H ΥΠΕΝΘΥΜΙΖΕΤΑΙ ΟΤΙ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ

Σχετικά έγγραφα
1 ον ΜΕΡΟΣ ΑΠΟ ΤΗ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ 2 ον ΜΕΡΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΔΙΑΦΟΡΕΣ ΠΕΡΙΟΧΕΣ ΤΗΣ ΦΥΣΙΚΗΣ. Η ΑΝΤΑΓΩΝΙΣΜΟΣ ΜΕ ΤΑ ΜΗ ΓΡΑΜΜΙΚΑ

1 ον ΜΕΡΟΣ ΑΠΟ ΤΗ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ 2 ον ΜΕΡΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΔΙΑΦΟΡΕΣ ΠΕΡΙΟΧΕΣ ΤΗΣ ΦΥΣΙΚΗΣ. Η ΑΝΤΑΓΩΝΙΣΜΟΣ ΜΕ ΤΑ ΜΗ ΓΡΑΜΜΙΚΑ

ΓΙΑ ΝΑ ΕΙΣΑΙ ΣΕ ΙΣΟΡΡΟΠΙΑ ΠΡΕΠΕΙ ΝΑ ΚΙΝΕΙΣΑΙ!

Η ΔΙΑΦΟΡΙΚΗ ΕΞΙΣΩΣΗ ΤΟΥ ΚΥΜΑΤΟΣ H ΚΥΜΑΤΙΚΗ ΕΞΙΣΩΣΗ

ΦΥΣΙΚΗ 2 έναρξη 12 Φεβρουαρίου 2018

Kεφ. 6 ΔΙΑMOΡΦΩΣΗ ΚΥΜΑΤΟΣ, ΚΥΜΑΤΟΠΑΚΕΤΑ,

ΕΓΚΑΡΣΙΑ ΗΠΙΑ ΔΙΑΤΑΡΑΧΗ ΣΕ ΤΕΝΤΩΜΕΝΗ ΕΛΑΣΤΙΚΗ ΧΟΡΔΗ ΔΙΑΔΙΔΕΤΑΙ ΩΣ ΚΥΜΑ;

OΙ ΕΞΙΣΩΣΕΙΣ ΑΥΤΕΣ ΜΕ ΤΗΝ ΙΔΙΑΖΟΥΣΑ ΣYΣΧΕΤΙΣΗ ΧΡΟΝΟΥ-ΧΩΡΟΥ ΠΕΡΙΓΡΑΦΟΥΝ ΔΙΑΔΟΣΗ ΔΙΑΤΑΡΑΧΗΣ ΧΩΡΙΣ ΠΑΡΑΜΟΡΦΩΣΗ ΜΕ ΤΑΧΥΤΗΤΑ U

Κλασική Ηλεκτροδυναμική

Φυσική για Μηχανικούς

METAΦΟΡΑ ΕΝΕΡΓΕΙΑΣ KAI ΟΡΜΗΣ ΑΠΟ ΟΔΕΥΟΝ EΓΚΑΡΣΙΟ ΚΥΜΑ ΣΕ ΧΟΡΔΗ. K. EYTAΞΙΑΣ

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου

ΦΥΣ Διαλ.33 1 KYMATA

Φυσική για Μηχανικούς

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε

HMY 220: Σήματα και Συστήματα Ι

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

2-1 ΕΙΣΑΓΩΓΗ 2-2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

Ψαρεύοντας έρχεται η θάλασσα. Οδυσσέας Ελύτης

ΣΤΑΣΙΜΟ ΚΥΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ

ΣΤΑΣΙΜΟ ΚΥΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ

H ENNOIA TΗΣ ΕΜΠΕΔΗΣΗΣ ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ ΜΕΡΟΣ I. Κωνσταντίνος Ευταξίας

Φυσική για Μηχανικούς

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

Τρέχοντα κύματα. Ερωτήσεις με δικαιολόγηση.

Ψαρεύοντας έρχεται η θάλασσα. Οδυσσέας Ελύτης

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

1. Το σημείο Ο αρχίζει τη χρονική στιγμή να εκτελεί απλή αρμονική ταλάντωση,

Φυσική για Μηχανικούς

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.

