. Wei, H.-J. Su ad L. Zeg = α+α ) A)+α 4 + α+α ) A)+α 4 384+α) 5+α) + α+α )ν +α 7 +α) + α+α )ν +α 88 3 +α) ) + αβ 5 +α A) +α 4 4, +α) ) A) +α 6 ) 3 A) +α 8 where ad ν := α+ 6), ν := α +5 6)α+ 6 +8+6). Suppose ν ad ν, the we have I +I +I 3 α+α ) A)+α 4 + α+α ) 384+α) 96 ) where + α+α )α+ 6) 88 = α+α ) A)+α 4 384+α) +α +α) ) +α +α) A) +α 4 + α+α )[α +5 6)α+ 6 +8+6)] ) 468 3 +α A) +α 4 +α) ) + αβ 5 +α A) +α 4 4 +α) ) + α+α ) +α I 4 96 +α) ) + αβ 5 +α A) +α 4 4, +α) I 4 = + α+ 6 3 + α +5 6)α+ 6 +8+6) 48. 4 A) +α 4 A) +α 4.8)

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Noticig that < α ad < 4, we have I 4 = 48 +6α+ 6)+α +5 6)α+ 6 +8+6) 48 = 74 +α 88)+α 6α+6) 48 6+α+α 8α) 48 = 6+ 8)α+α 48 6 48 = 5 4. Therefore, we derive from.8) ad.9) I +I +I 3 α+α ) A)+α 4 + 5α+α ) 384+α) 384 ) + αβ 5 +α A) +α 4 4 +α) α+α ) A)+α 4 + 5α+α ) 384+α) 384 ) + α+α )β 843+α) 4 α+α ) A)+α 4 384+α) +α +α) + α+α )[4 +α)+β] 843+α) 4 A) +α 4 +α +α) +α +α) +α +α) ) ) ) A) +α 4, A) +α 4 A) +α 4.9) sice A) +). We defie a fuctio K) y lettig 3 K) := 4 +α)+β = 4 +α)+α )α )α )+α), where [,4). After a direct calculatio, we have which implies K) 4 +α) α )α )α )+α) 4 +α) +)+)+) 4 +α) )3)) 6 3 +4α >, I +I +I 3 α+α ) 384+α) A)+α 4. 5

G. Wei, H.-J. Su ad L. Zeg Fortheother cases i.e., ν adν > ; ν > adν ; or ν > ad ν > ), we ca also derive y usig the same method that Therefore, whe 4, we have fτ) A) +α I +I +I 3 α+α ) 384+α) A)+α 4. + α A)+α + α+α ) 384+α) A)+α 4. I particular, we ca cosider the case that α =. Noticig that β = whe α = ad, we ca claim that I 3. Therefore, whe α = ad, oe ca deduce I +I 3 α+α )α+ 6) 7 +α +α) ) A) +α 6 + α+α )[α +5 6)α+ 6 +8+6)] 88 ) 3 3 +α A) +α 8 +α) ) = ) A) 4 8 + +3 +) 4 +) ) ) A) 4 8 + +3 +) 96 +) ) = 3 3 6 A) 4 88 +) ) 6 3 6 A) 4 88 +), which implies ) 3 A) 6 ) A) 4 fτ) A) +α + α A)+α This completes the proof of the Lemma.3. + α+α ) 88+α) A)+α 4. 3 Proofs of Theorem. ad Theorem. I this sectio, we will prove the Theorem. ad Theorem. y usig the ey lemma give i sectio i.e., Lemma.3). 6

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues We suppose that D R is a ouded domai i R, ad the its symmetric rearragemet D is the ope all with the same volume as D, D = { x R x < ) } VolD). ω By usig a symmetric rearragemet of D, oe ca otai IeD) = D x dx x dx = D + VolD) ) VolD). 3.) ω For the case of fractioal Laplace operator, let u α) j e a orthoormal eigefuctio correspodig to the eigevalue Λ α) j. Namely, u α) j satisfies { ) α/ u α) j = Λ α) u α) j, i D, D uα) i x)u α) j x)dx = δ ij, for ay i,j, where < α. O the other had, for the case of Laplace operator, we let v j e a orthoormal eigefuctio correspodig to the eigevalue λ j. Namely, v j satisfies v j +λ j v j =, i D, v =, v D ix)v j x)dx = δ ij, o D, for ay i,j. Thus, oth {u α) j } ad {v j} form a orthoormal asis of L D). Defie the fuctios ϕ α) j ad η j y { ϕ α) u α) j x), x D, j x) =, x R \D, ad η j x) = { v j x), x D,, x R \D, respectively. Deotey η j ξ)ad the, for ay ξ R, we have ϕ α) j ξ)thefouriertrasformsofη j ξ)adϕ α) j ξ), ϕ α) j ξ) = π) / ϕ α) j x)e i x,ξ dx = π) / R D u α) j x)e i x,ξ dx, ad η j ξ) = π) / η j x)e i x,ξ dx = π) / R D v j x)e i x,ξ dx. 7