METAΦΟΡΑ ΕΝΕΡΓΕΙΑΣ KAI ΟΡΜΗΣ ΑΠΟ ΟΔΕΥΟΝ EΓΚΑΡΣΙΟ ΚΥΜΑ ΣΕ ΧΟΡΔΗ.

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

4. Εισαγωγή στην Κυματική

Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε:

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο.

Ψαρεύοντας έρχεται η θάλασσα. Οδυσσέας Ελύτης

KYMATA Ανάκλαση - Μετάδοση

d = 5 λ / 4 λ = 4 d / 5 λ = 4 0,5 / 5 λ = 0,4 m. H βασική κυματική εξίσωση : υ = λ f υ = 0,4 850 υ = 340 m / s.

Ηλεκτρομαγνητικά Διαδίδονται στο κενό

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες

δ. Ο χρόνος ανάμεσα σε δυο διαδοχικούς μηδενισμούς του πλάτους είναι Τ =

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s,

Φυσική για Μηχανικούς

Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Δ.

HMY 333 Φωτονική Διάλεξη 07. Ταχύτητα φάσης, ταχύτητα ομάδας και διασπορά. n 2 n O

Α = 0,6 m A = 0,3 m ω - ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 49

ΚΕΦΑΛΑΙΟ 2o : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ

Φυσική Ο.Π. Γ Λυκείου

H ENNOIA TΗΣ ΕΜΠΕΔΗΣΗΣ ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ ΜΕΡΟΣ I. Κωνσταντίνος Ευταξίας

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

1. [Απ.: [Απ.: 3. [Απ.: [Απ.:

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

FM & PM στενής ζώνης. Narrowband FM & PM

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8

ΑΡΜΟΝΙΚΗ ΔΙΕΓΕΡΣΗ ΧΟΡΔΗΣ ΠΟΥ ΕΙΝΑΙ ΠΑΚΤΩΜΕΝΗ ΣΤΟ ΕΝΑ ΑΚΡΟ ΤΗΣ Κ. ΕΥΤΑΞΙΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΓΙΑ ΝΑ ΕΙΣΑΙ ΣΕ ΙΣΟΡΡΟΠΙΑ ΠΡΕΠΕΙ ΝΑ ΚΙΝΕΙΣΑΙ! ΚΥΜΑΤΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ. Ονοματεπώνυμο: Τμήμα: Γ ΘΕΜΑΤΑ:

b. η ταλάντωση του σώματος παρουσιάζει διακρότημα.

Ψαρεύοντας έρχεται η θάλασσα. Οδυσσέας Ελύτης

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Δ.

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

ΣΥΝΟΠΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓ/ΤΟΣ ΦΥΣΙΚΗΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ 05/01/2018

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση:

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Φυσική Γ Θετ. και Τεχν/κης Κατ/σης ΚΥΜΑΤΑ ( )

ΕΡΩΤΗΣΕΙΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΣΤΟ ΑΡΜΟΝΙΚΟ ΚΥΜΑ 1. προς τη θετική κατεύθυνση του άξονα εγκάρσιο αρμονικό κύμα μήκους

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

FM & PM στενής ζώνης. Narrowband FM & PM

Ηχητικά κύματα Διαμήκη κύματα

Φυσική για Μηχανικούς

2.1 Τρέχοντα Κύματα. Ομάδα Ε.

2.6 Κύματα που παράγονται από δύο σύγχρονες. 2.7 Κύματα που παράγονται από δύο σύγχρονες. 2.8 Κύματα παράγονται από δύο σύγχρονες

ΕΡΓΑΣΙΑ ΣΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

Φυσική για Μηχανικούς

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

ΠΑΡΑΡΤΗΜΑ Β. υποθέτουμε ότι ένα σωματίδιο είναι μέσα σε ένα μεγάλο (ενεργειακή κβαντοποίηση) αλλά πεπερασμένο κουτί (φρεάτιο δυναμικού):

Εισαγωγή στις Τηλεπικοινωνίες

Σχήμα 1 Μορφές κυμάτων (α) Μονοδιάστατο, (β) Διδιάστατο, (γ) και (δ) Τρισδιάστατα. [1]

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την (μη ομογενή) κυματική εξίσωση σε D χωρικές και 1 χρονική διάσταση :

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

S dt T V. Επιμέλεια - Υπολογισμοί: Κ. Παπαμιχάλης Δρ. Φυσικής

Transcript:

θ cot T

H ΥΠΕΝΘΥΜΙΖΕΤΑΙ ΟΤΙ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ

Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΑΝΑΦΕΡΕΤΑΙ ΣΤΟ ΤΟ ΑΡΜΟΝΙΚΟ ΚΥΜΑ ΠΟΥ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ! x t TO AΡMONIKO KYMA ΕΧΕΙ ΑΠΕΙΡΗ ΧΡΟΝΙΚΗ ΔΙΑΡΚΕΙΑ ΚΑΙ ΑΠΕΙΡΗ ΧΩΡΙΚΗ ΕΚΤΑΣΗ. TETOIΕΣ ΔΙΑΤΑΡΑΧΕΣ ΔΕΝ ΥΠΑΡΧΟΥΝ ΣΤΗ ΦΥΣΗ

ΟΙ ΠΡΑΓΜΑΤΙΚΕΣ ΔΙΑΤΑΡΑΧΕΣ ΕΧΟΥΝ: ΠΕΠΕΡΑΣΜΕΝΗ ΧΡΟΝΙΚΗ ΔΙΑΡΚΕΙΑ Δt ΠΕΠΕΡΑΣΜΕΝΗ ΧΡΟΝΙΚΗ ΕΚΤΑΣΗ Δx ΕΙΝΑΙ ΑΠΕΡΙΟΔΙΚΕΣ! Δt Δx ΑΚΟΜΗ ΚΑΙ ΟΙ ΔΙΑΤΑΡΑΧΕΣ ΑΥΤΕΣ ΑΝ ΚΑΙ ΕΜΦΑΝΙΖΟΥΝ «ΠΕΡΙΟΔΙΚΟΤΗΤΑ» ΧΡΟΝΙΚΗ ΣΤΟ Δt ή ΧΩΡΙΚΗ ΣΤΟ Δx ΕΙΝΑΙ ΑΠΕΡΙΟΔΙΚΕΣ. ΔΕΝ ΕΙΝΑΙ ΑΡΜΟΝΙΚΑ ΚΥΜΑΤΑ!

ΕΠΑΛΛΗΛΙΑ 100 ΑΡΜΟΝΙΚΩΝ ΣΕ ΤΕΤΑΜΕΝΗ ΧΟΡΔΗ

ΓΙΑΤΙ ΓΙΝΕΤΑΙ ΑΝΑΦΟΡΑ ΣΤΑ «OYTOΠIKA» ΑΡΜΟΝΙΚΑ ΚΥΜΑΤΑ; ΚΑΘΕ ΠΡΑΓΜΑΤΙΚΗ ΑΠΕΡΙΟΔΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΙΝΑΙ ΔΥΝΑΤΟ ΝΑ ΠΑΡΑΧΘΕΙ ΩΣ ΕΠΑΛΛΗΛΙΑ ΘΕΩΡΗΤΙΚΑ ΑΠΕΙΡΩΝ ΑΡΜΟΝΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ. ΓΙΑ ΚΑΘΕ ΑΡΜΟΝΙΚΗ ΣΥΝΙΣΤΩΣΑ του ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER ΕΙΝΑΙ ΔΥΝΑΤΟ ΝΑ ΒΡΟΥΜΕ ΤΗ ΣΥΧΝΟΤΗΤΑ, ΤΟ ΠΛΑΤΟΣ ΚΑΙ ΤΗ ΦΑΣΗ ΤΗΣ. ΚΑΘΕ ΞΕΧΩΡΙΣΤΗ ΑΠΕΡΙΟΔΙΚΗ ΣΥΝΑΡΤΗΣΗ ΕΧΕΙ ΤΗ ΞΕΧΩΡΙΣΤΗ ΔΙΚΗ ΤΗΣ ΑΝΑΛΥΣΗ ΣΕ ΑΡΜΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ! Η ΑΝΑΛΥΣΗ ΤΗΣ ΕΙΝΑΙ ΤΟ ΔΑΚΤΥΛΙΚΟ ΤΗΣ ΑΠΟΤΥΠΩΜΑ!