G. Wei, H.-J. Su ad L. Zeg From the Placherel formula, we have ϕα) i x) ϕ α) j x)dx = η i x) η j x)dx = δ ij, R R forayi,j. Sice{u α) j } ad{v j} areorthoormalasises il D), thebessel iequality implies that ϕ α) j ξ) π) / D e i x,ξ dx = π) / VolD), 3.) ad η j ξ) π) / e i x,ξ dx = π) / VolD). 3.3) D For fractioal Laplace operator, we oserve that Λ α) j = u α) j ξ) ) α/ Ω u α) j ξ)dξ R = = R u α) j ξ) F [ ξ α F[u α) ξ α ûα) j ξ) dξ, R j ξ)]]dξ 3.4) sice the support of u α) j is D see [3]). O the meawhile, for the case of Laplace operator, we have see [, 5]) λ j = ξ v j ξ) dξ. 3.5) R Sice ad we otai ϕ α) j ξ) = ϕ α) j ξ) = π) / η j ξ) = π) / Ω Ω η j ξ) = π) ixu α) j x)e i x,ξ dx, ixv j x)e i x,ξ dx, Ω ixe i x,ξ dx = π) IeD). 3.6) Puttig f α) ξ) := 8 ϕ α) j ξ),

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues ad fξ) := η j ξ), oe derives from 3.) ad 3.3) that f α) ξ) π) VolD) ad fξ) π) VolD), it follows from 3.6) ad the Cauchy-Schwarz iequality that ) / ) / f α) ξ) ϕ α) j ξ) ϕ α) j ξ) ad π) IeD)VolD), ) / ) / fξ) η j ξ) η j ξ) π) IeD)VolD), for every ξ R. Furthermore, y usig 3.4) ad 3.5), we have ad Λ α) j = ξ α ûα) j ξ) dξ = R = ξ α f α) ξ)dξ, R λ j = ξ v j ξ) dξ = R = ξ fξ)dξ. R From the Parseval s idetity, we derive f α) ξ)dξ = ϕ α) j x) dx = R R Similarly, we have [7, 5] = R fξ)dξ = = D u α) j x) dx =. R ξ α ϕ α) j ξ) dξ R ξ η j ξ) dξ η j x) dx = R v j x) dx =. D 9 D D ûα) j x) dx v j x) dx 3.7) 3.8) 3.9) 3.)

G. Wei, H.-J. Su ad L. Zeg Let h e a oegative ouded cotiuous fuctio o D ad h is its symmetric decreasig rearragemet, the we have see [, 7]) hx)dx = h x)dx = ω s gs)ds 3.) R R ad x α hx)dx x α h x)dx = ω R R s +α gs)ds, 3.) where α,] ad g x ) = h x). Puttig δ := sup h, the we ca otai δ g s) 3.3) for almost every s. More detail iformatio o symmetric decreasig rearragemets will e foud i [,7,8]. To e rief, we will drop the superscript α to deote f α) y f ad let f = f. Assume thatfi isthesymmetric decreasig rearragemet off i i =,), accordig to 3.9), 3.) ad 3.), we have = f i ξ)dξ = fi ξ)dξ = ω s φ i s)ds, 3.4) R R where φ i x) = f i x ) ad i =,. Applyig the symmetric decreasig rearragemet to f i, ad otig that where δ i = sup f i, we otai from 3.3) δ i π) IeΩ)VolΩ) := σ, 3.5) σ δ i φ is), where i =,. By3.), we have σ π) + ) ω VolD) + π) ω VolD) +, sice. Moreover, y usig 3.7), 3.8) ad 3.), we have ad Λ α) j = ξ α f α) ξ)dξ = ξ α f ξ)dξ R R ξ α f ξ)dξ = ω s +α φ ξ)dξ, R λ j = ξ fξ)dξ = ξ f ξ)dξ R R ξ f ξ)dξ = ω s + φ ξ)dξ. R 3.6) 3.7)