= KAΘΕ ΠΕΡΙΟΔΙΚΗ ΣΥΝΑΡΤΗΣΗ ΜΠΟΡΕΙ ΝΑ ΕΚΦΡΑΣΤΕΙ ΩΣ ΕΠΑΛΛΗΛΙΑ ΑΡΜΟΝΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Η ΜΑΥΡΗ ΔΙΑΤΑΡΑΧΗ ΕΙΝΑΙ ΕΠΑΛΛΗΛΙΑ ΤΩΝ ΤΡΙΩΝ ΕΓΧΡΩΜΩΝ ΑΡΜΟΝΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ

ΣΥΝΕΠΩΣ ΤΟ ΘΕΩΡΗΜΑ FOURIER ΔΙΝΕΙ ΤΗ ΔΥΝΑΤΟΤΗΤΑ ΝΑ ΜΕΛΕΤΗΘΟΥΝ ΠΡΑΓΜΑΤΙΚΕΣ ΠΕΡΙΟΔΙΚΕΣ ΔΙΑΤΑΡΑΧΕΣ ΜΕΣΩ ΤΗΣ ΜΕΛΕΤΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΟΝΤΟΤΗΤΩΝ-ΑΡΜΟΝΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ. Η ΑΡΜΟΝΙΚΗ ΔΙΑΤΑΡΑΧΗ ΕΙΝΑΙ ΕΝΑ ΔΙΔΑΚΤΙΚΟ ΕΡΓΑΛΕΙΟ!

Ο Μετασχηματισμός FOURIER όμως ΔΙΝΕΙ ΤΗ ΔΥΝΑΤΟΤΗΤΑ ΝΑ ΜΕΛΕΤΗΘΟΥΝ ΠΡΑΓΜΑΤΙΚΕΣ ΑΠΕΡΙΟΔΙΚΕΣ ΔΙΑΤΑΡΑΧΕΣ ΜΕΣΩ ΤΗΣ ΜΕΛΕΤΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΟΝΤΟΤΗΤΩΝ-ΑΡΜΟΝΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ. 1 ( ) ( )exp( ) 2 F f t it dt

ΧΡΟΝΟΣ f(t) F(ω) Συνεχές αρμονικό κύμα συχνότητας 0 Κυματοσυρμός διάρκειας Τ συχνότητας 0 Μοναδικός παλμός διάρκειας τ F(ω) F(ω) 2 T 2 1 T

ΧΩΡΟΣ 0 ΠΡΑΓΜΑΤΙΚΗ ΔΙΑΤΑΡΑΧΗ F() y( x, t 0) f ( x) Ae 2 x 4x 2 0 cos 0 x

ΓΙΑΤΙ ΕΙΝΑΙ: 1 t 1 x ΘΑ ΠΡΕΠΕΙ Η ΕΠΑΛΛΗΛΙΑ ΤΩΝ ΑΠΕΙΡΗΣ ΔΙΑΡΚΕΙΑΣ-ΕΚΤΑΣΗΣ ΑΡΜΟΝΙΚΩΝ ΚΥΜΑΤΩΝ ΝΑ ΕΙΝΑΙ ΜΗΔΕΝΙΚΗ ΕΚΤΟΣ ΤΟΥ Δt ή ΤΟΥ Δx. ΜΕΓΑΛΥΤΕΡΟ «ΚΟΥΡΕΜΑ» ΑΠΑΙΤΕΙ ΠΟΙΟ ΠΟΛΛΕΣ ΣΥΝΙΣΤΩΣΕΣ. ΕΠΑΛΛΗΛΙΑ MHΔΕΝ ΕΠΑΛΛΗΛΙΑ MHΔΕΝ x t

ΚΑΘΕ ΠΡΑΓΜΑΤΙΚΗ ΔΙΑΤΑΡΑΧΗ ΕΙΝΑΙ ΕΠΑΛΛΗΛΙΑ ΑΡΜΟΝΙΚΩΝ ΚΥΜΑΤΩΝ (ΜΑΘΗΜΑΤΙΚΩΝ ΟΝΤΟΤΗΤΩΝ) ΚΑΘΕ ΑΡΜΟΝΙΚΗ ΣΥΝΙΣΤΩΣΑ ΕΧΕΙ ΤΗ ΔΙΚΗ ΤΗΣ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΜΕ ΠΟΙΑ ΤΑΧΥΤΗΤΑ ΚΙΝΕΙΤΑΙ Η ΔΙΑΤΑΡΑΧΗ;

Η ΑΝΑΓΚΗ OΡΙΣΜΟΥ ΤΗΣ ΟΜΑΔΙΚΗΣ ΤΑΧΥΤΗΤΑΣ

ΕΑΝ ΔΕΝ ΥΠΑΡΧΕΙ ΕΞΑΡΤΗΣΗ ΤΗΣ ΦΑΣΙΚΗΣ ΤΑΧΥΤΗΤΑΣ ΑΠΟ ΤΗ ΣΥΧΝΟΤΗΤΑ ΟΛΕΣ ΟΙ ΑΡΜΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ ΚΙΝΟΥΝΤΑΙ ΜΕ ΤΗΝ ΙΔΙΑ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ. H ΔΙΑΤΑΡΑΧΗ ΠΑΡΑΜΕΝΕΙ ΑΝΑΛΛΟΙΩΤΗ KATA TH ΔΙΑΔΟΣΗ ΤΗΣ. ΑΝΑΛΛΟΙΩΤΗ ΠΑΡΑΜΕΝΕΙ ΚΑΙ Η ΠΛΗΡΟΦΟΡΙΑ ΠΟΥ ΜΕΤΑΦΕΡΕΙ. ΔΕΝ ΕΙΝΑΙ ΟΜΩΣ ΑΥΤΗ ΕΝ ΓΕΝΕΙ Η ΠΕΡΙΠΤΩΣΗ!

ΑΘΛΗΤΕΣ ΤΗΣ ΙΔΙΑΣ ΔΥΝΑΜΙΚΟΤΗΤΑΣ t ω Η ΟΜΑΔΑ ΔΕΝ ΠΑΡΑΜΟΡΦΩΝΕΤΑΙ ω = υ φ const T const

t=0 ΑΣ ΦΑΝΤΑΣΤΟΥΜΕ ΜΙΑ ΟΜΑΔΑ ΑΘΛΗΤΩΝ ΠΟΛΥ ΔΙΑΦΟΡΕΤΙΚΩΝ ΕΠΙΔΟΣΕΩΝ ΣΤΗΝ ΕΚΚΙΝΗΣΗ! t 1 t 2 Η «ΟΜΑΔΑ» ΜΕ ΤΟ ΧΡΟΝΟ ΔΙΑΛΥΕΤΑΙ!

ΣΕ ΕΝΑΝ ΛΑΪΚΟ ΜΑΡΑΘΩΝΙΟ ΑΓΩΝΑ ΔΡΟΜΟΥ Η ΟΜΑΔΑ ΤΗΣ ΕΚΚΙΝΗΣΗΣ ΤΕΛΙΚΑ ΔΙΑΛΥΕΤΑΙ!

ΜΙΑ ΔΙΑΤΑΡΑΧΗ ΠΟΥ ΕΙΝΑΙ ΕΠΑΛΛΗΛΙΑ ΑΡΜΟΝΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΜΕ ΤΙΣ ΣΥΧΝΟΤΗΤΕΣ ΤΟΥΣ ΝΑ ΚΑΛΥΠΤΟΥΝ ΜΕΓΑΛΗ ΠΕΡΙΟΧΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΤΗ ΦΑΣΙΚΗ ΤΟΥΣ ΤΑΧΥΤΗΤΑ ΝΑ ΔΙΑΦΟΡΟΠΟΙΕΙΤΑΙ ΕΝΤΟΝΑ ΜΕ ΤΗ ΣΥΧΝΟΤΗΤΑ (ΦΑΙΝΟΜΕΝΟ ΔΙΑΣΠΟΡΑΣ) ΚΑΤΑ ΤΗ ΔΙΑΔΟΣΗ ΤΗΣ ΠΑΡΑΜΟΡΦΩΝΕΤΑΙ ΚΑΙ ΤΕΛΙΚΑ ΔΙΑΛΥΕΤΑΙ. ΕΙΝΑΙ ΑΔΥΝΑΤΟΣ Ο ΟΡΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΔΙΑΔΟΣΗΣ ΓΙΑ ΜΙΑ ΤΕΤΟΙΑ ΔΙΑΤΑΡΑΧΗ.