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Proof of Theorem.. I order to apply Lemma.3, from 3.4), 3.5) ad the defiitio of A, we tae =, ψs) = φ s), A = ω, ad µ = σ = π) VolD)IeD). Therefore, we ca otai from Lemma.3 ad 3.7) that λ j = ω E [ ω +) [ = ω + = + ω where t = φ ). Let the oe ca has A) + φ ) Aφ ) + 6σ ω + Ft) = + ω F t) = + ω )+ t + ω t 6σ + ω ) 4t4+ 44+)σ t t + 6+)σ + ω 4t4+ 44+) σ + + t + + ] + A) 44+)σ 4φ ) 4+ ], t t + 6+)σ + ω 4t4+ 44+) σ t 3+)σ + 4+ 44+) σ 4ω, 3+ t. Sice F t) is icreasig o,π) VolD)], the it is easy to see that Ft) is decreasig o,π) VolD)] if F π) VolD)) <. Ideed, F π) VolD)) + ω + π) VolD)) + π) VolD)) + [ 3+) π) ω VolD) + + 4+)ω π) VolD)) 3+ ] 44+) [π) ω 4 VolD) + = + π)+ ω + VolD) + + 3+) π) ω VolD) + + 4+ ω 6 44+) π) = π) + ω VolD) + J, ] VolD) +

G. Wei, H.-J. Su ad L. Zeg where J = 3 + 4+ 44+) π) ω 4 π) ω 4 < 3 + 4+) 44+) π) ω 4 π) ω 4 = 3 + 36 π) ω 4 π) ω 4 < 3 + 7 4 <, which implies that F π) VolD)) <. Here, we use the iequality ω 4 π) <. We ca replace φ ) y π) VolD) to otai λ j + ω π) VolD) + 4+) + 34+) ω π) VolD) IeD) sice σ = π) VolD)IeD). This completes the proof of Theorem.. Next, we will give the proof of Theorem.. VolD) IeD) ) VolD). Proof of Theorem..: Defie the fuctio φ x) y φ x ) := f x). The we ow that φ : [, + ) [, π) VΩ)] is a o-icreasig fuctio with respect to x. Taig =, ψs) = φ s), A = ω, ad µ = σ = π) VolD)IeD), we ca otai from Lemma.3 ad 3.6) that Λ α) j ω s +α φ s)ds )+α )+α ω ω αω φ ) α ω + +α +α)σ φ ) α+ )+α 4 α+α ) ω ω + φ C )+α) σ 4 ) 4 α+4, 3.8)

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues where C ) = { 88, whe 4, 384, whe = or = 3. Moreover, we defie a fuctio ξt) y lettig ξt) = ω +α ω + α+α ) ω C )+α) σ 4 )+α t α + αω +α)σ ω ω )+α 4 t 4 α+4. )+α t α+ 3.9) Differetiatig 3.9) with respect to the variale t, it is ot difficult to see that ξ t) = αω +α ω )+α [ t α + α+) σ ω ] + 4 α+4)+α ) C ) +α)σ 4 ω ) 4 t 4+4. ) t + 3.) Lettig ζt) = ξ t) +α ) ) +α α t +, 3.) αω ω ad otig that σ π) ω VolD) +, we ca otai from 3.) ad 3.) that ) ζt) = + α+) t + σ ω + 4 α+4)+α ) C ) +α)σ 4 + + α+) ω π) ω VolD) +) 4 α+4)+α ) ) 4 t 4+4 ω C ) +α)π) 4 ω 4 VolD) 4+) ) t + ω ) 4 t 4+4. 3.) It is easy to see that the right had side of 3.) is a icreasig fuctio of t. Therefore, if the right had side of 3.) is less tha whe we tae t = 3

G. Wei, H.-J. Su ad L. Zeg π) VolD), which is equivalet to say that ζt) + α+) ω 4 π) + 4 α+4)+α ) 4 ω 8 C ) +α) π) 4, 3.3) we ca claim from 3.3) that ξ t) o,π) VΩ)]. By a direct calculatio, we ca otai ζt) + α+) + +) = 3 4 + 4 C ), + 4 α+4)+α ) C ) +α) + 4+)+) C ) 3 3.4) sice ω 4 π) <. Thus, it is easy to see from 3.) ad 3.4) that ξ t), which implies that ξt) is a decreasig fuctio o,π) VolD)]. O the other had, we otice that < φ ) π) VolD) ad right had side of the formula 3.8) is ξφ )), which is a decreasig fuctio of φ ) o,π) VolD)]. Therefore, φ ) caereplaced y π) VolD) i.) which gives the followig iequality: where Λ α) j +α C) = π) α ω VolD)) α α + 48+α) + α+α ) C)+α) α π) α ω VolD)) α π) α 4 ω VolD)) α 4 VolD) IeD) α VolD) IeD) { 468, whe 4, 644, whe = or = 3. ) α 4, I particular, whe α =, we ca get the iequality.5) y usig the same method as the proof of Theorem.. This completes the proof of Theorem.. Acowledgmet. The authors wish to express their gratitude to Prof. Q.-M. Cheg for cotiuous ecouragemet ad ethusiastic help. 4

Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Refereces [] C. Badle, Isoperimetric iequalities ad applicatios, Pitma Moographs ad Studies i Mathematics, vol. 7, Pitma, Bosto, 98. [] F. A. Berezi, Covariat ad cotravariat symols of operators, Izv. Aad. Nau SSSR Ser. Mat. 36 97), 34-67. [3] R. Blumethal ad R.Getoor, The asymptotic distriutio of the eigevalues for a class of Marov operators, Pacific J. Math, 9 959) 399-48. [4] R. Ba uelos ad T. Kulczyci, The Cauchy process ad the Stelov prolem, J. Fuct. Aal., ) 4) 355-43. [5] R. Ba uelos ad T. Kulczyci, Eigevalue gaps for the Cauchy process ad a Poicaré iequality, J. Fuct. Aal., 34 6) 99-5. [6] R. Ba uelos, T. Kulczyci ad Bart lomiej Siudeja, O the trace of symmetric stale processes o Lipschitz domais, J. Fuct. Aal., 57) 9) 339-335. [7] Q. -M. Cheg ad G. Wei, A lower oud for eigevalues of a clamped plate prolem, Calc. Var. Partial Differetial Equatios, 4 ), 579-59. [8] Q. -M. Cheg ad G. Wei, Upper ad lower ouds of the clamped plate prolem, ) preprit. [9] E. M. Harrell II ad S. Yildirim Yolcu, Eigevalue iequalities for Klei-Gordo Operators, J. Fuct. Aal., 56) 9) 3977-3995. [] H. Kovaří, S. Vugalter ad T. Weidl, Two dimesioal Berezi-Li-Yau iequalities with a correctio term, Comm. Math. Phys., 873) 9), 959C98. [] N. S. Ladof, Foudatios of moder potetial theory, New Yor: Spriger-Verlag 97). [] P. Li ad S. T. Yau, O the Schrödiger equatios ad the eigevalue prolem, Comm. Math. Phys., 88 983), 39-38. [3] E. Lie, The umer of oud states of oe-ody Schrödiger operators ad the Weyl prolem, Proc. Sym. Pure Math., 36 98), 4-5. [4] A. Laptev ad T. Weidl, Recet results o Lie-Thirrig iequalities, Jourées Équatios aux Dérivées Partielles La Chapelle sur Erdre, ), Exp. No. XX, 4 pp., Uiv. Nates, Nates,. [5] A. D. Melas, A lower oud for sums of eigevalues of the Laplacia, Proc. Amer. Math. Soc., 3 3), 63-636. [6] A. Pleijel, O the eigevalues ad eigefuctios of elastic plates, Comm. Pure Appl. Math., 3 95), -. [7] G. Pólya, O the eigevalues of viratig memraes, Proc. Lodo Math. Soc., 96), 49-433. [8] G. Pólya ad G. Szegö, Isoperimetric iequalities i mathematical physics, Aals of mathematics studies, umer 7, Priceto uiversity press, Priceto, New Jersey, 95). [9] E. Valdioci, From the log jump radom wal to the fractioal Laplacia, ArXiv:9.36. 5

G. Wei, H.-J. Su ad L. Zeg [] T. Weidl, Improved Berezi-Li-Yau iequalities with a remaider term, Spectral Theory of Differetial Operators, Amer. Math. Soc. Trasl., 5) 8), 53-63. [] Q. L. Wag, C. Y. Xia, Uiversal ouds for eigevalues of the iharmoic operator o Riemaia maifolds, J. Fuct. Aal., 45 7), 334-35. [] S. Yildirim Yolcu, A improvemet to a Brezi-Li-Yau type iequality, Proc. Amer. Math. Soc, 38) ) 459-466. [3] S.Y.YolcuadT.Yolcu, Estimates for the sums of eigevalues of the fractioal Laplacia o a ouded domai, http://www.math.purdue.edu/ tyolcu/stimprovemet.pdf, ), preprit. Guoxi Wei, School of Mathematical Scieces, South Chia Normal Uiversity, 563, Guagzhou, Chia, weigx3@mails.tsighua.edu.c He-Ju Su, Departmet of Applied Mathematics, College of Sciece, Najig Uiversity of Sciece ad Techology, 94, Najig, Chia hejusu@63.com Ligzhog Zeg, Departmet of Mathematics, Graduate School of Sciece ad Egieerig, Saga Uiversity, Saga 84-85, Japa, ligzhogzeg@yeah.et 6