Η ΕΞΑΡΤΗΣΗ ΤΗΣ ΦΑΣΙΚΗΣ ΤΑΧΥΤΗΤΑΣ ΑΠΟ ΤΗ ΣΥΧΝΟΤΗΤΑ ΣΥΝΙΣΤΑ ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΗΣ ΔΙΑΣΠΟΡΑΣ-ΔΙΑΣΚΕΔΑΣΜΟΥ KAI ΔΗΜΙΟΥΡΓΕΙ ΤΗΝ ΑΝΑΓΚΗ ΟΡΙΣΜΟΥ ΜΙΑΣ ΝΕΑΣ ΤΑΧΥΤΗΤΑΣ

Η ΔΙΑΙΣΘΗΣΗ ΛΕΕΙ ΟΤΙ ΠΑΡΟΥΣΙΑ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΣΠΟΡΑΣ ΘΑ ΗΤΑΝ ΔΥΝΑΤΟΣ Ο ΟΡΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΔΙΑΔΟΣΗΣ ΤΗΣ ΔΙΑΤΑΡΑΧΗΣ ΕΑΝ Η ΔΙΑΤΑΡΑΧΗ ΗΤΑΝ ΕΠΑΛΛΗΛΙΑ ΑΡΜΟΝΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ: 1. ΠΟΥ ΟΙ ΣΥΧΝΟΤΗΤΕΣ ΤΟΥΣ ΕΜΠΙΠΤΟΥΝ ΣΕ ΜΙΚΡΗ ΠΕΡΙΟΧΗ ΣΥΧΝΟΤΗΤΩΝ 2. ΟΙ ΑΝΤΙΣΤΟΙΧΕΣ ΦΑΣΙΚΕΣ ΤΑΧΥΤΗΤΕΣ ΔΕΝ ΔΙΑΦΟΡΟΠΟΙΟΥΝΤΑΙ ΕΝΤΟΝΑ.

d d 0 1 0 1 d d 0 2 0 2 ) sin( ) sin( ), ( 2 2 1 1 t x A t x A t x y t x t x A t x y 2 2 cos 2 2 sin 2 ), ( 2 1 2 1 2 1 2 1 t d x d t x A t x y ) ( ) cos( sin 2 ), ( 0 0 ΕΙΝΑΙ ΛΟΓΙΚΟ ΝΑ ΕΞΑΤΑΣΟΥΜΕ ΤΗΝ ΑΚΟΛΟΥΘΗ ΙΔΕΑΤΗ ΠΕΡΙΠΤΩΣΗ

y 2Α ΦΑΚΕΛΟΣ ΤΑΧΥΤΗΤΑ ΟΜΑΔΑΣ -2Α y( x, t) 2Asin 0 x tcos( d) x ( d ) t 0 0 0 g d ( ) ) d ( 0

2 dω dω d dω H ΕΠΑΛΛΗΛΙΑ ΤΩΝ ΔΥΟ ΚΥΜΑΤΩΝ ΔΙΑΜΟΡΦΩΣΕ «ΚΥΜΑΤΟΠΑΚΕΤΑ» ΜΕΤΑΒΛΗΤΟΥ ΠΛΑΤΟΥΣ ΠΟΥ ΔΙΑΔΙΔΟΝΤΑΙ ΜΕ ΤΗΝ ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ

0 0 H ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΙΣ ΚΕΝΤΡΙΚΕΣ ΤΙΜΕΣ 0, 0

Γ Ε Ω Μ Τ Ρ Ι Κ Η Α Π Ε Ι Κ Ο Ν Ι Σ Η 0 H ΦΑΣΙΚΗ TAXYTHTA ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΙΣ ΚΕΝΤΡΙΚΕΣ ΤΙΜΕΣ Η ΚΛΙΣΗ ΤΗΣ ΒΟΗΘΗΤΙΚΗΣ ΓΡΑΜΜΗΣ ΔΙΝΕΙ ΤΗ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ 0 0

g d ( ) ) d ( H TAXYTHTA OΜΑΔΟΣ ΔΕΝ ΕΞΑΡΤΑΤΑΙ ΑΠΟΚΛΕΙΣΤΙΚΑ ΑΠΟ ΤΙΣ ΚΕΝΤΡΙΚΕΣ ΤΙΜΕΣ 0 0, 0 ΑΛΛΑ ΑΠΟ ΤΟ ΠΩΣ Η ω ΜΕΤΑΒΑΛΛΕΤΑΙ ΜΕ ΤΟ

Γ Ε Ω Μ Τ Ρ Ι Κ Η ω 0 H TAXYTHTA OΜΑΔΟΣ ΔΕΝ ΕΞΑΡΤΑΤΑΙ ΑΠΟΚΛΕΙΣΤΙΚΑΑΠΟ ΤΙΣ ΚΕΝΤΡΙΚΕΣ ΤΙΜΕΣ dω Α Π Ε Ι Κ Ο Ν Ι Σ Η g d Η ΚΛΙΣΗ ΤΗΣ ΕΦΑΠΤΟΜΕΝΗΣ d( ) d ΔΙΝΕΙ ΤΗN ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ 0

d( ) d ΣΥΝΕΠΩΣ ΜΑΣ ΕΝΔΙΑΦΕΡΕΙ ΝΑ ΓΝΩΡΙΖΟΥΜΕ ΠΩΣ ΜΕΤΑΒΑΛΛΕΤΑΙ Η ω ΜΕ ΤΗ ΜΕΤΑΒΟΛΗ ΤΟΥ. ω=ω() ΣΧΕΣΗ ΔΙΑΣΠΟΡΑΣ ΔΙΑΣΚΕΔΑΣΜΟΥ 0

ph 0 d( ) ( ) g d 0 0 ph g ph g ΟΜΑΛΟΣ ΔΙΑΣΚΕΔΑΣΜΟΣ ΑΝΩΜΑΛΟΣ ΔΙΑΣΚΕΔΑΣΜΟΣ

ΜΕ ΑΙΤΙΑ ΤΗΝ ΔΙΑΣΠΟΡΑ Ο ΑΡΙΘΜΟΣ ΤΩΝ «ΚΥΜΑΤΩΝ» ΑΝΑ ΟΜΑΔΑ ΣΤΟ ΧΩΡΟ ΕΙΝΑΙ ΔΙΑΦΟΡΕΤΙΚΟΣ ΑΠΟ ΤΟΝ ΑΡΙΘΜΟ ΤΩΝ «ΚΥΜΑΤΩΝ» ΑΝΑ ΟΜΑΔΑ ΣΤΟ ΧΡΟΝΟ.

ω ω=a ph g const ω ω=a+b ph g g const ω Η ω ΕΞΑΡΤΑΤΑΙ MΗ ΓΡΑΜΜΙΚΑ ΑΠΟ ΤΟΝ

ΑΠΟ ΤΗΝ ΙΔΕΑΤΟ ΚΟΣΜΟ ΣΤΗΝ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ g d ( ) ) d ( 0 O TΡΟΠΟΣ ΕΚΦΡΑΣΗΣ ΤΗΣ ΟΜΑΔΙΚΗΣ ΤΑΧΥΤΗΤΑΣ ΕΠΙΤΡΕΠΕΙ ΤΟΝ ΟΡΙΣΜΟ ΤΗΣ ΣΕ ΠΡΑΓΜΑΤΙΚΕΣ ΔΙΑΤΑΡΑΧΕΣ

0 y( x, t 0) f ( x) Ae 2 x 4x 2 0 cos 0 x

Precise definition of group velocity W. V. Prestwich Am. J. Phys. 43, 832 (1975) y( x, t) f ( x, t)cos( t x) 0 0 C xf ( x) dx f ( x) dx d( ) C( t) C( t 0) d 0 t

Μ Η Δ Ι Α Σ Π Ο Ρ Α

t=0 t Δx H TAXYTHTA OΜΑΔΟΣ ΕΙΝΑΙ Η ΤΑΧΥΤΗΤΑ ΤΟΥ ΚΕΝΤΡΟΕΙΔΟΥΣ ΤΟΥ ΦΑΚΕΛΟΥ x g x t

H TAXYTHTA OΜΑΔΟΣ ΕΙΝΑΙ Η ΤΑΧΥΤΗΤΑ ΤΟΥ ΚΕΝΤΡΟΕΙΔΟΥΣ ΤΟΥ ΦΑΚΕΛΟΥ Δt g x t Δx ΥΠΑΡΧΕΙ ΔΙΑΣΚΕΔΑΣΜΟΣ;

ΠΑΡΑΤΗΡΕΙΣΤΕ ΤΑ ΔΥΟ ΣΤΙΓΜΙΟΤΥΠΑ. ΥΠΑΡΧΕΙ ΔΙΑΣΠΟΡΑ;

ΕΠΑΛΛΗΛΙΑ 100 ΑΡΜΟΝΙΚΩΝ ΣΕ ΜΗ ΔΙΑΣΚΟΡΠΙΣΤΙΚΟ ΥΛΙΚΟ

ΕΠΑΛΛΗΛΙΑ 100 ΑΡΜΟΝΙΚΩΝ ΣΕ ΔΙΑΣΚΟΡΠΙΣΤΙΚΟ ΥΛΙΚΟ

Ο ΟΞΥΣ ΠΑΛΜΟΣ ΣΥΝΙΣΤΑΤΑΙ ΑΠΟ ΕΝΑ ΜΕΓΑΛΟ ΑΡΙΘΜΟ ΑΡΜΟΝΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ.

ΣΥΝΟΨΗ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ: 1. EINAI H TAXYTHTA KINHΣΗΣ ΤΩΝ ΝΟΗΤΩΝ ΙΣΟΦΑΣΙΚΩΝ ΕΠΙΦΑΝΕΙΩΝ. 2. ΑΝΑΦΕΡΕΤΑΙ ΣΕ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ ΣΤΑ ΑΡΜΟΝΙΚΑ ΚΥΜΑΤΑ. ΤΟ ΑΡΜΟΝΙΚΟ ΚΥΜΑ ΔΕΝ ΜΕΤΑΔΙΔΕΙ ΠΛΗΡΟΦΟΡΙΑ ΕΚΤΟΣ ΑΠΟ ΕΚΕΙΝΗ ΤΗΣ ΥΠΑΡΞΗΣ ΤΟΥ.

Η ΟΜΑΔΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΦΥΣΙΚΗ ΟΝΤΟΤΗΤΑ ΑΝΑΦΕΡΕΤΑΙ ΣΕ ΠΡΑΓΜΑΤΙΚΕΣ ΔΙΑΤΑΡΑΧΕΣ. ΕΙΝΑΙ Η ΤΑΧΥΤΗΤΑ ΜΕ ΤΗΝ ΟΠΟΙΑ ΔΙΑΔΙΔΕΤΑΙ Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΚΥΜΑΤΟΣ. ΕΙΝΑΙ Η ΤΑΧΥΤΗΤΑ ΜΕ ΤΗΝ ΟΠΟΙΑ ΔΙΑΔΙΔΕΤΑΙ Η ΠΛΗΡΟΦΟΡΙΑ. ΔΕΝ ΕΙΝΑΙ ΠΑΝΤΑ ΕΦΙΚΤΟΣ Ο ΟΡΙΣΜΟΣ ΤΗΣ. ΕΙΝΑΙ ΕΦΙΚΤΟΣ ΑΝ ΤΟ ΦΑΣΜΑ ΤΗΣ ΔΙΑΤΑΡΑΧΗΣ ΑΠΛΩΝΕΤΑΙ ΣΕ «ΣΤΕΝΗ» ΠΕΡΙΟΧΗ ΓΥΡΩ ΑΠΟ ΜΙΑ ΕΝΤΟΝΗ ΚΟΡΥΦΗ ω ή OΠΟΥ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΔΕΝ ΔΙΑΦΟΡΟΠΟΙΕΙΤΑΙ ΕΝΤΟΝΑ..

0 ), ( ), ( ), ( 3 3 x t x y t t x y x t x y Διαταραχή περιγράφεται απο την εξίσωση: Να δειχτεί οτι η διάδοσή της χαρακτηρίζεται απο τη σχέση διασποράς: 3 Να δειχτεί ότι: 2 2 3 1 1 g ph

Dispersion with a prism ε ε= Α(n-1) n c

O MΙΓΑΔΙΚΟΣ x E 2 E( z, t) ( z, t ) 2 z t E( z, t) Aexp[ i( t z)] y H σ>>ωε z 2 i i r i i E( z, t) Ae sin( t z) z r

ΑΣΚΗΣΗ ΝΑ ΔΕΙΧΘΕΙ ΟΤΙ: d ph g ph d Nα δειχθεί ότι η συνθήκη για τον ανώμαλο διασκεδασμό είναι: d ph d 0 Πως απεικονίζεται γεωμετρικά η συνθήκη αυτή στο διάγραμμα ω=ω();